]> git.xonotic.org Git - xonotic/darkplaces.git/blobdiff - curves.c
Experimental new patch welding code by "someone", fixing the problem with seams when...
[xonotic/darkplaces.git] / curves.c
index 3a9e22a1f26ec4c38243e8967a4dd173a31aae24..e4ef52ca1ca997c2ded8fe40953de196a756de8b 100644 (file)
--- a/curves.c
+++ b/curves.c
@@ -40,17 +40,35 @@ double bsplinesample(int dimensions, double t, double *param)
 */
 
 #include "quakedef.h"
+#include "mathlib.h"
 
 #include <math.h>
 #include "curves.h"
 
+// Calculate number of resulting vertex rows/columns by given patch size and tesselation factor
+// tess=0 means that we reduce detalization of base 3x3 patches by removing middle row and column of vertices
+// "DimForTess" is "DIMension FOR TESSelation factor"
+// NB: tess=0 actually means that tess must be 0.5, but obviously it can't because it is of int type. (so "a*tess"-like code is replaced by "a/2" if tess=0)
+int Q3PatchDimForTess(int size, int tess)
+{
+       if (tess > 0)
+               return (size - 1) * tess + 1;
+       else if (tess == 0)
+               return (size - 1) / 2 + 1;
+       else
+               return 0; // Maybe warn about wrong tess here?
+}
+
 // usage:
 // to expand a 5x5 patch to 21x21 vertices (4x4 tesselation), one might use this call:
 // Q3PatchSubdivideFloat(3, sizeof(float[3]), outvertices, 5, 5, sizeof(float[3]), patchvertices, 4, 4);
 void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputvertices, int patchwidth, int patchheight, int inputstride, float *patchvertices, int tesselationwidth, int tesselationheight)
 {
-       int k, l, x, y, component, outputwidth = (patchwidth-1)*tesselationwidth+1;
+       int k, l, x, y, component, outputwidth = Q3PatchDimForTess(patchwidth, tesselationwidth);
        float px, py, *v, a, b, c, *cp[3][3], temp[3][64];
+       int xmax = max(1, 2*tesselationwidth);
+       int ymax = max(1, 2*tesselationheight);
+       
        // iterate over the individual 3x3 quadratic spline surfaces one at a time
        // expanding them to fill the output array (with some overlap to ensure
        // the edges are filled)
@@ -63,11 +81,11 @@ void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputver
                                for (x = 0;x < 3;x++)
                                        cp[y][x] = (float *)((unsigned char *)patchvertices + ((k+y)*patchwidth+(l+x)) * inputstride);
                        // for each row...
-                       for (y = 0;y <= tesselationheight*2;y++)
+                       for (y = 0;y <= ymax;y++)
                        {
                                // calculate control points for this row by collapsing the 3
                                // rows of control points to one row using py
-                               py = (float)y / (float)(tesselationheight*2);
+                               py = (float)y / (float)ymax;
                                // calculate quadratic spline weights for py
                                a = ((1.0f - py) * (1.0f - py));
                                b = ((1.0f - py) * (2.0f * py));
@@ -79,12 +97,12 @@ void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputver
                                        temp[2][component] = cp[0][2][component] * a + cp[1][2][component] * b + cp[2][2][component] * c;
                                }
                                // fetch a pointer to the beginning of the output vertex row
-                               v = (float *)((unsigned char *)outputvertices + ((k * tesselationheight + y) * outputwidth + l * tesselationwidth) * outputstride);
+                               v = (float *)((unsigned char *)outputvertices + ((k * ymax / 2 + y) * outputwidth + l * xmax / 2) * outputstride);
                                // for each column of the row...
-                               for (x = 0;x <= (tesselationwidth*2);x++)
+                               for (x = 0;x <= xmax;x++)
                                {
                                        // calculate point based on the row control points
-                                       px = (float)x / (float)(tesselationwidth*2);
+                                       px = (float)x / (float)xmax;
                                        // calculate quadratic spline weights for px
                                        // (could be precalculated)
                                        a = ((1.0f - px) * (1.0f - px));
@@ -118,6 +136,25 @@ void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputver
 #endif
 }
 
+static int Q3PatchTesselation(float bestsquareddeviation, float tolerance)
+{
+       float f;
+       f = sqrt(bestsquareddeviation) / tolerance;
+       //if(f < 0.25) // REALLY flat patches
+       if(f < 0.0001) // TOTALLY flat patches
+               return 0;
+       else if(f < 2)
+               return 1;
+       else
+               return (int) floor(log(f) / log(2)) + 1;
+               // this is always at least 2
+               // maps [0.25..0.5[ to -1 (actually, 1 is returned)
+               // maps [0.5..1[ to 0 (actually, 1 is returned)
+               // maps [1..2[ to 1
+               // maps [2..4[ to 2
+               // maps [4..8[ to 4
+}
+
 // returns how much tesselation of each segment is needed to remain under tolerance
 int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const float *in, float tolerance)
 {
@@ -139,7 +176,7 @@ int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const
                                bestsquareddeviation = squareddeviation;
                }
        }
-       return (int)floor(log(sqrt(bestsquareddeviation) / tolerance) / log(2)) + 1;
+       return Q3PatchTesselation(bestsquareddeviation, tolerance);
 }
 
 // returns how much tesselation of each segment is needed to remain under tolerance
@@ -163,13 +200,137 @@ int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const
                                bestsquareddeviation = squareddeviation;
                }
        }
-       return (int)floor(log(sqrt(bestsquareddeviation) / tolerance) / log(2)) + 1;
+       return Q3PatchTesselation(bestsquareddeviation, tolerance);
 }
 
+// Find an equal vertex in array. Check only vertices with odd X and Y
+static int FindEqualOddVertexInArray(int numcomponents, float *vertex, float *vertices, int width, int height)
+{
+       int x, y, j;
+       for (y=0; y<height; y+=2)
+       {
+               for (x=0; x<width; x+=2)
+               {
+                       qboolean found = true;
+                       for (j=0; j<numcomponents; j++)
+                               if (fabs(*(vertex+j) - *(vertices+j)) > 0.05)
+                               // div0: this is notably smaller than the smallest radiant grid
+                               // but large enough so we don't need to get scared of roundoff
+                               // errors
+                               {
+                                       found = false;
+                                       break;
+                               }
+                       if(found)
+                               return y*width+x;
+                       vertices += numcomponents*2;
+               }
+               vertices += numcomponents*(width-1);
+       }
+       return -1;
+}
+
+#define SIDE_INVALID -1
+#define SIDE_X 0
+#define SIDE_Y 1
+
+static int GetSide(int p1, int p2, int width, int height, int *pointdist)
+{
+       int x1 = p1 % width, y1 = p1 / width;
+       int x2 = p2 % width, y2 = p2 / width;
+       if (p1 < 0 || p2 < 0)
+               return SIDE_INVALID;
+       if (x1 == x2)
+       {
+               if (y1 != y2)
+               {
+                       *pointdist = abs(y2 - y1);
+                       return SIDE_Y;
+               }
+               else
+                       return SIDE_INVALID;
+       }
+       else if (y1 == y2)
+       {
+               *pointdist = abs(x2 - x1);
+               return SIDE_X;
+       }
+       else
+               return SIDE_INVALID;
+}
+
+// Increase tesselation of one of two touching patches to make a seamless connection between them
+// Returns 0 in case if patches were not modified, otherwise 1
+int Q3PatchAdjustTesselation(int numcomponents, patchinfo_t *patch1, float *patchvertices1, patchinfo_t *patch2, float *patchvertices2)
+{
+       // what we are doing here is:
+       //   we take for each corner of one patch
+       //   and check if the other patch contains that corner
+       //   once we have a pair of such matches
+
+       struct {int id1,id2;} commonverts[8];
+       int i, j, k, side1, side2, *tess1, *tess2;
+       int dist1, dist2;
+       qboolean modified = false;
+
+       // Potential paired vertices (corners of the first patch)
+       commonverts[0].id1 = 0;
+       commonverts[1].id1 = patch1->xsize-1;
+       commonverts[2].id1 = patch1->xsize*(patch1->ysize-1);
+       commonverts[3].id1 = patch1->xsize*patch1->ysize-1;
+       for (i=0;i<4;++i)
+               commonverts[i].id2 = FindEqualOddVertexInArray(numcomponents, patchvertices1+numcomponents*commonverts[i].id1, patchvertices2, patch2->xsize, patch2->ysize);
+
+       // Corners of the second patch
+       commonverts[4].id2 = 0;
+       commonverts[5].id2 = patch2->xsize-1;
+       commonverts[6].id2 = patch2->xsize*(patch2->ysize-1);
+       commonverts[7].id2 = patch2->xsize*patch2->ysize-1;
+       for (i=4;i<8;++i)
+               commonverts[i].id1 = FindEqualOddVertexInArray(numcomponents, patchvertices2+numcomponents*commonverts[i].id2, patchvertices1, patch1->xsize, patch1->ysize);
+
+       for (i=0;i<8;++i)
+               for (j=i+1;j<8;++j)
+               {
+                       side1 = GetSide(commonverts[i].id1,commonverts[j].id1,patch1->xsize,patch1->ysize,&dist1);
+                       side2 = GetSide(commonverts[i].id2,commonverts[j].id2,patch2->xsize,patch2->ysize,&dist2);
+
+                       if (side1 == SIDE_INVALID || side2 == SIDE_INVALID)
+                               continue;
+
+                       if(dist1 != dist2)
+                       {
+                               // no patch welding if the resolutions mismatch
+                               continue;
+                       }
+
+                       // Update every lod level
+                       for (k=0;k<PATCH_LODS_NUM;++k)
+                       {
+                               tess1 = side1 == SIDE_X ? &patch1->lods[k].xtess : &patch1->lods[k].ytess;
+                               tess2 = side2 == SIDE_X ? &patch2->lods[k].xtess : &patch2->lods[k].ytess;
+                               if (*tess1 != *tess2)
+                               {
+                                       if (*tess1 < *tess2)
+                                               *tess1 = *tess2;
+                                       else
+                                               *tess2 = *tess1;
+                                       modified = true;
+                               }
+                       }
+               }
+
+       return modified;
+}
+
+#undef SIDE_INVALID 
+#undef SIDE_X
+#undef SIDE_Y
+
 // calculates elements for a grid of vertices
 // (such as those produced by Q3PatchTesselate)
 // (note: width and height are the actual vertex size, this produces
-//  (width-1)*(height-1)*2 triangles, 3 elements each)
+// (width-1)*(height-1)*2 triangles, 3 elements each)
 void Q3PatchTriangleElements(int *elements, int width, int height, int firstvertex)
 {
        int x, y, row0, row1;