]> git.xonotic.org Git - xonotic/darkplaces.git/blobdiff - r_shadow.c
Change darkplaces email address to darkplacesengine (on gmail) since
[xonotic/darkplaces.git] / r_shadow.c
index 7c98997df487a6bc89e2b72ebabb1e5608f1c2e1..f9d8156b53b90508591c5373d022c7f164d56e2b 100644 (file)
@@ -249,7 +249,6 @@ rtexture_t *r_shadow_shadowmap2ddepthbuffer;
 rtexture_t *r_shadow_shadowmap2ddepthtexture;
 rtexture_t *r_shadow_shadowmapvsdcttexture;
 int r_shadow_shadowmapsize; // changes for each light based on distance
-int r_shadow_shadowmaplod; // changes for each light based on distance
 
 GLuint r_shadow_prepassgeometryfbo;
 GLuint r_shadow_prepasslightingdiffusespecularfbo;
@@ -326,32 +325,36 @@ cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to
 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
 cvar_t r_shadow_bouncegrid = {CVAR_SAVE, "r_shadow_bouncegrid", "0", "perform particle tracing for indirect lighting (Global Illumination / radiosity) using a 3D texture covering the scene, only active on levels with realtime lights active (r_shadow_realtime_world is usually required for these)"};
+cvar_t r_shadow_bouncegrid_blur = {CVAR_SAVE, "r_shadow_bouncegrid_blur", "1", "apply a 1-radius blur on bouncegrid to denoise it and deal with boundary issues with surfaces"};
 cvar_t r_shadow_bouncegrid_bounceanglediffuse = {CVAR_SAVE, "r_shadow_bouncegrid_bounceanglediffuse", "0", "use random bounce direction rather than true reflection, makes some corner areas dark"};
-cvar_t r_shadow_bouncegrid_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_directionalshading", "0", "use diffuse shading rather than ambient, 3D texture becomes 8x as many pixels to hold the additional data"};
-cvar_t r_shadow_bouncegrid_dlightparticlemultiplier = {CVAR_SAVE, "r_shadow_bouncegrid_dlightparticlemultiplier", "0", "if set to a high value like 16 this can make dlights look great, but 0 is recommended for performance reasons"};
-cvar_t r_shadow_bouncegrid_hitmodels = {CVAR_SAVE, "r_shadow_bouncegrid_hitmodels", "0", "enables hitting character model geometry (SLOW)"};
+cvar_t r_shadow_bouncegrid_dynamic_culllightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_culllightpaths", "1", "skip accumulating light in the bouncegrid texture where the light paths are out of view (dynamic mode only)"};
+cvar_t r_shadow_bouncegrid_dynamic_dlightparticlemultiplier = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_dlightparticlemultiplier", "1", "if set to a high value like 16 this can make dlights look great, but 0 is recommended for performance reasons"};
+cvar_t r_shadow_bouncegrid_dynamic_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_directionalshading", "0", "use diffuse shading rather than ambient, 3D texture becomes 8x as many pixels to hold the additional data"};
+cvar_t r_shadow_bouncegrid_dynamic_hitmodels = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_hitmodels", "0", "enables hitting character model geometry (SLOW)"};
+cvar_t r_shadow_bouncegrid_dynamic_energyperphoton = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_energyperphoton", "10000", "amount of light that one photon should represent"};
+cvar_t r_shadow_bouncegrid_dynamic_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_lightradiusscale", "10", "particles stop at this fraction of light radius (can be more than 1)"};
+cvar_t r_shadow_bouncegrid_dynamic_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_maxbounce", "5", "maximum number of bounces for a particle (minimum is 0)"};
+cvar_t r_shadow_bouncegrid_dynamic_maxphotons = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_maxphotons", "25000", "upper bound on photons to shoot per update, divided proportionately between lights - normally the number of photons is calculated by energyperphoton"};
+cvar_t r_shadow_bouncegrid_dynamic_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_spacing", "64", "unit size of bouncegrid pixel"};
+cvar_t r_shadow_bouncegrid_dynamic_stablerandom = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_stablerandom", "1", "make particle distribution consistent from frame to frame"};
+cvar_t r_shadow_bouncegrid_dynamic_updateinterval = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_updateinterval", "0", "update bouncegrid texture once per this many seconds, useful values are 0, 0.05, or 1000000"};
+cvar_t r_shadow_bouncegrid_dynamic_x = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_x", "64", "maximum texture size of bouncegrid on X axis"};
+cvar_t r_shadow_bouncegrid_dynamic_y = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_y", "64", "maximum texture size of bouncegrid on Y axis"};
+cvar_t r_shadow_bouncegrid_dynamic_z = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_z", "32", "maximum texture size of bouncegrid on Z axis"};
+cvar_t r_shadow_bouncegrid_floatcolors = {CVAR_SAVE, "r_shadow_bouncegrid_floatcolors", "1", "upload texture as RGBA16F (or RGBA32F when set to 2) rather than RGBA8 format - this gives more dynamic range and accuracy"};
 cvar_t r_shadow_bouncegrid_includedirectlighting = {CVAR_SAVE, "r_shadow_bouncegrid_includedirectlighting", "0", "allows direct lighting to be recorded, not just indirect (gives an effect somewhat like r_shadow_realtime_world_lightmaps)"};
 cvar_t r_shadow_bouncegrid_intensity = {CVAR_SAVE, "r_shadow_bouncegrid_intensity", "4", "overall brightness of bouncegrid texture"};
-cvar_t r_shadow_bouncegrid_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_lightradiusscale", "4", "particles stop at this fraction of light radius (can be more than 1)"};
-cvar_t r_shadow_bouncegrid_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_maxbounce", "2", "maximum number of bounces for a particle (minimum is 0)"};
-cvar_t r_shadow_bouncegrid_particlebounceintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particlebounceintensity", "1", "amount of energy carried over after each bounce, this is a multiplier of texture color and the result is clamped to 1 or less, to prevent adding energy on each bounce"};
-cvar_t r_shadow_bouncegrid_particleintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particleintensity", "1", "brightness of particles contributing to bouncegrid texture"};
-cvar_t r_shadow_bouncegrid_maxphotons = {CVAR_SAVE, "r_shadow_bouncegrid_maxphotons", "25000", "upper bound on photons to shoot per update, divided proportionately between lights - normally the number of photons is calculated by intensityperphoton"};
-cvar_t r_shadow_bouncegrid_intensityperphoton = {CVAR_SAVE, "r_shadow_bouncegrid_intensityperphoton", "10000", "amount of light that one photon should represent"};
-cvar_t r_shadow_bouncegrid_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_spacing", "64", "unit size of bouncegrid pixel"};
-cvar_t r_shadow_bouncegrid_stablerandom = {CVAR_SAVE, "r_shadow_bouncegrid_stablerandom", "1", "make particle distribution consistent from frame to frame"};
+cvar_t r_shadow_bouncegrid_particlebounceintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particlebounceintensity", "2", "amount of energy carried over after each bounce, this is a multiplier of texture color and the result is clamped to 1 or less, to prevent adding energy on each bounce"};
+cvar_t r_shadow_bouncegrid_particleintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particleintensity", "0.25", "brightness of particles contributing to bouncegrid texture"};
+cvar_t r_shadow_bouncegrid_sortlightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_sortlightpaths", "1", "sort light paths before accumulating them into the bouncegrid texture, this reduces cpu cache misses"};
+cvar_t r_shadow_bouncegrid_lightpathsize = {CVAR_SAVE, "r_shadow_bouncegrid_lightpathsize", "1", "width of the light path for accumulation of light in the bouncegrid texture"};
 cvar_t r_shadow_bouncegrid_static = {CVAR_SAVE, "r_shadow_bouncegrid_static", "1", "use static radiosity solution (high quality) rather than dynamic (splotchy)"};
 cvar_t r_shadow_bouncegrid_static_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_static_directionalshading", "1", "whether to use directionalshading when in static mode"};
+cvar_t r_shadow_bouncegrid_static_energyperphoton = {CVAR_SAVE, "r_shadow_bouncegrid_static_energyperphoton", "10000", "amount of light that one photon should represent in static mode"};
 cvar_t r_shadow_bouncegrid_static_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_static_lightradiusscale", "10", "particles stop at this fraction of light radius (can be more than 1) when in static mode"};
 cvar_t r_shadow_bouncegrid_static_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_static_maxbounce", "5", "maximum number of bounces for a particle (minimum is 0) in static mode"};
 cvar_t r_shadow_bouncegrid_static_maxphotons = {CVAR_SAVE, "r_shadow_bouncegrid_static_maxphotons", "250000", "upper bound on photons in static mode"};
-cvar_t r_shadow_bouncegrid_static_intensityperphoton = {CVAR_SAVE, "r_shadow_bouncegrid_static_intensityperphoton", "1000", "amount of light that one photon should represent in static mode"};
-cvar_t r_shadow_bouncegrid_updateinterval = {CVAR_SAVE, "r_shadow_bouncegrid_updateinterval", "0", "update bouncegrid texture once per this many seconds, useful values are 0, 0.05, or 1000000"};
-cvar_t r_shadow_bouncegrid_x = {CVAR_SAVE, "r_shadow_bouncegrid_x", "64", "maximum texture size of bouncegrid on X axis"};
-cvar_t r_shadow_bouncegrid_y = {CVAR_SAVE, "r_shadow_bouncegrid_y", "64", "maximum texture size of bouncegrid on Y axis"};
-cvar_t r_shadow_bouncegrid_z = {CVAR_SAVE, "r_shadow_bouncegrid_z", "32", "maximum texture size of bouncegrid on Z axis"};
-cvar_t r_shadow_bouncegrid_culllightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_culllightpaths", "1", "skip accumulating light in the bouncegrid texture where the light paths are out of view (dynamic mode only)"};
-cvar_t r_shadow_bouncegrid_sortlightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_sortlightpaths", "1", "sort light paths before accumulating them into the bouncegrid texture, this reduces cpu cache misses"};
+cvar_t r_shadow_bouncegrid_static_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_static_spacing", "64", "unit size of bouncegrid pixel when in static mode"};
 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "0", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
 cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksum the proportion of hidden pixels controls corona intensity"};
 cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "0", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility) - bad performance (synchronous rendering) - worse on multi-gpu!"};
@@ -428,7 +431,6 @@ static void R_Shadow_SetShadowMode(void)
        r_shadow_shadowmapshadowsampler = r_shadow_shadowmapping_useshadowsampler.integer != 0;
        r_shadow_shadowmapdepthbits = r_shadow_shadowmapping_depthbits.integer;
        r_shadow_shadowmapborder = bound(0, r_shadow_shadowmapping_bordersize.integer, 16);
-       r_shadow_shadowmaplod = -1;
        r_shadow_shadowmapsize = 0;
        r_shadow_shadowmapsampler = false;
        r_shadow_shadowmappcf = 0;
@@ -543,7 +545,6 @@ static void r_shadow_start(void)
        r_shadow_shadowmapvsdcttexture = NULL;
        r_shadow_shadowmapmaxsize = 0;
        r_shadow_shadowmapsize = 0;
-       r_shadow_shadowmaplod = 0;
        r_shadow_shadowmapfilterquality = -1;
        r_shadow_shadowmapdepthbits = 0;
        r_shadow_shadowmapvsdct = false;
@@ -761,32 +762,36 @@ void R_Shadow_Init(void)
        Cvar_RegisterVariable(&r_shadow_polygonoffset);
        Cvar_RegisterVariable(&r_shadow_texture3d);
        Cvar_RegisterVariable(&r_shadow_bouncegrid);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_blur);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_bounceanglediffuse);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_directionalshading);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_dlightparticlemultiplier);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_hitmodels);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_culllightpaths);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_directionalshading);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_dlightparticlemultiplier);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_hitmodels);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_energyperphoton);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_lightradiusscale);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_maxbounce);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_maxphotons);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_spacing);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_stablerandom);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_updateinterval);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_x);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_y);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_z);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_floatcolors);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_includedirectlighting);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_intensity);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_lightradiusscale);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_maxbounce);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_lightpathsize);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_particlebounceintensity);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_particleintensity);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_maxphotons);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_intensityperphoton);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_spacing);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_stablerandom);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_sortlightpaths);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_static);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_static_spacing);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_static_directionalshading);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_static_lightradiusscale);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_static_maxbounce);
        Cvar_RegisterVariable(&r_shadow_bouncegrid_static_maxphotons);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_static_intensityperphoton);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_updateinterval);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_x);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_y);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_z);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_culllightpaths);
-       Cvar_RegisterVariable(&r_shadow_bouncegrid_sortlightpaths);
+       Cvar_RegisterVariable(&r_shadow_bouncegrid_static_energyperphoton);
        Cvar_RegisterVariable(&r_coronas);
        Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
        Cvar_RegisterVariable(&r_coronas_occlusionquery);
@@ -2326,6 +2331,9 @@ void R_Shadow_RenderMode_DrawDeferredLight(qboolean stenciltest, qboolean shadow
        R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
 }
 
+#define MAXBOUNCEGRIDSPLATSIZE 7
+#define MAXBOUNCEGRIDSPLATSIZE1 (MAXBOUNCEGRIDSPLATSIZE+1)
+
 // these are temporary data per-frame, sorted and performed in a more
 // cache-friendly order than the original photons
 typedef struct r_shadow_bouncegrid_splatpath_s
@@ -2339,7 +2347,7 @@ typedef struct r_shadow_bouncegrid_splatpath_s
 }
 r_shadow_bouncegrid_splatpath_t;
 
-static void R_shadow_BounceGrid_AddSplatPath(vec3_t originalstart, vec3_t originalend, vec3_t color)
+static void R_Shadow_BounceGrid_AddSplatPath(vec3_t originalstart, vec3_t originalend, vec3_t color)
 {
        int bestaxis;
        int numsplats;
@@ -2353,7 +2361,7 @@ static void R_shadow_BounceGrid_AddSplatPath(vec3_t originalstart, vec3_t origin
 
        // cull paths that fail R_CullBox in dynamic mode
        if (!r_shadow_bouncegrid_state.settings.staticmode
-        && r_shadow_bouncegrid_culllightpaths.integer)
+        && r_shadow_bouncegrid_dynamic_culllightpaths.integer)
        {
                vec3_t cullmins, cullmaxs;
                cullmins[0] = min(originalstart[0], originalend[0]) - r_shadow_bouncegrid_state.settings.spacing[0];
@@ -2461,26 +2469,32 @@ static qboolean R_Shadow_BounceGrid_CheckEnable(int flag)
 
 static void R_Shadow_BounceGrid_GenerateSettings(r_shadow_bouncegrid_settings_t *settings)
 {
+       qboolean s = r_shadow_bouncegrid_static.integer != 0;
+       float spacing = s ? r_shadow_bouncegrid_static_spacing.value : r_shadow_bouncegrid_dynamic_spacing.value;
+
        // prevent any garbage in alignment padded areas as we'll be using memcmp
        memset(settings, 0, sizeof(*settings)); 
 
        // build up a complete collection of the desired settings, so that memcmp can be used to compare parameters
-       settings->staticmode                    = r_shadow_bouncegrid_static.integer != 0;
+       settings->staticmode                    = s;
+       settings->blur                          = r_shadow_bouncegrid_blur.integer != 0;
+       settings->floatcolors                   = bound(0, r_shadow_bouncegrid_floatcolors.integer, 2);
+       settings->lightpathsize                 = bound(1, r_shadow_bouncegrid_lightpathsize.integer, MAXBOUNCEGRIDSPLATSIZE);
        settings->bounceanglediffuse            = r_shadow_bouncegrid_bounceanglediffuse.integer != 0;
-       settings->directionalshading            = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_directionalshading.integer != 0 : r_shadow_bouncegrid_directionalshading.integer != 0) && r_shadow_bouncegrid_state.allowdirectionalshading;
-       settings->dlightparticlemultiplier      = r_shadow_bouncegrid_dlightparticlemultiplier.value;
-       settings->hitmodels                     = r_shadow_bouncegrid_hitmodels.integer != 0;
+       settings->directionalshading            = (s ? r_shadow_bouncegrid_static_directionalshading.integer != 0 : r_shadow_bouncegrid_dynamic_directionalshading.integer != 0) && r_shadow_bouncegrid_state.allowdirectionalshading;
+       settings->dlightparticlemultiplier      = s ? 0 : r_shadow_bouncegrid_dynamic_dlightparticlemultiplier.value;
+       settings->hitmodels                     = s ? false : r_shadow_bouncegrid_dynamic_hitmodels.integer != 0;
        settings->includedirectlighting         = r_shadow_bouncegrid_includedirectlighting.integer != 0 || r_shadow_bouncegrid.integer == 2;
-       settings->lightradiusscale              = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_lightradiusscale.value : r_shadow_bouncegrid_lightradiusscale.value);
-       settings->maxbounce                     = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_maxbounce.integer : r_shadow_bouncegrid_maxbounce.integer);
+       settings->lightradiusscale              = (s ? r_shadow_bouncegrid_static_lightradiusscale.value : r_shadow_bouncegrid_dynamic_lightradiusscale.value);
+       settings->maxbounce                     = (s ? r_shadow_bouncegrid_static_maxbounce.integer : r_shadow_bouncegrid_dynamic_maxbounce.integer);
        settings->particlebounceintensity       = r_shadow_bouncegrid_particlebounceintensity.value;
-       settings->particleintensity             = r_shadow_bouncegrid_particleintensity.value * 16384.0f * (settings->directionalshading ? 4.0f : 1.0f) / (r_shadow_bouncegrid_spacing.value * r_shadow_bouncegrid_spacing.value);
-       settings->maxphotons                    = r_shadow_bouncegrid_static.integer ? r_shadow_bouncegrid_static_maxphotons.integer : r_shadow_bouncegrid_maxphotons.integer;
-       settings->intensityperphoton            = r_shadow_bouncegrid_static.integer ? r_shadow_bouncegrid_static_intensityperphoton.integer : r_shadow_bouncegrid_intensityperphoton.integer;
-       settings->spacing[0]                    = r_shadow_bouncegrid_spacing.value;
-       settings->spacing[1]                    = r_shadow_bouncegrid_spacing.value;
-       settings->spacing[2]                    = r_shadow_bouncegrid_spacing.value;
-       settings->stablerandom                  = r_shadow_bouncegrid_stablerandom.integer;
+       settings->particleintensity             = r_shadow_bouncegrid_particleintensity.value * 16384.0f * (settings->directionalshading ? 4.0f : 1.0f) / (spacing * spacing);
+       settings->maxphotons                    = s ? r_shadow_bouncegrid_static_maxphotons.integer : r_shadow_bouncegrid_dynamic_maxphotons.integer;
+       settings->energyperphoton            = s ? r_shadow_bouncegrid_static_energyperphoton.integer : r_shadow_bouncegrid_dynamic_energyperphoton.integer;
+       settings->spacing[0]                    = spacing;
+       settings->spacing[1]                    = spacing;
+       settings->spacing[2]                    = spacing;
+       settings->stablerandom                  = s ? 1 : r_shadow_bouncegrid_dynamic_stablerandom.integer;
 
        // bound the values for sanity
        settings->maxphotons = bound(1, settings->maxphotons, 25000000);
@@ -2550,12 +2564,12 @@ static void R_Shadow_BounceGrid_UpdateSpacing(void)
 
        // if dynamic we may or may not want to use the world bounds
        // if the dynamic size is smaller than the world bounds, use it instead
-       if (!settings->staticmode && (r_shadow_bouncegrid_x.integer * r_shadow_bouncegrid_y.integer * r_shadow_bouncegrid_z.integer < resolution[0] * resolution[1] * resolution[2]))
+       if (!settings->staticmode && (r_shadow_bouncegrid_dynamic_x.integer * r_shadow_bouncegrid_dynamic_y.integer * r_shadow_bouncegrid_dynamic_z.integer < resolution[0] * resolution[1] * resolution[2]))
        {
                // we know the resolution we want
-               c[0] = r_shadow_bouncegrid_x.integer;
-               c[1] = r_shadow_bouncegrid_y.integer;
-               c[2] = r_shadow_bouncegrid_z.integer;
+               c[0] = r_shadow_bouncegrid_dynamic_x.integer;
+               c[1] = r_shadow_bouncegrid_dynamic_y.integer;
+               c[2] = r_shadow_bouncegrid_dynamic_z.integer;
                // now we can calculate the texture size (power of 2 if required)
                c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
                c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
@@ -2599,15 +2613,13 @@ static void R_Shadow_BounceGrid_UpdateSpacing(void)
        r_shadow_bouncegrid_state.pixelsperband = resolution[0]*resolution[1]*resolution[2];
        r_shadow_bouncegrid_state.bytesperband = r_shadow_bouncegrid_state.pixelsperband*4;
        numpixels = r_shadow_bouncegrid_state.pixelsperband*r_shadow_bouncegrid_state.pixelbands;
-       if (r_shadow_bouncegrid_state.numpixels != numpixels || !r_shadow_bouncegrid_state.pixels || !r_shadow_bouncegrid_state.highpixels)
+       if (r_shadow_bouncegrid_state.numpixels != numpixels)
        {
                if (r_shadow_bouncegrid_state.texture)
                {
                        R_FreeTexture(r_shadow_bouncegrid_state.texture);
                        r_shadow_bouncegrid_state.texture = NULL;
                }
-               r_shadow_bouncegrid_state.pixels = (unsigned char *)Mem_Realloc(r_main_mempool, r_shadow_bouncegrid_state.pixels, numpixels * sizeof(unsigned char[4]));
-               r_shadow_bouncegrid_state.highpixels = (float *)Mem_Realloc(r_main_mempool, r_shadow_bouncegrid_state.highpixels, numpixels * sizeof(float[4]));
                r_shadow_bouncegrid_state.numpixels = numpixels;
        }
 
@@ -2714,28 +2726,15 @@ static void R_Shadow_BounceGrid_AssignPhotons(r_shadow_bouncegrid_settings_t *se
                //if (VectorLength2(rtlight->photoncolor) == 0.0f)
                //      rtlight->photons = 0;
        }
-       // the user provided an intensityperphoton value which we try to use
+       // the user provided an energyperphoton value which we try to use
        // if that results in too many photons to shoot this frame, then we cap it
        // which causes photons to appear/disappear from frame to frame, so we don't
        // like doing that in the typical case
-       normalphotonscaling = 1.0f / max(0.0001f, r_shadow_bouncegrid_intensityperphoton.value);
+       normalphotonscaling = 1.0f / max(0.0001f, settings->energyperphoton);
        maxphotonscaling = (float)settings->maxphotons / max(1, photoncount);
        *photonscaling = min(normalphotonscaling, maxphotonscaling);
 }
 
-static void R_Shadow_BounceGrid_ClearPixels(void)
-{
-       int pixelband;
-       for (pixelband = 0;pixelband < r_shadow_bouncegrid_state.pixelbands;pixelband++)
-       {
-               if (pixelband == 1)
-                       memset(r_shadow_bouncegrid_state.pixels + pixelband * r_shadow_bouncegrid_state.bytesperband, 128, r_shadow_bouncegrid_state.bytesperband);
-               else
-                       memset(r_shadow_bouncegrid_state.pixels + pixelband * r_shadow_bouncegrid_state.bytesperband, 0, r_shadow_bouncegrid_state.bytesperband);
-       }
-       memset(r_shadow_bouncegrid_state.highpixels, 0, r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
-}
-
 static int R_Shadow_BounceGrid_SplatPathCompare(const void *pa, const void *pb)
 {
        r_shadow_bouncegrid_splatpath_t *a = (r_shadow_bouncegrid_splatpath_t *)pa;
@@ -2748,33 +2747,36 @@ static int R_Shadow_BounceGrid_SplatPathCompare(const void *pa, const void *pb)
        return 0;
 }
 
+static void R_Shadow_BounceGrid_ClearPixels(void)
+{
+       // clear the highpixels array we'll be accumulating into
+       r_shadow_bouncegrid_state.highpixels = (float *)R_FrameData_Alloc(r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
+       memset(r_shadow_bouncegrid_state.highpixels, 0, r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
+}
+
 static void R_Shadow_BounceGrid_PerformSplats(void)
 {
+       int splatsize = r_shadow_bouncegrid_state.settings.lightpathsize;
+       int splatsize1 = splatsize + 1;
        r_shadow_bouncegrid_splatpath_t *splatpaths = r_shadow_bouncegrid_state.splatpaths;
        r_shadow_bouncegrid_splatpath_t *splatpath;
-       unsigned char *pixel;
-       unsigned char *pixels = r_shadow_bouncegrid_state.pixels;
-       float *highpixel;
        float *highpixels = r_shadow_bouncegrid_state.highpixels;
        int numsplatpaths = r_shadow_bouncegrid_state.numsplatpaths;
        int splatindex;
        vec3_t steppos;
        vec3_t stepdelta;
        vec3_t dir;
-       float texlerp[2][3];
+       float texcorner[3];
+       float texlerp[MAXBOUNCEGRIDSPLATSIZE1][3];
        float splatcolor[32];
-       float pixelweight[8];
-       float w;
+       float boxweight = 1.0f / (splatsize * splatsize * splatsize);
        int resolution[3];
        int tex[3];
-       int pixelindex[8];
-       int corner;
        int pixelsperband = r_shadow_bouncegrid_state.pixelsperband;
-       int pixelband;
        int pixelbands = r_shadow_bouncegrid_state.pixelbands;
        int numsteps;
        int step;
-       
+
        // hush warnings about uninitialized data - pixelbands doesn't change but...
        memset(splatcolor, 0, sizeof(splatcolor));
 
@@ -2784,11 +2786,14 @@ static void R_Shadow_BounceGrid_PerformSplats(void)
        // sort the splats before we execute them, to reduce cache misses
        if (r_shadow_bouncegrid_sortlightpaths.integer)
                qsort(splatpaths, numsplatpaths, sizeof(*splatpaths), R_Shadow_BounceGrid_SplatPathCompare);
-       
+
+       // the middle row/column/layer of each splat are full intensity
+       for (step = 1;step < splatsize;step++)
+               VectorSet(texlerp[step], 1.0f, 1.0f, 1.0f);
+
        splatpath = splatpaths;
        for (splatindex = 0;splatindex < numsplatpaths;splatindex++, splatpath++)
        {
-               
                // calculate second order spherical harmonics values (average, slopeX, slopeY, slopeZ)
                // accumulate average shotcolor
                VectorCopy(splatpath->splatdir, dir);
@@ -2840,56 +2845,52 @@ static void R_Shadow_BounceGrid_PerformSplats(void)
                for (step = 0;step < numsteps;step++)
                {
                        r_refdef.stats[r_stat_bouncegrid_splats]++;
-                       // figure out which texture pixels this is in
-                       texlerp[1][0] = steppos[0] - 0.5f;
-                       texlerp[1][1] = steppos[1] - 0.5f;
-                       texlerp[1][2] = steppos[2] - 0.5f;
-                       tex[0] = (int)floor(texlerp[1][0]);
-                       tex[1] = (int)floor(texlerp[1][1]);
-                       tex[2] = (int)floor(texlerp[1][2]);
+                       // figure out the min corner of the pixels we'll need to update
+                       texcorner[0] = steppos[0] - (splatsize1 * 0.5f);
+                       texcorner[1] = steppos[1] - (splatsize1 * 0.5f);
+                       texcorner[2] = steppos[2] - (splatsize1 * 0.5f);
+                       tex[0] = (int)floor(texcorner[0]);
+                       tex[1] = (int)floor(texcorner[1]);
+                       tex[2] = (int)floor(texcorner[2]);
+                       // only update if it is within reasonable bounds
                        if (tex[0] >= 1
                         && tex[1] >= 1
                         && tex[2] >= 1
-                        && tex[0] < resolution[0] - 2
-                        && tex[1] < resolution[1] - 2
-                        && tex[2] < resolution[2] - 2)
+                        && tex[0] < resolution[0] - splatsize1
+                        && tex[1] < resolution[1] - splatsize1
+                        && tex[2] < resolution[2] - splatsize1)
                        {
                                // it is within bounds...  do the real work now
-                               // calculate the lerp factors
-                               texlerp[1][0] -= tex[0];
-                               texlerp[1][1] -= tex[1];
-                               texlerp[1][2] -= tex[2];
-                               texlerp[0][0] = 1.0f - texlerp[1][0];
-                               texlerp[0][1] = 1.0f - texlerp[1][1];
-                               texlerp[0][2] = 1.0f - texlerp[1][2];
-                               // calculate individual pixel indexes and weights
-                               pixelindex[0] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[0] = (texlerp[0][0]*texlerp[0][1]*texlerp[0][2]);
-                               pixelindex[1] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[1] = (texlerp[1][0]*texlerp[0][1]*texlerp[0][2]);
-                               pixelindex[2] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[2] = (texlerp[0][0]*texlerp[1][1]*texlerp[0][2]);
-                               pixelindex[3] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[3] = (texlerp[1][0]*texlerp[1][1]*texlerp[0][2]);
-                               pixelindex[4] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[4] = (texlerp[0][0]*texlerp[0][1]*texlerp[1][2]);
-                               pixelindex[5] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[5] = (texlerp[1][0]*texlerp[0][1]*texlerp[1][2]);
-                               pixelindex[6] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[6] = (texlerp[0][0]*texlerp[1][1]*texlerp[1][2]);
-                               pixelindex[7] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[7] = (texlerp[1][0]*texlerp[1][1]*texlerp[1][2]);
-                               // update the 8 pixels...
-                               for (pixelband = 0;pixelband < pixelbands;pixelband++)
+                               int xi, yi, zi;
+
+                               // calculate the antialiased box edges
+                               texlerp[splatsize][0] = texcorner[0] - tex[0];
+                               texlerp[splatsize][1] = texcorner[1] - tex[1];
+                               texlerp[splatsize][2] = texcorner[2] - tex[2];
+                               texlerp[0][0] = 1.0f - texlerp[splatsize][0];
+                               texlerp[0][1] = 1.0f - texlerp[splatsize][1];
+                               texlerp[0][2] = 1.0f - texlerp[splatsize][2];
+
+                               // accumulate light onto the pixels
+                               for (zi = 0;zi < splatsize1;zi++)
                                {
-                                       for (corner = 0;corner < 8;corner++)
+                                       for (yi = 0;yi < splatsize1;yi++)
                                        {
-                                               // calculate address for pixel
-                                               w = pixelweight[corner];
-                                               pixel = pixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
-                                               highpixel = highpixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
-                                               // add to the high precision pixel color
-                                               highpixel[0] += (splatcolor[pixelband*4+0]*w);
-                                               highpixel[1] += (splatcolor[pixelband*4+1]*w);
-                                               highpixel[2] += (splatcolor[pixelband*4+2]*w);
-                                               highpixel[3] += (splatcolor[pixelband*4+3]*w);
-                                               // flag the low precision pixel as needing to be updated
-                                               pixel[3] = 255;
-                                               // advance to next band of coefficients
-                                               //pixel += pixelsperband*4;
-                                               //highpixel += pixelsperband*4;
+                                               int index = ((tex[2]+zi)*resolution[1]+tex[1]+yi)*resolution[0]+tex[0];
+                                               for (xi = 0;xi < splatsize1;xi++, index++)
+                                               {
+                                                       float w = texlerp[xi][0]*texlerp[yi][1]*texlerp[zi][2] * boxweight;
+                                                       int band = 0;
+                                                       float *p = highpixels + 4 * index + band * pixelsperband * 4;
+                                                       for (;band < pixelbands;band++, p += pixelsperband * 4)
+                                                       {
+                                                               // add to the pixel color
+                                                               p[0] += splatcolor[band*4+0] * w;
+                                                               p[1] += splatcolor[band*4+1] * w;
+                                                               p[2] += splatcolor[band*4+2] * w;
+                                                               p[3] += splatcolor[band*4+3] * w;
+                                                       }
+                                               }
                                        }
                                }
                        }
@@ -2898,83 +2899,235 @@ static void R_Shadow_BounceGrid_PerformSplats(void)
        }
 }
 
+static void R_Shadow_BounceGrid_BlurPixelsInDirection(const float *inpixels, float *outpixels, int off)
+{
+       const float *inpixel;
+       float *outpixel;
+       int pixelbands = r_shadow_bouncegrid_state.pixelbands;
+       int pixelband;
+       unsigned int index;
+       unsigned int x, y, z;
+       unsigned int resolution[3];
+       VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);
+       for (pixelband = 0;pixelband < pixelbands;pixelband++)
+       {
+               for (z = 1;z < resolution[2]-1;z++)
+               {
+                       for (y = 1;y < resolution[1]-1;y++)
+                       {
+                               x = 1;
+                               index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
+                               inpixel = inpixels + 4*index;
+                               outpixel = outpixels + 4*index;
+                               for (;x < resolution[0]-1;x++, inpixel += 4, outpixel += 4)
+                               {
+                                       outpixel[0] = (inpixel[0] + inpixel[  off] + inpixel[0-off]) * (1.0f / 3.0);
+                                       outpixel[1] = (inpixel[1] + inpixel[1+off] + inpixel[1-off]) * (1.0f / 3.0);
+                                       outpixel[2] = (inpixel[2] + inpixel[2+off] + inpixel[2-off]) * (1.0f / 3.0);
+                                       outpixel[3] = (inpixel[3] + inpixel[3+off] + inpixel[3-off]) * (1.0f / 3.0);
+                               }
+                       }
+               }
+       }
+}
+
+static void R_Shadow_BounceGrid_BlurPixels(void)
+{
+       float *highpixels = r_shadow_bouncegrid_state.highpixels;
+       float *temppixels1 = (float *)R_FrameData_Alloc(r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
+       float *temppixels2 = (float *)R_FrameData_Alloc(r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
+       unsigned int resolution[3];
+
+       if (!r_shadow_bouncegrid_blur.integer)
+               return;
+       
+       VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);
+
+       // blur on X
+       R_Shadow_BounceGrid_BlurPixelsInDirection(highpixels, temppixels1, 4);
+       // blur on Y
+       R_Shadow_BounceGrid_BlurPixelsInDirection(temppixels1, temppixels2, resolution[0] * 4);
+       // blur on Z
+       R_Shadow_BounceGrid_BlurPixelsInDirection(temppixels2, highpixels, resolution[0] * resolution[1] * 4);
+}
+
 static void R_Shadow_BounceGrid_ConvertPixelsAndUpload(void)
 {
-       unsigned char *pixels = r_shadow_bouncegrid_state.pixels;
-       unsigned char *pixel;
+       int floatcolors = r_shadow_bouncegrid_state.settings.floatcolors;
+       unsigned char *pixelsbgra8 = NULL;
+       unsigned char *pixelbgra8;
+       unsigned short *pixelsrgba16f = NULL;
+       unsigned short *pixelrgba16f;
+       float *pixelsrgba32f = NULL;
        float *highpixels = r_shadow_bouncegrid_state.highpixels;
        float *highpixel;
+       float *bandpixel;
+       unsigned int pixelsperband = r_shadow_bouncegrid_state.pixelsperband;
        unsigned int pixelbands = r_shadow_bouncegrid_state.pixelbands;
        unsigned int pixelband;
        unsigned int x, y, z;
-       unsigned int index;
+       unsigned int index, bandindex;
        unsigned int resolution[3];
        int c[4];
        VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);
-       // generate pixels array from highpixels array
-       //
-       // skip first and last columns, rows, and layers as these are blank
+
+       if (r_shadow_bouncegrid_state.createtexture && r_shadow_bouncegrid_state.texture)
+       {
+               R_FreeTexture(r_shadow_bouncegrid_state.texture);
+               r_shadow_bouncegrid_state.texture = NULL;
+       }
+
+       // if bentnormals exist, we need to normalize and bias them for the shader
+       if (pixelbands > 1)
+       {
+               pixelband = 1;
+               for (z = 0;z < resolution[2]-1;z++)
+               {
+                       for (y = 0;y < resolution[1]-1;y++)
+                       {
+                               x = 1;
+                               index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
+                               highpixel = highpixels + 4*index;
+                               for (;x < resolution[0]-1;x++, index++, highpixel += 4)
+                               {
+                                       // only convert pixels that were hit by photons
+                                       if (highpixel[3] != 0.0f)
+                                               VectorNormalize(highpixel);
+                                       VectorSet(highpixel, highpixel[0] * 0.5f + 0.5f, highpixel[1] * 0.5f + 0.5f, highpixel[2] * 0.5f + 0.5f);
+                                       highpixel[pixelsperband * 4 + 3] = 1.0f;
+                               }
+                       }
+               }
+       }
+
+       // start by clearing the pixels array - we won't be writing to all of it
        //
-       // the pixel[3] value was deliberately written along with highpixels
-       // updates, so we can use it to detect only pixels that need to be
-       // converted, the rest were already memset to neutral values.
-       for (pixelband = 0;pixelband < pixelbands;pixelband++)
+       // then process only the pixels that have at least some color, skipping
+       // the higher bands for speed on pixels that are black
+       switch (floatcolors)
        {
+       case 0:
+               pixelsbgra8 = (unsigned char *)R_FrameData_Alloc(r_shadow_bouncegrid_state.numpixels * sizeof(unsigned char[4]));
+               for (pixelband = 0;pixelband < pixelbands;pixelband++)
+               {
+                       if (pixelband == 1)
+                               memset(pixelsbgra8 + pixelband * r_shadow_bouncegrid_state.bytesperband, 128, r_shadow_bouncegrid_state.bytesperband);
+                       else
+                               memset(pixelsbgra8 + pixelband * r_shadow_bouncegrid_state.bytesperband, 0, r_shadow_bouncegrid_state.bytesperband);
+               }
                for (z = 1;z < resolution[2]-1;z++)
                {
                        for (y = 1;y < resolution[1]-1;y++)
                        {
                                x = 1;
+                               pixelband = 0;
                                index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
-                               pixel = pixels + 4*index;
                                highpixel = highpixels + 4*index;
-                               for (;x < resolution[0]-1;x++, pixel += 4, highpixel += 4)
+                               for (;x < resolution[0]-1;x++, index++, highpixel += 4)
                                {
                                        // only convert pixels that were hit by photons
-                                       if (pixel[3] == 255)
+                                       if (VectorLength2(highpixel))
                                        {
-                                               // normalize the bentnormal...
-                                               if (pixelband == 1)
+                                               // normalize the bentnormal now
+                                               if (pixelbands > 1)
                                                {
-                                                       VectorNormalize(highpixel);
-                                                       c[0] = (int)(highpixel[0]*128.0f+128.0f);
-                                                       c[1] = (int)(highpixel[1]*128.0f+128.0f);
-                                                       c[2] = (int)(highpixel[2]*128.0f+128.0f);
-                                                       c[3] = (int)(highpixel[3]*128.0f+128.0f);
+                                                       VectorNormalize(highpixel + pixelsperband * 4);
+                                                       highpixel[pixelsperband * 4 + 3] = 1.0f;
                                                }
-                                               else
+                                               // process all of the pixelbands for this pixel
+                                               for (pixelband = 0, bandindex = index;pixelband < pixelbands;pixelband++, bandindex += pixelsperband)
                                                {
-                                                       c[0] = (int)(highpixel[0]*256.0f);
-                                                       c[1] = (int)(highpixel[1]*256.0f);
-                                                       c[2] = (int)(highpixel[2]*256.0f);
-                                                       c[3] = (int)(highpixel[3]*256.0f);
+                                                       pixelbgra8 = pixelsbgra8 + 4*bandindex;
+                                                       bandpixel = highpixels + 4*bandindex;
+                                                       c[0] = (int)(bandpixel[0]*256.0f);
+                                                       c[1] = (int)(bandpixel[1]*256.0f);
+                                                       c[2] = (int)(bandpixel[2]*256.0f);
+                                                       c[3] = (int)(bandpixel[3]*256.0f);
+                                                       pixelbgra8[2] = (unsigned char)bound(0, c[0], 255);
+                                                       pixelbgra8[1] = (unsigned char)bound(0, c[1], 255);
+                                                       pixelbgra8[0] = (unsigned char)bound(0, c[2], 255);
+                                                       pixelbgra8[3] = (unsigned char)bound(0, c[3], 255);
                                                }
-                                               pixel[2] = (unsigned char)bound(0, c[0], 255);
-                                               pixel[1] = (unsigned char)bound(0, c[1], 255);
-                                               pixel[0] = (unsigned char)bound(0, c[2], 255);
-                                               pixel[3] = (unsigned char)bound(0, c[3], 255);
                                        }
                                }
                        }
                }
-       }
 
-       if (!r_shadow_bouncegrid_state.createtexture)
-               R_UpdateTexture(r_shadow_bouncegrid_state.texture, pixels, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
-       else
-       {
-               if (r_shadow_bouncegrid_state.texture)
-                       R_FreeTexture(r_shadow_bouncegrid_state.texture);
-               r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, pixels, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
+               if (!r_shadow_bouncegrid_state.createtexture)
+                       R_UpdateTexture(r_shadow_bouncegrid_state.texture, pixelsbgra8, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
+               else
+                       r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, pixelsbgra8, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
+               break;
+       case 1:
+               pixelsrgba16f = (unsigned short *)R_FrameData_Alloc(r_shadow_bouncegrid_state.numpixels * sizeof(unsigned short[4]));
+               memset(pixelsrgba16f, 0, r_shadow_bouncegrid_state.numpixels * sizeof(unsigned short[4]));
+               for (z = 1;z < resolution[2]-1;z++)
+               {
+                       for (y = 1;y < resolution[1]-1;y++)
+                       {
+                               x = 1;
+                               pixelband = 0;
+                               index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
+                               highpixel = highpixels + 4*index;
+                               for (;x < resolution[0]-1;x++, index++, highpixel += 4)
+                               {
+                                       // only convert pixels that were hit by photons
+                                       if (VectorLength2(highpixel))
+                                       {
+                                               // process all of the pixelbands for this pixel
+                                               for (pixelband = 0, bandindex = index;pixelband < pixelbands;pixelband++, bandindex += pixelsperband)
+                                               {
+                                                       // time to have fun with IEEE 754 bit hacking...
+                                                       union {
+                                                               float f[4];
+                                                               unsigned int raw[4];
+                                                       } u;
+                                                       pixelrgba16f = pixelsrgba16f + 4*bandindex;
+                                                       bandpixel = highpixels + 4*bandindex;
+                                                       VectorCopy4(bandpixel, u.f);
+                                                       VectorCopy4(u.raw, c);
+                                                       // this math supports negative numbers, snaps denormals to zero
+                                                       //pixelrgba16f[0] = (unsigned short)(((c[0] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[0] - 0x38000000) >> 13) & 0x7FFF) | ((c[0] >> 16) & 0x8000));
+                                                       //pixelrgba16f[1] = (unsigned short)(((c[1] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[1] - 0x38000000) >> 13) & 0x7FFF) | ((c[1] >> 16) & 0x8000));
+                                                       //pixelrgba16f[2] = (unsigned short)(((c[2] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[2] - 0x38000000) >> 13) & 0x7FFF) | ((c[2] >> 16) & 0x8000));
+                                                       //pixelrgba16f[3] = (unsigned short)(((c[3] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[3] - 0x38000000) >> 13) & 0x7FFF) | ((c[3] >> 16) & 0x8000));
+                                                       // this math does not support negative
+                                                       pixelrgba16f[0] = (unsigned short)((c[0] < 0x38000000) ? 0 : ((c[0] - 0x38000000) >> 13));
+                                                       pixelrgba16f[1] = (unsigned short)((c[1] < 0x38000000) ? 0 : ((c[1] - 0x38000000) >> 13));
+                                                       pixelrgba16f[2] = (unsigned short)((c[2] < 0x38000000) ? 0 : ((c[2] - 0x38000000) >> 13));
+                                                       pixelrgba16f[3] = (unsigned short)((c[3] < 0x38000000) ? 0 : ((c[3] - 0x38000000) >> 13));
+                                               }
+                                       }
+                               }
+                       }
+               }
+
+               if (!r_shadow_bouncegrid_state.createtexture)
+                       R_UpdateTexture(r_shadow_bouncegrid_state.texture, (const unsigned char *)pixelsrgba16f, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
+               else
+                       r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, (const unsigned char *)pixelsrgba16f, TEXTYPE_COLORBUFFER16F, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
+               break;
+       case 2:
+               // our native format happens to match, so this is easy.
+               pixelsrgba32f = highpixels;
+
+               if (!r_shadow_bouncegrid_state.createtexture)
+                       R_UpdateTexture(r_shadow_bouncegrid_state.texture, (const unsigned char *)pixelsrgba32f, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
+               else
+                       r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, (const unsigned char *)pixelsrgba32f, TEXTYPE_COLORBUFFER32F, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
+               break;
        }
+
        r_shadow_bouncegrid_state.lastupdatetime = realtime;
 }
 
 static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t settings, unsigned int range, unsigned int range1, unsigned int range2, float photonscaling, int flag)
 {
+       vec3_t bouncerandom[10];
        dlight_t *light;
        int bouncecount;
        int hitsupercontentsmask;
+       int skipsupercontentsmask;
        int maxbounce;
        int shootparticles;
        int shotparticles;
@@ -2983,6 +3136,7 @@ static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t sett
        //trace_t cliptrace3;
        unsigned int lightindex;
        unsigned int seed = (unsigned int)(realtime * 1000.0f);
+       randomseed_t randomseed;
        vec3_t shotcolor;
        vec3_t baseshotcolor;
        vec3_t surfcolor;
@@ -2993,7 +3147,8 @@ static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t sett
        vec_t s;
        rtlight_t *rtlight;
 
-       // we'll need somewhere to store these
+       Math_RandomSeed_FromInt(&randomseed, seed);
+
        r_shadow_bouncegrid_state.numsplatpaths = 0;
        r_shadow_bouncegrid_state.splatpaths = (r_shadow_bouncegrid_splatpath_t *)R_FrameData_Alloc(sizeof(r_shadow_bouncegrid_splatpath_t) * r_shadow_bouncegrid_state.maxsplatpaths);
 
@@ -3002,6 +3157,7 @@ static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t sett
                hitsupercontentsmask = SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY;// | SUPERCONTENTS_LIQUIDSMASK;
        else
                hitsupercontentsmask = SUPERCONTENTS_SOLID;// | SUPERCONTENTS_LIQUIDSMASK;
+       skipsupercontentsmask = SUPERCONTENTS_SKY; // this allows the e1m5 sky shadow to work by ignoring the sky surfaces
        maxbounce = settings.maxbounce;
 
        for (lightindex = 0;lightindex < range2;lightindex++)
@@ -3027,37 +3183,80 @@ static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t sett
                VectorScale(rtlight->photoncolor, s, baseshotcolor);
                r_refdef.stats[r_stat_bouncegrid_lights]++;
                r_refdef.stats[r_stat_bouncegrid_particles] += shootparticles;
+               switch (settings.stablerandom)
+               {
+               default:
+                       break;
+               case 1:
+                       Math_RandomSeed_FromInt(&randomseed, lightindex * 11937);
+                       // prime the random number generator a bit
+                       Math_crandomf(&randomseed);
+                       break;
+               case 2:
+                       seed = lightindex * 11937;
+                       // prime the random number generator a bit
+                       lhcheeserand(seed);
+                       break;
+               }
                for (shotparticles = 0;shotparticles < shootparticles;shotparticles++)
                {
-                       if (settings.stablerandom > 0)
-                               seed = lightindex * 11937 + shotparticles;
                        VectorCopy(baseshotcolor, shotcolor);
                        VectorCopy(rtlight->shadoworigin, clipstart);
-                       if (settings.stablerandom < 0)
+                       switch (settings.stablerandom)
+                       {
+                       default:
+                       case 0:
                                VectorRandom(clipend);
-                       else
-                               VectorCheeseRandom(clipend);
+                               if (settings.bounceanglediffuse)
+                               {
+                                       // we want random to be stable, so we still have to do all the random we would have done
+                                       for (bouncecount = 0; bouncecount < maxbounce; bouncecount++)
+                                               VectorRandom(bouncerandom[bouncecount]);
+                               }
+                               break;
+                       case -1:
+                       case 1:
+                               VectorLehmerRandom(&randomseed, clipend);
+                               if (settings.bounceanglediffuse)
+                               {
+                                       // we want random to be stable, so we still have to do all the random we would have done
+                                       for (bouncecount = 0; bouncecount < maxbounce; bouncecount++)
+                                               VectorLehmerRandom(&randomseed, bouncerandom[bouncecount]);
+                               }
+                               break;
+                       case -2:
+                       case 2:
+                               VectorCheeseRandom(seed, clipend);
+                               if (settings.bounceanglediffuse)
+                               {
+                                       // we want random to be stable, so we still have to do all the random we would have done
+                                       for (bouncecount = 0; bouncecount < maxbounce; bouncecount++)
+                                               VectorCheeseRandom(seed, bouncerandom[bouncecount]);
+                               }
+                               break;
+                       }
                        VectorMA(clipstart, radius, clipend, clipend);
                        for (bouncecount = 0;;bouncecount++)
                        {
                                r_refdef.stats[r_stat_bouncegrid_traces]++;
                                //r_refdef.scene.worldmodel->TraceLineAgainstSurfaces(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace, clipstart, clipend, hitsupercontentsmask);
                                //r_refdef.scene.worldmodel->TraceLine(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace2, clipstart, clipend, hitsupercontentsmask);
-                               if (settings.staticmode)
+                               if (settings.staticmode || settings.stablerandom <= 0)
                                {
                                        // static mode fires a LOT of rays but none of them are identical, so they are not cached
-                                       cliptrace = CL_TraceLine(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), NULL, hitsupercontentsmask, collision_extendmovelength.value, true, false, NULL, true, true);
+                                       // non-stable random in dynamic mode also never reuses a direction, so there's no reason to cache it
+                                       cliptrace = CL_TraceLine(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), NULL, hitsupercontentsmask, skipsupercontentsmask, collision_extendmovelength.value, true, false, NULL, true, true);
                                }
                                else
                                {
                                        // dynamic mode fires many rays and most will match the cache from the previous frame
-                                       cliptrace = CL_Cache_TraceLineSurfaces(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), hitsupercontentsmask);
+                                       cliptrace = CL_Cache_TraceLineSurfaces(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), hitsupercontentsmask, skipsupercontentsmask);
                                }
                                if (bouncecount > 0 || settings.includedirectlighting)
                                {
                                        vec3_t hitpos;
                                        VectorCopy(cliptrace.endpos, hitpos);
-                                       R_shadow_BounceGrid_AddSplatPath(clipstart, hitpos, shotcolor);
+                                       R_Shadow_BounceGrid_AddSplatPath(clipstart, hitpos, shotcolor);
                                }
                                if (cliptrace.fraction >= 1.0f)
                                        break;
@@ -3082,11 +3281,7 @@ static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t sett
                                {
                                        // random direction, primarily along plane normal
                                        s = VectorDistance(cliptrace.endpos, clipend);
-                                       if (settings.stablerandom < 0)
-                                               VectorRandom(clipend);
-                                       else
-                                               VectorCheeseRandom(clipend);
-                                       VectorMA(cliptrace.plane.normal, 0.95f, clipend, clipend);
+                                       VectorMA(cliptrace.plane.normal, 0.95f, bouncerandom[bouncecount], clipend);
                                        VectorNormalize(clipend);
                                        VectorScale(clipend, s, clipend);
                                }
@@ -3133,12 +3328,6 @@ void R_Shadow_UpdateBounceGridTexture(void)
                        R_FreeTexture(r_shadow_bouncegrid_state.texture);
                        r_shadow_bouncegrid_state.texture = NULL;
                }
-               if (r_shadow_bouncegrid_state.pixels)
-                       Mem_Free(r_shadow_bouncegrid_state.pixels);
-               r_shadow_bouncegrid_state.pixels = NULL;
-               if (r_shadow_bouncegrid_state.highpixels)
-                       Mem_Free(r_shadow_bouncegrid_state.highpixels);
-               r_shadow_bouncegrid_state.highpixels = NULL;
                r_shadow_bouncegrid_state.numpixels = 0;
                r_shadow_bouncegrid_state.directional = false;
 
@@ -3147,7 +3336,7 @@ void R_Shadow_UpdateBounceGridTexture(void)
        }
 
        // if all the settings seem identical to the previous update, return
-       if (r_shadow_bouncegrid_state.texture && (settings.staticmode || realtime < r_shadow_bouncegrid_state.lastupdatetime + r_shadow_bouncegrid_updateinterval.value) && !settingschanged)
+       if (r_shadow_bouncegrid_state.texture && (settings.staticmode || realtime < r_shadow_bouncegrid_state.lastupdatetime + r_shadow_bouncegrid_dynamic_updateinterval.value) && !settingschanged)
                return;
 
        // store the new settings
@@ -3169,15 +3358,16 @@ void R_Shadow_UpdateBounceGridTexture(void)
        // trace the photons from lights and accumulate illumination
        R_Shadow_BounceGrid_TracePhotons(settings, range, range1, range2, photonscaling, flag);
 
-       // clear the pixels[] and highpixels[] arrays, it is important that we
-       // clear pixels[] now because we do tricks with marking pixels as needing
-       // conversion, even though the source of truth data is in highpixels[]
+       // clear the texture
        R_Shadow_BounceGrid_ClearPixels();
-
-       // sort and accumulate the light splatting in the texture
+       
+       // accumulate the light splatting into texture
        R_Shadow_BounceGrid_PerformSplats();
 
-       // convert the pixels that were marked and upload the texture
+       // apply a mild blur filter to the texture
+       R_Shadow_BounceGrid_BlurPixels();
+
+       // convert the pixels to lower precision and upload the texture
        R_Shadow_BounceGrid_ConvertPixelsAndUpload();
 }
 
@@ -4524,11 +4714,6 @@ static void R_Shadow_DrawLight(rtlight_t *rtlight)
                matrix4x4_t radiustolight = rtlight->matrix_worldtolight;
                Matrix4x4_Abs(&radiustolight);
 
-               r_shadow_shadowmaplod = 0;
-               for (i = 1;i < R_SHADOW_SHADOWMAP_NUMCUBEMAPS;i++)
-                       if ((r_shadow_shadowmapmaxsize >> i) > lodlinear)
-                               r_shadow_shadowmaplod = i;
-
                size = bound(r_shadow_shadowmapborder, lodlinear, r_shadow_shadowmapmaxsize);
                        
                borderbias = r_shadow_shadowmapborder / (float)(size - r_shadow_shadowmapborder);
@@ -4572,7 +4757,7 @@ static void R_Shadow_DrawLight(rtlight_t *rtlight)
                                castermask |= (entitysides_noselfshadow[i] = R_Shadow_CalcEntitySideMask(shadowentities_noselfshadow[i], &rtlight->matrix_worldtolight, &radiustolight, borderbias)); 
                }
 
-               //Con_Printf("distance %f lodlinear %i (lod %i) size %i\n", distance, lodlinear, r_shadow_shadowmaplod, size);
+               //Con_Printf("distance %f lodlinear %i size %i\n", distance, lodlinear, size);
 
                // render shadow casters into 6 sided depth texture
                for (side = 0;side < 6;side++) if (receivermask & (1 << side))
@@ -5467,7 +5652,7 @@ static void R_DrawCorona(rtlight_t *rtlight, float cscale, float scale)
        else
        {
                // FIXME: these traces should scan all render entities instead of cl.world
-               if (CL_TraceLine(r_refdef.view.origin, rtlight->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
+               if (CL_TraceLine(r_refdef.view.origin, rtlight->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
                        return;
        }
        VectorScale(rtlight->currentcolor, cscale, color);
@@ -5800,7 +5985,7 @@ static void R_Shadow_SelectLightInView(void)
                if (rating >= 0.95)
                {
                        rating /= (1 + 0.0625f * sqrt(DotProduct(temp, temp)));
-                       if (bestrating < rating && CL_TraceLine(light->origin, r_refdef.view.origin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1.0f)
+                       if (bestrating < rating && CL_TraceLine(light->origin, r_refdef.view.origin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1.0f)
                        {
                                bestrating = rating;
                                best = light;
@@ -6250,7 +6435,7 @@ static void R_Shadow_SetCursorLocationForView(void)
        vec3_t dest, endpos;
        trace_t trace;
        VectorMA(r_refdef.view.origin, r_editlights_cursordistance.value, r_refdef.view.forward, dest);
-       trace = CL_TraceLine(r_refdef.view.origin, dest, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true);
+       trace = CL_TraceLine(r_refdef.view.origin, dest, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true);
        if (trace.fraction < 1)
        {
                dist = trace.fraction * r_editlights_cursordistance.value;
@@ -7038,7 +7223,7 @@ void R_LightPoint(float *color, const vec3_t p, const int flags)
                        if (f <= 0)
                                continue;
                        // todo: add to both ambient and diffuse
-                       if (!light->shadow || CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1)
+                       if (!light->shadow || CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1)
                                VectorMA(color, f, light->currentcolor, color);
                }
        }
@@ -7059,7 +7244,7 @@ void R_LightPoint(float *color, const vec3_t p, const int flags)
                        if (f <= 0)
                                continue;
                        // todo: add to both ambient and diffuse
-                       if (!light->shadow || CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1)
+                       if (!light->shadow || CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1)
                                VectorMA(color, f, light->color, color);
                }
        }
@@ -7143,7 +7328,7 @@ void R_CompleteLightPoint(vec3_t ambient, vec3_t diffuse, vec3_t lightdir, const
                        intensity = min(1.0f, (1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) * r_shadow_lightintensityscale.value;
                        if (intensity <= 0.0f)
                                continue;
-                       if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
+                       if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
                                continue;
                        // scale down intensity to add to both ambient and diffuse
                        //intensity *= 0.5f;
@@ -7176,7 +7361,7 @@ void R_CompleteLightPoint(vec3_t ambient, vec3_t diffuse, vec3_t lightdir, const
                        intensity = (1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist) * r_shadow_lightintensityscale.value;
                        if (intensity <= 0.0f)
                                continue;
-                       if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
+                       if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
                                continue;
                        // scale down intensity to add to both ambient and diffuse
                        //intensity *= 0.5f;