]> git.xonotic.org Git - xonotic/darkplaces.git/blobdiff - mod_skeletal_animatevertices_generic.c
SSE patch by kyre, with runtime CPU detection and a cvar r_skeletal_use_sse if SSE...
[xonotic/darkplaces.git] / mod_skeletal_animatevertices_generic.c
diff --git a/mod_skeletal_animatevertices_generic.c b/mod_skeletal_animatevertices_generic.c
new file mode 100644 (file)
index 0000000..24cc8a9
--- /dev/null
@@ -0,0 +1,213 @@
+#include "mod_skeletal_animatevertices_generic.h"
+
+typedef struct
+{
+       float f[12];
+}
+float12_t;
+
+void Mod_Skeletal_AnimateVertices_Generic(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f)
+{
+       // vertex weighted skeletal
+       int i, k;
+       int blends;
+       float12_t *bonepose;
+       float12_t *boneposerelative;
+       float m[12];
+       const blendweights_t * RESTRICT weights;
+
+       if (!model->surfmesh.num_vertices)
+               return;
+
+       //unsigned long long ts = rdtsc();
+       bonepose = (float12_t *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(float12_t) * (model->num_bones*2 + model->surfmesh.num_blends));
+       boneposerelative = bonepose + model->num_bones;
+
+       if (skeleton && !skeleton->relativetransforms)
+               skeleton = NULL;
+
+       // interpolate matrices
+       if (skeleton)
+       {
+               for (i = 0;i < model->num_bones;i++)
+               {
+                       Matrix4x4_ToArray12FloatD3D(&skeleton->relativetransforms[i], m);
+                       if (model->data_bones[i].parent >= 0)
+                               R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f);
+                       else
+                               memcpy(bonepose[i].f, m, sizeof(m));
+
+                       // create a relative deformation matrix to describe displacement
+                       // from the base mesh, which is used by the actual weighting
+                       R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f);
+               }
+       }
+       else
+       {
+               float originscale = model->num_posescale;
+               float x,y,z,w,lerp;
+               const short * RESTRICT pose6s;
+
+               for (i = 0;i < model->num_bones;i++)
+               {
+                       memset(m, 0, sizeof(m));
+                       for (blends = 0;blends < MAX_FRAMEBLENDS && frameblend[blends].lerp > 0;blends++)
+                       {
+                               pose6s = model->data_poses6s + 6 * (frameblend[blends].subframe * model->num_bones + i);
+                               lerp = frameblend[blends].lerp;
+                               x = pose6s[3] * (1.0f / 32767.0f);
+                               y = pose6s[4] * (1.0f / 32767.0f);
+                               z = pose6s[5] * (1.0f / 32767.0f);
+                               w = 1.0f - (x*x+y*y+z*z);
+                               w = w > 0.0f ? -sqrt(w) : 0.0f;
+                               m[ 0] += (1-2*(y*y+z*z)) * lerp;
+                               m[ 1] += (  2*(x*y-z*w)) * lerp;
+                               m[ 2] += (  2*(x*z+y*w)) * lerp;
+                               m[ 3] += (pose6s[0] * originscale) * lerp;
+                               m[ 4] += (  2*(x*y+z*w)) * lerp;
+                               m[ 5] += (1-2*(x*x+z*z)) * lerp;
+                               m[ 6] += (  2*(y*z-x*w)) * lerp;
+                               m[ 7] += (pose6s[1] * originscale) * lerp;
+                               m[ 8] += (  2*(x*z-y*w)) * lerp;
+                               m[ 9] += (  2*(y*z+x*w)) * lerp;
+                               m[10] += (1-2*(x*x+y*y)) * lerp;
+                               m[11] += (pose6s[2] * originscale) * lerp;
+                       }
+                       VectorNormalize(m       );
+                       VectorNormalize(m + 4);
+                       VectorNormalize(m + 8);
+                       if (i == r_skeletal_debugbone.integer)
+                               m[r_skeletal_debugbonecomponent.integer % 12] += r_skeletal_debugbonevalue.value;
+                       m[3] *= r_skeletal_debugtranslatex.value;
+                       m[7] *= r_skeletal_debugtranslatey.value;
+                       m[11] *= r_skeletal_debugtranslatez.value;
+                       if (model->data_bones[i].parent >= 0)
+                               R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f);
+                       else
+                               memcpy(bonepose[i].f, m, sizeof(m));
+                       // create a relative deformation matrix to describe displacement
+                       // from the base mesh, which is used by the actual weighting
+                       R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f);
+               }
+       }
+
+       // generate matrices for all blend combinations
+       weights = model->surfmesh.data_blendweights;
+       for (i = 0;i < model->surfmesh.num_blends;i++, weights++)
+       {
+               float * RESTRICT b = boneposerelative[model->num_bones + i].f;
+               const float * RESTRICT m = boneposerelative[weights->index[0]].f;
+               float f = weights->influence[0] * (1.0f / 255.0f);
+               b[ 0] = f*m[ 0]; b[ 1] = f*m[ 1]; b[ 2] = f*m[ 2]; b[ 3] = f*m[ 3];
+               b[ 4] = f*m[ 4]; b[ 5] = f*m[ 5]; b[ 6] = f*m[ 6]; b[ 7] = f*m[ 7];
+               b[ 8] = f*m[ 8]; b[ 9] = f*m[ 9]; b[10] = f*m[10]; b[11] = f*m[11];
+               for (k = 1;k < 4 && weights->influence[k];k++)
+               {
+                       m = boneposerelative[weights->index[k]].f;
+                       f = weights->influence[k] * (1.0f / 255.0f);
+                       b[ 0] += f*m[ 0]; b[ 1] += f*m[ 1]; b[ 2] += f*m[ 2]; b[ 3] += f*m[ 3];
+                       b[ 4] += f*m[ 4]; b[ 5] += f*m[ 5]; b[ 6] += f*m[ 6]; b[ 7] += f*m[ 7];
+                       b[ 8] += f*m[ 8]; b[ 9] += f*m[ 9]; b[10] += f*m[10]; b[11] += f*m[11];
+               }
+       }
+
+#define LOAD_MATRIX_SCALAR() const float * RESTRICT m = boneposerelative[*b].f
+
+#define LOAD_MATRIX3() \
+       LOAD_MATRIX_SCALAR()
+#define LOAD_MATRIX4() \
+       LOAD_MATRIX_SCALAR()
+
+#define TRANSFORM_POSITION_SCALAR(in, out) \
+       (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2] + m[3]); \
+       (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6] + m[7]); \
+       (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10] + m[11]);
+#define TRANSFORM_VECTOR_SCALAR(in, out) \
+       (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2]); \
+       (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6]); \
+       (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10]);
+
+#define TRANSFORM_POSITION(in, out) \
+       TRANSFORM_POSITION_SCALAR(in, out)
+#define TRANSFORM_VECTOR(in, out) \
+       TRANSFORM_VECTOR_SCALAR(in, out)
+
+       // transform vertex attributes by blended matrices
+       if (vertex3f)
+       {
+               const float * RESTRICT v = model->surfmesh.data_vertex3f;
+               const unsigned short * RESTRICT b = model->surfmesh.blends;
+               // special case common combinations of attributes to avoid repeated loading of matrices
+               if (normal3f)
+               {
+                       const float * RESTRICT n = model->surfmesh.data_normal3f;
+                       if (svector3f && tvector3f)
+                       {
+                               const float * RESTRICT sv = model->surfmesh.data_svector3f;
+                               const float * RESTRICT tv = model->surfmesh.data_tvector3f;
+
+                               // Note that for SSE each iteration stores one element past end, so we break one vertex short
+                               // and handle that with scalars in that case
+                               for (i = 0; i < model->surfmesh.num_vertices; i++, v += 3, n += 3, sv += 3, tv += 3, b++,
+                                               vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3)
+                               {
+                                       LOAD_MATRIX4();
+                                       TRANSFORM_POSITION(v, vertex3f);
+                                       TRANSFORM_VECTOR(n, normal3f);
+                                       TRANSFORM_VECTOR(sv, svector3f);
+                                       TRANSFORM_VECTOR(tv, tvector3f);
+                               }
+
+                               return;
+                       }
+
+                       for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3)
+                       {
+                               LOAD_MATRIX4();
+                               TRANSFORM_POSITION(v, vertex3f);
+                               TRANSFORM_VECTOR(n, normal3f);
+                       }
+               }
+               else
+               {
+                       for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, b++, vertex3f += 3)
+                       {
+                               LOAD_MATRIX4();
+                               TRANSFORM_POSITION(v, vertex3f);
+                       }
+               }
+       }
+
+       else if (normal3f)
+       {
+               const float * RESTRICT n = model->surfmesh.data_normal3f;
+               const unsigned short * RESTRICT b = model->surfmesh.blends;
+               for (i = 0; i < model->surfmesh.num_vertices; i++, n += 3, b++, normal3f += 3)
+               {
+                       LOAD_MATRIX3();
+                       TRANSFORM_VECTOR(n, normal3f);
+               }
+       }
+
+       if (svector3f)
+       {
+               const float * RESTRICT sv = model->surfmesh.data_svector3f;
+               const unsigned short * RESTRICT b = model->surfmesh.blends;
+               for (i = 0; i < model->surfmesh.num_vertices; i++, sv += 3, b++, svector3f += 3)
+               {
+                       LOAD_MATRIX3();
+                       TRANSFORM_VECTOR(sv, svector3f);
+               }
+       }
+
+       if (tvector3f)
+       {
+               const float * RESTRICT tv = model->surfmesh.data_tvector3f;
+               const unsigned short * RESTRICT b = model->surfmesh.blends;
+               for (i = 0; i < model->surfmesh.num_vertices; i++, tv += 3, b++, tvector3f += 3)
+               {
+                       LOAD_MATRIX3();
+                       TRANSFORM_VECTOR(tv, tvector3f);
+               }
+       }
+}