]> git.xonotic.org Git - xonotic/darkplaces.git/commitdiff
implemented a fallback case for r_glsl_skeletal 1 when dynamicvertex
authorhavoc <havoc@d7cf8633-e32d-0410-b094-e92efae38249>
Wed, 16 Jan 2013 16:54:25 +0000 (16:54 +0000)
committerhavoc <havoc@d7cf8633-e32d-0410-b094-e92efae38249>
Wed, 16 Jan 2013 16:54:25 +0000 (16:54 +0000)
occurs (the batch code will apply the skeletal deforms to the batch, to
ensure proper functionality with deformvertexes and such)
added r_batch_debugdynamicvertexpath cvar which is useful for debugging
skeletal fallback issues

git-svn-id: svn://svn.icculus.org/twilight/trunk/darkplaces@11882 d7cf8633-e32d-0410-b094-e92efae38249

gl_rmain.c
render.h

index 958a341b5a201b60dad5451dc53a2b619301f33d..7a10c491c4186865e5c8fa85ac3b558e086776e5 100644 (file)
@@ -228,6 +228,7 @@ cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alon
 
 cvar_t r_batch_multidraw = {CVAR_SAVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
 cvar_t r_batch_multidraw_mintriangles = {CVAR_SAVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
+cvar_t r_batch_debugdynamicvertexpath = {CVAR_SAVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
 
 cvar_t r_glsl_saturation = {CVAR_SAVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
 cvar_t r_glsl_saturation_redcompensate = {CVAR_SAVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
@@ -2149,8 +2150,6 @@ void R_SetupShader_Surface(const vec3_t lightcolorbase, qboolean modellighting,
        float m16f[16];
        matrix4x4_t tempmatrix;
        r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
-       if (rsurface.entityskeletaltransform3x4)
-               permutation |= SHADERPERMUTATION_SKELETAL;
        if (r_trippy.integer && !notrippy)
                permutation |= SHADERPERMUTATION_TRIPPY;
        if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
@@ -2708,6 +2707,9 @@ void R_SetupShader_Surface(const vec3_t lightcolorbase, qboolean modellighting,
                        RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_VERTEXMESH_VERTEXCOLOR : 0) | BATCHNEED_VERTEXMESH_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_VERTEXMESH_LIGHTMAP : 0) | (rsurface.entityskeletaltransform3x4 ? BATCHNEED_VERTEXMESH_SKELETAL : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
                        R_Mesh_PrepareVertices_Mesh(rsurface.batchnumvertices, rsurface.batchvertexmesh, rsurface.batchvertexmeshbuffer);
                }
+               // this has to be after RSurf_PrepareVerticesForBatch
+               if (rsurface.batchskeletaltransform3x4)
+                       permutation |= SHADERPERMUTATION_SKELETAL;
                R_SetupShader_SetPermutationGLSL(mode, permutation);
                if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
                if (mode == SHADERMODE_LIGHTSOURCE)
@@ -2849,8 +2851,8 @@ void R_SetupShader_Surface(const vec3_t lightcolorbase, qboolean modellighting,
                        }
                }
                if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegridtexture);
-               if (r_glsl_permutation->loc_Skeletal_Transform12 >= 0 && rsurface.entityskeletalnumtransforms > 0)
-                       qglUniform4fv(r_glsl_permutation->loc_Skeletal_Transform12, rsurface.entityskeletalnumtransforms*3, rsurface.entityskeletaltransform3x4);
+               if (r_glsl_permutation->loc_Skeletal_Transform12 >= 0 && rsurface.batchskeletalnumtransforms > 0)
+                       qglUniform4fv(r_glsl_permutation->loc_Skeletal_Transform12, rsurface.batchskeletalnumtransforms*3, rsurface.batchskeletaltransform3x4);
                CHECKGLERROR
                break;
        case RENDERPATH_GL11:
@@ -4327,6 +4329,7 @@ void GL_Main_Init(void)
        Cvar_RegisterVariable(&r_test);
        Cvar_RegisterVariable(&r_batch_multidraw);
        Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
+       Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
        Cvar_RegisterVariable(&r_glsl_skeletal);
        Cvar_RegisterVariable(&r_glsl_saturation);
        Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
@@ -4667,7 +4670,7 @@ qboolean R_AnimCache_GetEntity(entity_render_t *ent, qboolean wantnormals, qbool
        int numvertices;
 
        // cache skeletal animation data first (primarily for gpu-skinning)
-       if (!ent->animcache_skeletaltransform3x4 && model->num_bones > 0)
+       if (!ent->animcache_skeletaltransform3x4 && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
        {
                int i;
                int blends;
@@ -8256,6 +8259,8 @@ void RSurf_ActiveWorldEntity(void)
        rsurface.ent_alttextures = false;
        rsurface.basepolygonfactor = r_refdef.polygonfactor;
        rsurface.basepolygonoffset = r_refdef.polygonoffset;
+       rsurface.entityskeletaltransform3x4 = NULL;
+       rsurface.entityskeletalnumtransforms = 0;
        rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
        rsurface.modelvertex3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer;
        rsurface.modelvertex3f_bufferoffset = model->surfmesh.vbooffset_vertex3f;
@@ -8566,6 +8571,8 @@ void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inve
        rsurface.ent_alttextures = false;
        rsurface.basepolygonfactor = r_refdef.polygonfactor;
        rsurface.basepolygonoffset = r_refdef.polygonoffset;
+       rsurface.entityskeletaltransform3x4 = NULL;
+       rsurface.entityskeletalnumtransforms = 0;
        if (wanttangents)
        {
                rsurface.modelvertex3f = (float *)vertex3f;
@@ -8792,6 +8799,10 @@ void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const
        // check if any dynamic vertex processing must occur
        dynamicvertex = false;
 
+       // a cvar to force the dynamic vertex path to be taken, for debugging
+       if (r_batch_debugdynamicvertexpath.integer)
+               dynamicvertex = true;
+
        // if there is a chance of animated vertex colors, it's a dynamic batch
        if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_ARRAY_VERTEXCOLOR)) && texturesurfacelist[0]->lightmapinfo)
        {
@@ -8916,6 +8927,10 @@ void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const
        if (!rsurface.modelvertexmesh && (batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP)))
                dynamicvertex = true;
 
+       // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
+       if (dynamicvertex && rsurface.entityskeletaltransform3x4)
+               batchneed |= BATCHNEED_ARRAY_SKELETAL;
+
        rsurface.batchvertex3f = rsurface.modelvertex3f;
        rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
        rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
@@ -8952,6 +8967,8 @@ void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const
        rsurface.batchelement3s = rsurface.modelelement3s;
        rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
        rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
+       rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
+       rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
 
        // if any dynamic vertex processing has to occur in software, we copy the
        // entire surface list together before processing to rebase the vertices
@@ -9020,6 +9037,9 @@ void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const
 
        // now copy the vertex data into a combined array and make an index array
        // (this is what Quake3 does all the time)
+       // we also apply any skeletal animation here that would have been done in
+       // the vertex shader, because most of the dynamic vertex animation cases
+       // need actual vertex positions and normals
        //if (dynamicvertex)
        {
                rsurface.batchvertex3fbuffer = NULL;
@@ -9180,6 +9200,129 @@ void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const
                rsurface.batchnumtriangles = batchnumtriangles;
        }
 
+       // apply skeletal animation that would have been done in the vertex shader
+       if (rsurface.batchskeletaltransform3x4)
+       {
+               const unsigned char *si;
+               const unsigned char *sw;
+               const float *t[4];
+               const float *b = rsurface.batchskeletaltransform3x4;
+               float *vp, *vs, *vt, *vn;
+               float w[4];
+               float m[3][4], n[3][4];
+               float tp[3], ts[3], tt[3], tn[3];
+               si = rsurface.batchskeletalindex4ub;
+               sw = rsurface.batchskeletalweight4ub;
+               vp = rsurface.batchvertex3f;
+               vs = rsurface.batchsvector3f;
+               vt = rsurface.batchtvector3f;
+               vn = rsurface.batchnormal3f;
+               memset(m[0], 0, sizeof(m));
+               memset(n[0], 0, sizeof(n));
+               for (i = 0;i < batchnumvertices;i++)
+               {
+                       t[0] = b + si[0]*12;
+                       if (sw[0] == 255)
+                       {
+                               // common case - only one matrix
+                               m[0][0] = t[0][ 0];
+                               m[0][1] = t[0][ 1];
+                               m[0][2] = t[0][ 2];
+                               m[0][3] = t[0][ 3];
+                               m[1][0] = t[0][ 4];
+                               m[1][1] = t[0][ 5];
+                               m[1][2] = t[0][ 6];
+                               m[1][3] = t[0][ 7];
+                               m[2][0] = t[0][ 8];
+                               m[2][1] = t[0][ 9];
+                               m[2][2] = t[0][10];
+                               m[2][3] = t[0][11];
+                       }
+                       else if (sw[2] + sw[3])
+                       {
+                               // blend 4 matrices
+                               t[1] = b + si[1]*12;
+                               t[2] = b + si[2]*12;
+                               t[3] = b + si[3]*12;
+                               w[0] = sw[0] * (1.0f / 255.0f);
+                               w[1] = sw[1] * (1.0f / 255.0f);
+                               w[2] = sw[2] * (1.0f / 255.0f);
+                               w[3] = sw[3] * (1.0f / 255.0f);
+                               // blend the matrices
+                               m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
+                               m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
+                               m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
+                               m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
+                               m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
+                               m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
+                               m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
+                               m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
+                               m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
+                               m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
+                               m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
+                               m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
+                       }
+                       else
+                       {
+                               // blend 2 matrices
+                               t[1] = b + si[1]*12;
+                               w[0] = sw[0] * (1.0f / 255.0f);
+                               w[1] = sw[1] * (1.0f / 255.0f);
+                               // blend the matrices
+                               m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
+                               m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
+                               m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
+                               m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
+                               m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
+                               m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
+                               m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
+                               m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
+                               m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
+                               m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
+                               m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
+                               m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
+                       }
+                       si += 4;
+                       sw += 4;
+                       // modify the vertex
+                       VectorCopy(vp, tp);
+                       vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
+                       vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
+                       vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
+                       vp += 3;
+                       if (vn)
+                       {
+                               // the normal transformation matrix is a set of cross products...
+                               CrossProduct(m[1], m[0], n[0]);
+                               CrossProduct(m[2], m[0], n[1]);
+                               CrossProduct(m[0], m[1], n[2]);
+                               VectorCopy(vn, tn);
+                               vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
+                               vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
+                               vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
+                               VectorNormalize(vn);
+                               vn += 3;
+                               if (vs)
+                               {
+                                       VectorCopy(vs, ts);
+                                       vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
+                                       vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
+                                       vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
+                                       VectorNormalize(vs);
+                                       vs += 3;
+                                       VectorCopy(vt, tt);
+                                       vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
+                                       vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
+                                       vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
+                                       VectorNormalize(vt);
+                                       vt += 3;
+                               }
+                       }
+               }
+               rsurface.batchskeletaltransform3x4 = NULL;
+               rsurface.batchskeletalnumtransforms = 0;
+       }
+
        // q1bsp surfaces rendered in vertex color mode have to have colors
        // calculated based on lightstyles
        if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_ARRAY_VERTEXCOLOR)) && texturesurfacelist[0]->lightmapinfo)
index f694bcfeefac24532f061afb3140a1dae1cee25f..4b353f7039de4403671763e9e5f4e7ad790431ac 100644 (file)
--- a/render.h
+++ b/render.h
@@ -246,6 +246,11 @@ typedef struct rsurfacestate_s
        // (in other words, the model has been animated in software)
        qboolean                    forcecurrenttextureupdate; // set for RSurf_ActiveCustomEntity to force R_GetCurrentTexture to recalculate the texture parameters (such as entity alpha)
        qboolean                    modelgeneratedvertex;
+       // skeletal animation can be done by entity (animcache) or per batch,
+       // batch may be non-skeletal even if entity is skeletal, indicating that
+       // the dynamicvertex code path had to apply skeletal manually for a case
+       // where gpu-skinning is not possible, for this reason batch has its own
+       // variables
        int                         entityskeletalnumtransforms; // how many transforms are used for this mesh
        float                      *entityskeletaltransform3x4; // use gpu-skinning shader on this mesh
        float                      *modelvertex3f;
@@ -338,6 +343,8 @@ typedef struct rsurfacestate_s
        unsigned short             *batchelement3s;
        const r_meshbuffer_t       *batchelement3s_indexbuffer;
        size_t                      batchelement3s_bufferoffset;
+       int                         batchskeletalnumtransforms;
+       float                      *batchskeletaltransform3x4;
        // rendering pass processing arrays in GL11 and GL13 paths
        float                      *passcolor4f;
        const r_meshbuffer_t       *passcolor4f_vertexbuffer;