]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
Start render module CL_MeshEntities immediately prior to Models
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 int r_textureframe = 0; ///< used only by R_GetCurrentTexture, incremented per view and per UI render
46
47 static qbool r_loadnormalmap;
48 static qbool r_loadgloss;
49 qbool r_loadfog;
50 static qbool r_loaddds;
51 static qbool r_savedds;
52 static qbool r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CF_CLIENT | CF_ARCHIVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 cvar_t r_depthfirst = {CF_CLIENT | CF_ARCHIVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
73 cvar_t r_useinfinitefarclip = {CF_CLIENT | CF_ARCHIVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
74 cvar_t r_farclip_base = {CF_CLIENT, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
75 cvar_t r_farclip_world = {CF_CLIENT, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
76 cvar_t r_nearclip = {CF_CLIENT, "r_nearclip", "1", "distance from camera of nearclip plane" };
77 cvar_t r_deformvertexes = {CF_CLIENT, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
78 cvar_t r_transparent = {CF_CLIENT, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
79 cvar_t r_transparent_alphatocoverage = {CF_CLIENT, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
80 cvar_t r_transparent_sortsurfacesbynearest = {CF_CLIENT, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
81 cvar_t r_transparent_useplanardistance = {CF_CLIENT, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
82 cvar_t r_showoverdraw = {CF_CLIENT, "r_showoverdraw", "0", "shows overlapping geometry"};
83 cvar_t r_showbboxes = {CF_CLIENT, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
84 cvar_t r_showbboxes_client = {CF_CLIENT, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
85 cvar_t r_showsurfaces = {CF_CLIENT, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
86 cvar_t r_showtris = {CF_CLIENT, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
87 cvar_t r_shownormals = {CF_CLIENT, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
88 cvar_t r_showlighting = {CF_CLIENT, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
89 cvar_t r_showcollisionbrushes = {CF_CLIENT, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
90 cvar_t r_showcollisionbrushes_polygonfactor = {CF_CLIENT, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
91 cvar_t r_showcollisionbrushes_polygonoffset = {CF_CLIENT, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
92 cvar_t r_showdisabledepthtest = {CF_CLIENT, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
93 cvar_t r_showspriteedges = {CF_CLIENT, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
94 cvar_t r_showparticleedges = {CF_CLIENT, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
95 cvar_t r_drawportals = {CF_CLIENT, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
96 cvar_t r_drawentities = {CF_CLIENT, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
97 cvar_t r_draw2d = {CF_CLIENT, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
98 cvar_t r_drawworld = {CF_CLIENT, "r_drawworld","1", "draw world (most static stuff)"};
99 cvar_t r_drawviewmodel = {CF_CLIENT, "r_drawviewmodel","1", "draw your weapon model"};
100 cvar_t r_drawexteriormodel = {CF_CLIENT, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
101 cvar_t r_cullentities_trace = {CF_CLIENT, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
102 cvar_t r_cullentities_trace_entityocclusion = {CF_CLIENT, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull"};
103 cvar_t r_cullentities_trace_samples = {CF_CLIENT, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
104 cvar_t r_cullentities_trace_tempentitysamples = {CF_CLIENT, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
105 cvar_t r_cullentities_trace_enlarge = {CF_CLIENT, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
106 cvar_t r_cullentities_trace_expand = {CF_CLIENT, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
107 cvar_t r_cullentities_trace_pad = {CF_CLIENT, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
108 cvar_t r_cullentities_trace_delay = {CF_CLIENT, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
109 cvar_t r_cullentities_trace_eyejitter = {CF_CLIENT, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
110 cvar_t r_sortentities = {CF_CLIENT, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
111 cvar_t r_speeds = {CF_CLIENT, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
112 cvar_t r_fullbright = {CF_CLIENT, "r_fullbright","0", "makes map very bright and renders faster"};
113
114 cvar_t r_fullbright_directed = {CF_CLIENT, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
115 cvar_t r_fullbright_directed_ambient = {CF_CLIENT, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
116 cvar_t r_fullbright_directed_diffuse = {CF_CLIENT, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
117 cvar_t r_fullbright_directed_pitch = {CF_CLIENT, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
118 cvar_t r_fullbright_directed_pitch_relative = {CF_CLIENT, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
119
120 cvar_t r_wateralpha = {CF_CLIENT | CF_ARCHIVE, "r_wateralpha","1", "opacity of water polygons"};
121 cvar_t r_dynamic = {CF_CLIENT | CF_ARCHIVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
122 cvar_t r_fullbrights = {CF_CLIENT | CF_ARCHIVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
123 cvar_t r_shadows = {CF_CLIENT | CF_ARCHIVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
124 cvar_t r_shadows_darken = {CF_CLIENT | CF_ARCHIVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
125 cvar_t r_shadows_throwdistance = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
126 cvar_t r_shadows_throwdirection = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
127 cvar_t r_shadows_drawafterrtlighting = {CF_CLIENT | CF_ARCHIVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
128 cvar_t r_shadows_castfrombmodels = {CF_CLIENT | CF_ARCHIVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
129 cvar_t r_shadows_focus = {CF_CLIENT | CF_ARCHIVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
130 cvar_t r_shadows_shadowmapscale = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
131 cvar_t r_shadows_shadowmapbias = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
132 cvar_t r_q1bsp_skymasking = {CF_CLIENT, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
133 cvar_t r_polygonoffset_submodel_factor = {CF_CLIENT, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
134 cvar_t r_polygonoffset_submodel_offset = {CF_CLIENT, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
135 cvar_t r_polygonoffset_decals_factor = {CF_CLIENT, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
136 cvar_t r_polygonoffset_decals_offset = {CF_CLIENT, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
137 cvar_t r_fog_exp2 = {CF_CLIENT, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
138 cvar_t r_fog_clear = {CF_CLIENT, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
139 cvar_t r_drawfog = {CF_CLIENT | CF_ARCHIVE, "r_drawfog", "1", "allows one to disable fog rendering"};
140 cvar_t r_transparentdepthmasking = {CF_CLIENT | CF_ARCHIVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
141 cvar_t r_transparent_sortmindist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
142 cvar_t r_transparent_sortmaxdist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
143 cvar_t r_transparent_sortarraysize = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
144 cvar_t r_celshading = {CF_CLIENT | CF_ARCHIVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
145 cvar_t r_celoutlines = {CF_CLIENT | CF_ARCHIVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred)"};
146
147 cvar_t gl_fogenable = {CF_CLIENT, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
148 cvar_t gl_fogdensity = {CF_CLIENT, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
149 cvar_t gl_fogred = {CF_CLIENT, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
150 cvar_t gl_foggreen = {CF_CLIENT, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
151 cvar_t gl_fogblue = {CF_CLIENT, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
152 cvar_t gl_fogstart = {CF_CLIENT, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
153 cvar_t gl_fogend = {CF_CLIENT, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
154 cvar_t gl_skyclip = {CF_CLIENT, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
155
156 cvar_t r_texture_dds_load = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
157 cvar_t r_texture_dds_save = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
158
159 cvar_t r_textureunits = {CF_CLIENT, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"};
160 static cvar_t gl_combine = {CF_CLIENT | CF_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"};
161 static cvar_t r_glsl = {CF_CLIENT | CF_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"};
162
163 cvar_t r_usedepthtextures = {CF_CLIENT | CF_ARCHIVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
164 cvar_t r_viewfbo = {CF_CLIENT | CF_ARCHIVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
165 cvar_t r_rendertarget_debug = {CF_CLIENT, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
166 cvar_t r_viewscale = {CF_CLIENT | CF_ARCHIVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
167 cvar_t r_viewscale_fpsscaling = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
168 cvar_t r_viewscale_fpsscaling_min = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
169 cvar_t r_viewscale_fpsscaling_multiply = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
170 cvar_t r_viewscale_fpsscaling_stepsize = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
171 cvar_t r_viewscale_fpsscaling_stepmax = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
172 cvar_t r_viewscale_fpsscaling_target = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
173
174 cvar_t r_glsl_skeletal = {CF_CLIENT | CF_ARCHIVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
175 cvar_t r_glsl_deluxemapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
176 cvar_t r_glsl_offsetmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
177 cvar_t r_glsl_offsetmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
178 cvar_t r_glsl_offsetmapping_reliefmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
179 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
180 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
181 cvar_t r_glsl_offsetmapping_scale = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
182 cvar_t r_glsl_offsetmapping_lod = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
183 cvar_t r_glsl_offsetmapping_lod_distance = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
184 cvar_t r_glsl_postprocess = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
185 cvar_t r_glsl_postprocess_uservec1 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
186 cvar_t r_glsl_postprocess_uservec2 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
187 cvar_t r_glsl_postprocess_uservec3 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
188 cvar_t r_glsl_postprocess_uservec4 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
189 cvar_t r_glsl_postprocess_uservec1_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
190 cvar_t r_glsl_postprocess_uservec2_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
191 cvar_t r_glsl_postprocess_uservec3_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
192 cvar_t r_glsl_postprocess_uservec4_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
193 cvar_t r_colorfringe = {CF_CLIENT | CF_ARCHIVE, "r_colorfringe", "0", "Chromatic aberration. Values higher than 0.025 will noticeably distort the image"};
194
195 cvar_t r_water = {CF_CLIENT | CF_ARCHIVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
196 cvar_t r_water_cameraentitiesonly = {CF_CLIENT | CF_ARCHIVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
197 cvar_t r_water_clippingplanebias = {CF_CLIENT | CF_ARCHIVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
198 cvar_t r_water_resolutionmultiplier = {CF_CLIENT | CF_ARCHIVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
199 cvar_t r_water_refractdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
200 cvar_t r_water_reflectdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
201 cvar_t r_water_scissormode = {CF_CLIENT, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
202 cvar_t r_water_lowquality = {CF_CLIENT, "r_water_lowquality", "0", "special option to accelerate water rendering: 1 disables all dynamic lights, 2 disables particles too"};
203 cvar_t r_water_hideplayer = {CF_CLIENT | CF_ARCHIVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
204
205 cvar_t r_lerpsprites = {CF_CLIENT | CF_ARCHIVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
206 cvar_t r_lerpmodels = {CF_CLIENT | CF_ARCHIVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
207 cvar_t r_nolerp_list = {CF_CLIENT | CF_ARCHIVE, "r_nolerp_list", "progs/v_nail.mdl,progs/v_nail2.mdl,progs/flame.mdl,progs/flame2.mdl,progs/braztall.mdl,progs/brazshrt.mdl,progs/longtrch.mdl,progs/flame_pyre.mdl,progs/v_saw.mdl,progs/v_xfist.mdl,progs/h2stuff/newfire.mdl", "comma separated list of models that will not have their animations smoothed"};
208 cvar_t r_lerplightstyles = {CF_CLIENT | CF_ARCHIVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
209 cvar_t r_waterscroll = {CF_CLIENT | CF_ARCHIVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
210
211 cvar_t r_bloom = {CF_CLIENT | CF_ARCHIVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
212 cvar_t r_bloom_colorscale = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorscale", "1", "how bright the glow is"};
213
214 cvar_t r_bloom_brighten = {CF_CLIENT | CF_ARCHIVE, "r_bloom_brighten", "1", "how bright the glow is, after subtract/power"};
215 cvar_t r_bloom_blur = {CF_CLIENT | CF_ARCHIVE, "r_bloom_blur", "4", "how large the glow is"};
216 cvar_t r_bloom_resolution = {CF_CLIENT | CF_ARCHIVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
217 cvar_t r_bloom_colorexponent = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
218 cvar_t r_bloom_colorsubtract = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorsubtract", "0.1", "reduces bloom colors by a certain amount"};
219 cvar_t r_bloom_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
220
221 cvar_t r_hdr_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
222 cvar_t r_hdr_glowintensity = {CF_CLIENT | CF_ARCHIVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
223 cvar_t r_hdr_irisadaptation = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
224 cvar_t r_hdr_irisadaptation_multiplier = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
225 cvar_t r_hdr_irisadaptation_minvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
226 cvar_t r_hdr_irisadaptation_maxvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
227 cvar_t r_hdr_irisadaptation_value = {CF_CLIENT, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
228 cvar_t r_hdr_irisadaptation_fade_up = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
229 cvar_t r_hdr_irisadaptation_fade_down = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
230 cvar_t r_hdr_irisadaptation_radius = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
231
232 cvar_t r_smoothnormals_areaweighting = {CF_CLIENT, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
233
234 cvar_t developer_texturelogging = {CF_CLIENT, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
235
236 cvar_t gl_lightmaps = {CF_CLIENT, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
237
238 cvar_t r_test = {CF_CLIENT, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
239
240 cvar_t r_batch_multidraw = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
241 cvar_t r_batch_multidraw_mintriangles = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
242 cvar_t r_batch_debugdynamicvertexpath = {CF_CLIENT | CF_ARCHIVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
243 cvar_t r_batch_dynamicbuffer = {CF_CLIENT | CF_ARCHIVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
244
245 cvar_t r_glsl_saturation = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
246 cvar_t r_glsl_saturation_redcompensate = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
247
248 cvar_t r_glsl_vertextextureblend_usebothalphas = {CF_CLIENT | CF_ARCHIVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
249
250 // FIXME: This cvar would grow to a ridiculous size after several launches and clean exits when used during surface sorting.
251 cvar_t r_framedatasize = {CF_CLIENT | CF_ARCHIVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
252 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
253 {
254         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
255         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
256         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
257         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
258 };
259
260 cvar_t r_q1bsp_lightmap_updates_enabled = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_enabled", "1", "allow lightmaps to be updated on Q1BSP maps (don't turn this off except for debugging)"};
261 cvar_t r_q1bsp_lightmap_updates_combine = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_combine", "2", "combine lightmap texture updates to make fewer glTexSubImage2D calls, modes: 0 = immediately upload lightmaps (may be thousands of small 3x3 updates), 1 = combine to one call, 2 = combine to one full texture update (glTexImage2D) which tells the driver it does not need to lock the resource (faster on most drivers)"};
262 cvar_t r_q1bsp_lightmap_updates_hidden_surfaces = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_hidden_surfaces", "0", "update lightmaps on surfaces that are not visible, so that updates only occur on frames where lightstyles changed value (animation or light switches), only makes sense with combine = 2"};
263
264 extern cvar_t v_glslgamma_2d;
265
266 extern qbool v_flipped_state;
267
268 r_framebufferstate_t r_fb;
269
270 /// shadow volume bsp struct with automatically growing nodes buffer
271 svbsp_t r_svbsp;
272
273 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
274
275 rtexture_t *r_texture_blanknormalmap;
276 rtexture_t *r_texture_white;
277 rtexture_t *r_texture_grey128;
278 rtexture_t *r_texture_black;
279 rtexture_t *r_texture_notexture;
280 rtexture_t *r_texture_whitecube;
281 rtexture_t *r_texture_normalizationcube;
282 rtexture_t *r_texture_fogattenuation;
283 rtexture_t *r_texture_fogheighttexture;
284 rtexture_t *r_texture_gammaramps;
285 unsigned int r_texture_gammaramps_serial;
286 //rtexture_t *r_texture_fogintensity;
287 rtexture_t *r_texture_reflectcube;
288
289 // TODO: hash lookups?
290 typedef struct cubemapinfo_s
291 {
292         char basename[64];
293         rtexture_t *texture;
294 }
295 cubemapinfo_t;
296
297 int r_texture_numcubemaps;
298 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
299
300 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
301 unsigned int r_numqueries;
302 unsigned int r_maxqueries;
303
304 typedef struct r_qwskincache_s
305 {
306         char name[MAX_QPATH];
307         skinframe_t *skinframe;
308 }
309 r_qwskincache_t;
310
311 static r_qwskincache_t *r_qwskincache;
312 static int r_qwskincache_size;
313
314 /// vertex coordinates for a quad that covers the screen exactly
315 extern const float r_screenvertex3f[12];
316 const float r_screenvertex3f[12] =
317 {
318         0, 0, 0,
319         1, 0, 0,
320         1, 1, 0,
321         0, 1, 0
322 };
323
324 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
325 {
326         int i;
327         for (i = 0;i < verts;i++)
328         {
329                 out[0] = in[0] * r;
330                 out[1] = in[1] * g;
331                 out[2] = in[2] * b;
332                 out[3] = in[3];
333                 in += 4;
334                 out += 4;
335         }
336 }
337
338 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
339 {
340         int i;
341         for (i = 0;i < verts;i++)
342         {
343                 out[0] = r;
344                 out[1] = g;
345                 out[2] = b;
346                 out[3] = a;
347                 out += 4;
348         }
349 }
350
351 // FIXME: move this to client?
352 void FOG_clear(void)
353 {
354         if (gamemode == GAME_NEHAHRA)
355         {
356                 Cvar_Set(&cvars_all, "gl_fogenable", "0");
357                 Cvar_Set(&cvars_all, "gl_fogdensity", "0.2");
358                 Cvar_Set(&cvars_all, "gl_fogred", "0.3");
359                 Cvar_Set(&cvars_all, "gl_foggreen", "0.3");
360                 Cvar_Set(&cvars_all, "gl_fogblue", "0.3");
361         }
362         r_refdef.fog_density = 0;
363         r_refdef.fog_red = 0;
364         r_refdef.fog_green = 0;
365         r_refdef.fog_blue = 0;
366         r_refdef.fog_alpha = 1;
367         r_refdef.fog_start = 0;
368         r_refdef.fog_end = 16384;
369         r_refdef.fog_height = 1<<30;
370         r_refdef.fog_fadedepth = 128;
371         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
372 }
373
374 static void R_BuildBlankTextures(void)
375 {
376         unsigned char data[4];
377         data[2] = 128; // normal X
378         data[1] = 128; // normal Y
379         data[0] = 255; // normal Z
380         data[3] = 255; // height
381         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
382         data[0] = 255;
383         data[1] = 255;
384         data[2] = 255;
385         data[3] = 255;
386         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
387         data[0] = 128;
388         data[1] = 128;
389         data[2] = 128;
390         data[3] = 255;
391         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
392         data[0] = 0;
393         data[1] = 0;
394         data[2] = 0;
395         data[3] = 255;
396         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
397 }
398
399 static void R_BuildNoTexture(void)
400 {
401         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, Image_GenerateNoTexture(), TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
402 }
403
404 static void R_BuildWhiteCube(void)
405 {
406         unsigned char data[6*1*1*4];
407         memset(data, 255, sizeof(data));
408         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
409 }
410
411 static void R_BuildNormalizationCube(void)
412 {
413         int x, y, side;
414         vec3_t v;
415         vec_t s, t, intensity;
416 #define NORMSIZE 64
417         unsigned char *data;
418         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
419         for (side = 0;side < 6;side++)
420         {
421                 for (y = 0;y < NORMSIZE;y++)
422                 {
423                         for (x = 0;x < NORMSIZE;x++)
424                         {
425                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
426                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
427                                 switch(side)
428                                 {
429                                 default:
430                                 case 0:
431                                         v[0] = 1;
432                                         v[1] = -t;
433                                         v[2] = -s;
434                                         break;
435                                 case 1:
436                                         v[0] = -1;
437                                         v[1] = -t;
438                                         v[2] = s;
439                                         break;
440                                 case 2:
441                                         v[0] = s;
442                                         v[1] = 1;
443                                         v[2] = t;
444                                         break;
445                                 case 3:
446                                         v[0] = s;
447                                         v[1] = -1;
448                                         v[2] = -t;
449                                         break;
450                                 case 4:
451                                         v[0] = s;
452                                         v[1] = -t;
453                                         v[2] = 1;
454                                         break;
455                                 case 5:
456                                         v[0] = -s;
457                                         v[1] = -t;
458                                         v[2] = -1;
459                                         break;
460                                 }
461                                 intensity = 127.0f / sqrt(DotProduct(v, v));
462                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
463                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
464                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
465                                 data[((side*64+y)*64+x)*4+3] = 255;
466                         }
467                 }
468         }
469         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
470         Mem_Free(data);
471 }
472
473 static void R_BuildFogTexture(void)
474 {
475         int x, b;
476 #define FOGWIDTH 256
477         unsigned char data1[FOGWIDTH][4];
478         //unsigned char data2[FOGWIDTH][4];
479         double d, r, alpha;
480
481         r_refdef.fogmasktable_start = r_refdef.fog_start;
482         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
483         r_refdef.fogmasktable_range = r_refdef.fogrange;
484         r_refdef.fogmasktable_density = r_refdef.fog_density;
485
486         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
487         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
488         {
489                 d = (x * r - r_refdef.fogmasktable_start);
490                 if(developer_extra.integer)
491                         Con_DPrintf("%f ", d);
492                 d = max(0, d);
493                 if (r_fog_exp2.integer)
494                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
495                 else
496                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
497                 if(developer_extra.integer)
498                         Con_DPrintf(" : %f ", alpha);
499                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
500                 if(developer_extra.integer)
501                         Con_DPrintf(" = %f\n", alpha);
502                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
503         }
504
505         for (x = 0;x < FOGWIDTH;x++)
506         {
507                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
508                 data1[x][0] = b;
509                 data1[x][1] = b;
510                 data1[x][2] = b;
511                 data1[x][3] = 255;
512                 //data2[x][0] = 255 - b;
513                 //data2[x][1] = 255 - b;
514                 //data2[x][2] = 255 - b;
515                 //data2[x][3] = 255;
516         }
517         if (r_texture_fogattenuation)
518         {
519                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
520                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
521         }
522         else
523         {
524                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
525                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
526         }
527 }
528
529 static void R_BuildFogHeightTexture(void)
530 {
531         unsigned char *inpixels;
532         int size;
533         int x;
534         int y;
535         int j;
536         float c[4];
537         float f;
538         inpixels = NULL;
539         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
540         if (r_refdef.fogheighttexturename[0])
541                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
542         if (!inpixels)
543         {
544                 r_refdef.fog_height_tablesize = 0;
545                 if (r_texture_fogheighttexture)
546                         R_FreeTexture(r_texture_fogheighttexture);
547                 r_texture_fogheighttexture = NULL;
548                 if (r_refdef.fog_height_table2d)
549                         Mem_Free(r_refdef.fog_height_table2d);
550                 r_refdef.fog_height_table2d = NULL;
551                 if (r_refdef.fog_height_table1d)
552                         Mem_Free(r_refdef.fog_height_table1d);
553                 r_refdef.fog_height_table1d = NULL;
554                 return;
555         }
556         size = image_width;
557         r_refdef.fog_height_tablesize = size;
558         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
559         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
560         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
561         Mem_Free(inpixels);
562         // LadyHavoc: now the magic - what is that table2d for?  it is a cooked
563         // average fog color table accounting for every fog layer between a point
564         // and the camera.  (Note: attenuation is handled separately!)
565         for (y = 0;y < size;y++)
566         {
567                 for (x = 0;x < size;x++)
568                 {
569                         Vector4Clear(c);
570                         f = 0;
571                         if (x < y)
572                         {
573                                 for (j = x;j <= y;j++)
574                                 {
575                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
576                                         f++;
577                                 }
578                         }
579                         else
580                         {
581                                 for (j = x;j >= y;j--)
582                                 {
583                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
584                                         f++;
585                                 }
586                         }
587                         f = 1.0f / f;
588                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
589                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
590                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
591                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
592                 }
593         }
594         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
595 }
596
597 //=======================================================================================================================================================
598
599 static const char *builtinshaderstrings[] =
600 {
601 #include "shader_glsl.h"
602 0
603 };
604
605 //=======================================================================================================================================================
606
607 typedef struct shaderpermutationinfo_s
608 {
609         const char *pretext;
610         const char *name;
611 }
612 shaderpermutationinfo_t;
613
614 typedef struct shadermodeinfo_s
615 {
616         const char *sourcebasename;
617         const char *extension;
618         const char **builtinshaderstrings;
619         const char *pretext;
620         const char *name;
621         char *filename;
622         char *builtinstring;
623         int builtincrc;
624 }
625 shadermodeinfo_t;
626
627 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
628 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
629 {
630         {"#define USEDIFFUSE\n", " diffuse"},
631         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
632         {"#define USEVIEWTINT\n", " viewtint"},
633         {"#define USECOLORMAPPING\n", " colormapping"},
634         {"#define USESATURATION\n", " saturation"},
635         {"#define USEFOGINSIDE\n", " foginside"},
636         {"#define USEFOGOUTSIDE\n", " fogoutside"},
637         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
638         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
639         {"#define USEGAMMARAMPS\n", " gammaramps"},
640         {"#define USECUBEFILTER\n", " cubefilter"},
641         {"#define USEGLOW\n", " glow"},
642         {"#define USEBLOOM\n", " bloom"},
643         {"#define USESPECULAR\n", " specular"},
644         {"#define USEPOSTPROCESSING\n", " postprocessing"},
645         {"#define USEREFLECTION\n", " reflection"},
646         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
647         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
648         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
649         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
650         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
651         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
652         {"#define USEALPHAKILL\n", " alphakill"},
653         {"#define USEREFLECTCUBE\n", " reflectcube"},
654         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
655         {"#define USEBOUNCEGRID\n", " bouncegrid"},
656         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
657         {"#define USETRIPPY\n", " trippy"},
658         {"#define USEDEPTHRGB\n", " depthrgb"},
659         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
660         {"#define USESKELETAL\n", " skeletal"},
661         {"#define USEOCCLUDE\n", " occlude"}
662 };
663
664 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
665 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
666 {
667         // SHADERLANGUAGE_GLSL
668         {
669                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
670                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
671                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
672                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
673                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
674                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
675                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
676                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
677                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
678                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
679                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTGRID\n", " lightgrid"},
680                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
681                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
682                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
683                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
684                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
685                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
686         },
687 };
688
689 struct r_glsl_permutation_s;
690 typedef struct r_glsl_permutation_s
691 {
692         /// hash lookup data
693         struct r_glsl_permutation_s *hashnext;
694         unsigned int mode;
695         uint64_t permutation;
696
697         /// indicates if we have tried compiling this permutation already
698         qbool compiled;
699         /// 0 if compilation failed
700         int program;
701         // texture units assigned to each detected uniform
702         int tex_Texture_First;
703         int tex_Texture_Second;
704         int tex_Texture_GammaRamps;
705         int tex_Texture_Normal;
706         int tex_Texture_Color;
707         int tex_Texture_Gloss;
708         int tex_Texture_Glow;
709         int tex_Texture_SecondaryNormal;
710         int tex_Texture_SecondaryColor;
711         int tex_Texture_SecondaryGloss;
712         int tex_Texture_SecondaryGlow;
713         int tex_Texture_Pants;
714         int tex_Texture_Shirt;
715         int tex_Texture_FogHeightTexture;
716         int tex_Texture_FogMask;
717         int tex_Texture_LightGrid;
718         int tex_Texture_Lightmap;
719         int tex_Texture_Deluxemap;
720         int tex_Texture_Attenuation;
721         int tex_Texture_Cube;
722         int tex_Texture_Refraction;
723         int tex_Texture_Reflection;
724         int tex_Texture_ShadowMap2D;
725         int tex_Texture_CubeProjection;
726         int tex_Texture_ScreenNormalMap;
727         int tex_Texture_ScreenDiffuse;
728         int tex_Texture_ScreenSpecular;
729         int tex_Texture_ReflectMask;
730         int tex_Texture_ReflectCube;
731         int tex_Texture_BounceGrid;
732         /// locations of detected uniforms in program object, or -1 if not found
733         int loc_Texture_First;
734         int loc_Texture_Second;
735         int loc_Texture_GammaRamps;
736         int loc_Texture_Normal;
737         int loc_Texture_Color;
738         int loc_Texture_Gloss;
739         int loc_Texture_Glow;
740         int loc_Texture_SecondaryNormal;
741         int loc_Texture_SecondaryColor;
742         int loc_Texture_SecondaryGloss;
743         int loc_Texture_SecondaryGlow;
744         int loc_Texture_Pants;
745         int loc_Texture_Shirt;
746         int loc_Texture_FogHeightTexture;
747         int loc_Texture_FogMask;
748         int loc_Texture_LightGrid;
749         int loc_Texture_Lightmap;
750         int loc_Texture_Deluxemap;
751         int loc_Texture_Attenuation;
752         int loc_Texture_Cube;
753         int loc_Texture_Refraction;
754         int loc_Texture_Reflection;
755         int loc_Texture_ShadowMap2D;
756         int loc_Texture_CubeProjection;
757         int loc_Texture_ScreenNormalMap;
758         int loc_Texture_ScreenDiffuse;
759         int loc_Texture_ScreenSpecular;
760         int loc_Texture_ReflectMask;
761         int loc_Texture_ReflectCube;
762         int loc_Texture_BounceGrid;
763         int loc_Alpha;
764         int loc_BloomBlur_Parameters;
765         int loc_ClientTime;
766         int loc_Color_Ambient;
767         int loc_Color_Diffuse;
768         int loc_Color_Specular;
769         int loc_Color_Glow;
770         int loc_Color_Pants;
771         int loc_Color_Shirt;
772         int loc_DeferredColor_Ambient;
773         int loc_DeferredColor_Diffuse;
774         int loc_DeferredColor_Specular;
775         int loc_DeferredMod_Diffuse;
776         int loc_DeferredMod_Specular;
777         int loc_DistortScaleRefractReflect;
778         int loc_EyePosition;
779         int loc_FogColor;
780         int loc_FogHeightFade;
781         int loc_FogPlane;
782         int loc_FogPlaneViewDist;
783         int loc_FogRangeRecip;
784         int loc_LightColor;
785         int loc_LightDir;
786         int loc_LightGridMatrix;
787         int loc_LightGridNormalMatrix;
788         int loc_LightPosition;
789         int loc_OffsetMapping_ScaleSteps;
790         int loc_OffsetMapping_LodDistance;
791         int loc_OffsetMapping_Bias;
792         int loc_PixelSize;
793         int loc_ReflectColor;
794         int loc_ReflectFactor;
795         int loc_ReflectOffset;
796         int loc_RefractColor;
797         int loc_Saturation;
798         int loc_ScreenCenterRefractReflect;
799         int loc_ScreenScaleRefractReflect;
800         int loc_ScreenToDepth;
801         int loc_ShadowMap_Parameters;
802         int loc_ShadowMap_TextureScale;
803         int loc_SpecularPower;
804         int loc_Skeletal_Transform12;
805         int loc_UserVec1;
806         int loc_UserVec2;
807         int loc_UserVec3;
808         int loc_UserVec4;
809         int loc_ColorFringe;
810         int loc_ViewTintColor;
811         int loc_ViewToLight;
812         int loc_ModelToLight;
813         int loc_TexMatrix;
814         int loc_BackgroundTexMatrix;
815         int loc_ModelViewProjectionMatrix;
816         int loc_ModelViewMatrix;
817         int loc_PixelToScreenTexCoord;
818         int loc_ModelToReflectCube;
819         int loc_ShadowMapMatrix;
820         int loc_BloomColorSubtract;
821         int loc_NormalmapScrollBlend;
822         int loc_BounceGridMatrix;
823         int loc_BounceGridIntensity;
824         /// uniform block bindings
825         int ubibind_Skeletal_Transform12_UniformBlock;
826         /// uniform block indices
827         int ubiloc_Skeletal_Transform12_UniformBlock;
828 }
829 r_glsl_permutation_t;
830
831 #define SHADERPERMUTATION_HASHSIZE 256
832
833
834 // non-degradable "lightweight" shader parameters to keep the permutations simpler
835 // these can NOT degrade! only use for simple stuff
836 enum
837 {
838         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
839         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
840         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
841         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
842         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
843         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
844         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
845         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
846         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
847         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
848         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
849         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
850         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
851         SHADERSTATICPARM_FXAA = 13, ///< fast approximate anti aliasing
852         SHADERSTATICPARM_COLORFRINGE = 14 ///< colorfringe (chromatic aberration)
853 };
854 #define SHADERSTATICPARMS_COUNT 15
855
856 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
857 static int shaderstaticparms_count = 0;
858
859 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
860 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
861
862 extern qbool r_shadow_shadowmapsampler;
863 extern int r_shadow_shadowmappcf;
864 qbool R_CompileShader_CheckStaticParms(void)
865 {
866         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
867         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
868         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
869
870         // detect all
871         if (r_glsl_saturation_redcompensate.integer)
872                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
873         if (r_glsl_vertextextureblend_usebothalphas.integer)
874                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
875         if (r_shadow_glossexact.integer)
876                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
877         if (r_glsl_postprocess.integer)
878         {
879                 if (r_glsl_postprocess_uservec1_enable.integer)
880                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
881                 if (r_glsl_postprocess_uservec2_enable.integer)
882                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
883                 if (r_glsl_postprocess_uservec3_enable.integer)
884                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
885                 if (r_glsl_postprocess_uservec4_enable.integer)
886                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
887         }
888         if (r_fxaa.integer)
889                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
890         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
891                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
892
893         if (r_shadow_shadowmapsampler)
894                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
895         if (r_shadow_shadowmappcf > 1)
896                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
897         else if (r_shadow_shadowmappcf)
898                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
899         if (r_celshading.integer)
900                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
901         if (r_celoutlines.integer)
902                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
903         if (r_colorfringe.value)
904                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_COLORFRINGE);
905
906         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
907 }
908
909 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
910         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
911                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
912         else \
913                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
914 static void R_CompileShader_AddStaticParms(unsigned int mode, uint64_t permutation)
915 {
916         shaderstaticparms_count = 0;
917
918         // emit all
919         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
920         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
921         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
922         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
923         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
924         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
925         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
926         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
927         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
928         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
929         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
930         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
931         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
932         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
933         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_COLORFRINGE, "USECOLORFRINGE");
934 }
935
936 /// information about each possible shader permutation
937 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
938 /// currently selected permutation
939 r_glsl_permutation_t *r_glsl_permutation;
940 /// storage for permutations linked in the hash table
941 memexpandablearray_t r_glsl_permutationarray;
942
943 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, uint64_t permutation)
944 {
945         //unsigned int hashdepth = 0;
946         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
947         r_glsl_permutation_t *p;
948         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
949         {
950                 if (p->mode == mode && p->permutation == permutation)
951                 {
952                         //if (hashdepth > 10)
953                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
954                         return p;
955                 }
956                 //hashdepth++;
957         }
958         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
959         p->mode = mode;
960         p->permutation = permutation;
961         p->hashnext = r_glsl_permutationhash[mode][hashindex];
962         r_glsl_permutationhash[mode][hashindex] = p;
963         //if (hashdepth > 10)
964         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
965         return p;
966 }
967
968 static char *R_ShaderStrCat(const char **strings)
969 {
970         char *string, *s;
971         const char **p = strings;
972         const char *t;
973         size_t len = 0;
974         for (p = strings;(t = *p);p++)
975                 len += strlen(t);
976         len++;
977         s = string = (char *)Mem_Alloc(r_main_mempool, len);
978         len = 0;
979         for (p = strings;(t = *p);p++)
980         {
981                 len = strlen(t);
982                 memcpy(s, t, len);
983                 s += len;
984         }
985         *s = 0;
986         return string;
987 }
988
989 static char *R_ShaderStrCat(const char **strings);
990 static void R_InitShaderModeInfo(void)
991 {
992         int i, language;
993         shadermodeinfo_t *modeinfo;
994         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
995         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
996         {
997                 for (i = 0; i < SHADERMODE_COUNT; i++)
998                 {
999                         char filename[MAX_QPATH];
1000                         modeinfo = &shadermodeinfo[language][i];
1001                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
1002                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
1003                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
1004                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
1005                 }
1006         }
1007 }
1008
1009 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qbool printfromdisknotice, qbool builtinonly)
1010 {
1011         char *shaderstring;
1012         // if the mode has no filename we have to return the builtin string
1013         if (builtinonly || !modeinfo->filename)
1014                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1015         // note that FS_LoadFile appends a 0 byte to make it a valid string
1016         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1017         if (shaderstring)
1018         {
1019                 if (printfromdisknotice)
1020                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1021                 return shaderstring;
1022         }
1023         // fall back to builtinstring
1024         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1025 }
1026
1027 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, uint64_t permutation)
1028 {
1029         int i;
1030         int ubibind;
1031         int sampler;
1032         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1033         char *sourcestring;
1034         char permutationname[256];
1035         int vertstrings_count = 0;
1036         int geomstrings_count = 0;
1037         int fragstrings_count = 0;
1038         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1039         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1040         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1041
1042         if (p->compiled)
1043                 return;
1044         p->compiled = true;
1045         p->program = 0;
1046
1047         permutationname[0] = 0;
1048         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1049
1050         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1051
1052         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1053         if(vid.support.glshaderversion >= 140)
1054         {
1055                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1056                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1057                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1058                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1059                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1060                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1061         }
1062         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1063         else if(vid.support.glshaderversion >= 130)
1064         {
1065                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1066                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1067                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1068                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1069                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1070                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1071         }
1072         // if we can do #version 120, we should (this adds the invariant keyword)
1073         else if(vid.support.glshaderversion >= 120)
1074         {
1075                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1076                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1077                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1078                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1079                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1080                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1081         }
1082         // GLES also adds several things from GLSL120
1083         switch(vid.renderpath)
1084         {
1085         case RENDERPATH_GLES2:
1086                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1087                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1088                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         // the first pretext is which type of shader to compile as
1095         // (later these will all be bound together as a program object)
1096         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1097         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1098         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1099
1100         // the second pretext is the mode (for example a light source)
1101         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1102         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1103         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1104         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1105
1106         // now add all the permutation pretexts
1107         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1108         {
1109                 if (permutation & (1ll<<i))
1110                 {
1111                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1112                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1113                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1114                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1115                 }
1116                 else
1117                 {
1118                         // keep line numbers correct
1119                         vertstrings_list[vertstrings_count++] = "\n";
1120                         geomstrings_list[geomstrings_count++] = "\n";
1121                         fragstrings_list[fragstrings_count++] = "\n";
1122                 }
1123         }
1124
1125         // add static parms
1126         R_CompileShader_AddStaticParms(mode, permutation);
1127         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1128         vertstrings_count += shaderstaticparms_count;
1129         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1130         geomstrings_count += shaderstaticparms_count;
1131         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1132         fragstrings_count += shaderstaticparms_count;
1133
1134         // now append the shader text itself
1135         vertstrings_list[vertstrings_count++] = sourcestring;
1136         geomstrings_list[geomstrings_count++] = sourcestring;
1137         fragstrings_list[fragstrings_count++] = sourcestring;
1138
1139         // we don't currently use geometry shaders for anything, so just empty the list
1140         geomstrings_count = 0;
1141
1142         // compile the shader program
1143         if (vertstrings_count + geomstrings_count + fragstrings_count)
1144                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1145         if (p->program)
1146         {
1147                 CHECKGLERROR
1148                 qglUseProgram(p->program);CHECKGLERROR
1149                 // look up all the uniform variable names we care about, so we don't
1150                 // have to look them up every time we set them
1151
1152 #if 0
1153                 // debugging aid
1154                 {
1155                         GLint activeuniformindex = 0;
1156                         GLint numactiveuniforms = 0;
1157                         char uniformname[128];
1158                         GLsizei uniformnamelength = 0;
1159                         GLint uniformsize = 0;
1160                         GLenum uniformtype = 0;
1161                         memset(uniformname, 0, sizeof(uniformname));
1162                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1163                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1164                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1165                         {
1166                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1167                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1168                         }
1169                 }
1170 #endif
1171
1172                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1173                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1174                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1175                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1176                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1177                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1178                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1179                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1180                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1181                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1182                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1183                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1184                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1185                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1186                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1187                 p->loc_Texture_LightGrid          = qglGetUniformLocation(p->program, "Texture_LightGrid");
1188                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1189                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1190                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1191                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1192                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1193                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1194                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1195                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1196                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1197                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1198                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1199                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1200                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1201                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1202                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1203                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1204                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1205                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1206                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1207                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1208                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1209                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1210                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1211                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1212                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1213                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1214                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1215                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1216                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1217                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1218                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1219                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1220                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1221                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1222                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1223                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1224                 p->loc_LightGridMatrix            = qglGetUniformLocation(p->program, "LightGridMatrix");
1225                 p->loc_LightGridNormalMatrix      = qglGetUniformLocation(p->program, "LightGridNormalMatrix");
1226                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1227                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1228                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1229                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1230                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1231                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1232                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1233                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1234                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1235                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1236                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1237                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1238                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1239                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1240                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1241                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1242                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1243                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1244                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1245                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1246                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1247                 p->loc_ColorFringe                = qglGetUniformLocation(p->program, "ColorFringe");
1248                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1249                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1250                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1251                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1252                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1253                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1254                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1255                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1256                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1257                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1258                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1259                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1260                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1261                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1262                 // initialize the samplers to refer to the texture units we use
1263                 p->tex_Texture_First = -1;
1264                 p->tex_Texture_Second = -1;
1265                 p->tex_Texture_GammaRamps = -1;
1266                 p->tex_Texture_Normal = -1;
1267                 p->tex_Texture_Color = -1;
1268                 p->tex_Texture_Gloss = -1;
1269                 p->tex_Texture_Glow = -1;
1270                 p->tex_Texture_SecondaryNormal = -1;
1271                 p->tex_Texture_SecondaryColor = -1;
1272                 p->tex_Texture_SecondaryGloss = -1;
1273                 p->tex_Texture_SecondaryGlow = -1;
1274                 p->tex_Texture_Pants = -1;
1275                 p->tex_Texture_Shirt = -1;
1276                 p->tex_Texture_FogHeightTexture = -1;
1277                 p->tex_Texture_FogMask = -1;
1278                 p->tex_Texture_LightGrid = -1;
1279                 p->tex_Texture_Lightmap = -1;
1280                 p->tex_Texture_Deluxemap = -1;
1281                 p->tex_Texture_Attenuation = -1;
1282                 p->tex_Texture_Cube = -1;
1283                 p->tex_Texture_Refraction = -1;
1284                 p->tex_Texture_Reflection = -1;
1285                 p->tex_Texture_ShadowMap2D = -1;
1286                 p->tex_Texture_CubeProjection = -1;
1287                 p->tex_Texture_ScreenNormalMap = -1;
1288                 p->tex_Texture_ScreenDiffuse = -1;
1289                 p->tex_Texture_ScreenSpecular = -1;
1290                 p->tex_Texture_ReflectMask = -1;
1291                 p->tex_Texture_ReflectCube = -1;
1292                 p->tex_Texture_BounceGrid = -1;
1293                 // bind the texture samplers in use
1294                 sampler = 0;
1295                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1296                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1297                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1298                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1299                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1300                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1301                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1302                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1303                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1304                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1305                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1306                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1307                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1308                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1309                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1310                 if (p->loc_Texture_LightGrid       >= 0) {p->tex_Texture_LightGrid        = sampler;qglUniform1i(p->loc_Texture_LightGrid       , sampler);sampler++;}
1311                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1312                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1313                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1314                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1315                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1316                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1317                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1318                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1319                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1320                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1321                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1322                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1323                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1324                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1325                 // get the uniform block indices so we can bind them
1326                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1327 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1328                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1329 #endif
1330                 // clear the uniform block bindings
1331                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1332                 // bind the uniform blocks in use
1333                 ubibind = 0;
1334 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1335                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1336 #endif
1337                 // we're done compiling and setting up the shader, at least until it is used
1338                 CHECKGLERROR
1339                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1340         }
1341         else
1342                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1343
1344         // free the strings
1345         if (sourcestring)
1346                 Mem_Free(sourcestring);
1347 }
1348
1349 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, uint64_t permutation)
1350 {
1351         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1352         if (r_glsl_permutation != perm)
1353         {
1354                 r_glsl_permutation = perm;
1355                 if (!r_glsl_permutation->program)
1356                 {
1357                         if (!r_glsl_permutation->compiled)
1358                         {
1359                                 Con_DPrintf("Compiling shader mode %u permutation %" PRIx64 "\n", mode, permutation);
1360                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1361                         }
1362                         if (!r_glsl_permutation->program)
1363                         {
1364                                 // remove features until we find a valid permutation
1365                                 int i;
1366                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1367                                 {
1368                                         // reduce i more quickly whenever it would not remove any bits
1369                                         uint64_t j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1370                                         if (!(permutation & j))
1371                                                 continue;
1372                                         permutation -= j;
1373                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1374                                         if (!r_glsl_permutation->compiled)
1375                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1376                                         if (r_glsl_permutation->program)
1377                                                 break;
1378                                 }
1379                                 if (i >= SHADERPERMUTATION_COUNT)
1380                                 {
1381                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1382                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1383                                         qglUseProgram(0);CHECKGLERROR
1384                                         return; // no bit left to clear, entire mode is broken
1385                                 }
1386                         }
1387                 }
1388                 CHECKGLERROR
1389                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1390         }
1391         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1392         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1393         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1394         CHECKGLERROR
1395 }
1396
1397 void R_GLSL_Restart_f(cmd_state_t *cmd)
1398 {
1399         unsigned int i, limit;
1400         switch(vid.renderpath)
1401         {
1402         case RENDERPATH_GL32:
1403         case RENDERPATH_GLES2:
1404                 {
1405                         r_glsl_permutation_t *p;
1406                         r_glsl_permutation = NULL;
1407                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1408                         for (i = 0;i < limit;i++)
1409                         {
1410                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1411                                 {
1412                                         GL_Backend_FreeProgram(p->program);
1413                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1414                                 }
1415                         }
1416                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1417                 }
1418                 break;
1419         }
1420 }
1421
1422 static void R_GLSL_DumpShader_f(cmd_state_t *cmd)
1423 {
1424         int i, language, mode, dupe;
1425         char *text;
1426         shadermodeinfo_t *modeinfo;
1427         qfile_t *file;
1428
1429         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1430         {
1431                 modeinfo = shadermodeinfo[language];
1432                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1433                 {
1434                         // don't dump the same file multiple times (most or all shaders come from the same file)
1435                         for (dupe = mode - 1;dupe >= 0;dupe--)
1436                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1437                                         break;
1438                         if (dupe >= 0)
1439                                 continue;
1440                         text = modeinfo[mode].builtinstring;
1441                         if (!text)
1442                                 continue;
1443                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1444                         if (file)
1445                         {
1446                                 FS_Print(file, "/* The engine may define the following macros:\n");
1447                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1448                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1449                                         FS_Print(file, modeinfo[i].pretext);
1450                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1451                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1452                                 FS_Print(file, "*/\n");
1453                                 FS_Print(file, text);
1454                                 FS_Close(file);
1455                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1456                         }
1457                         else
1458                                 Con_Printf(CON_ERROR "failed to write to %s\n", modeinfo[mode].filename);
1459                 }
1460         }
1461 }
1462
1463 void R_SetupShader_Generic(rtexture_t *t, qbool usegamma, qbool notrippy, qbool suppresstexalpha)
1464 {
1465         uint64_t permutation = 0;
1466         if (r_trippy.integer && !notrippy)
1467                 permutation |= SHADERPERMUTATION_TRIPPY;
1468         permutation |= SHADERPERMUTATION_VIEWTINT;
1469         if (t)
1470                 permutation |= SHADERPERMUTATION_DIFFUSE;
1471         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1472                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1473         if (suppresstexalpha)
1474                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1475         if (vid.allowalphatocoverage)
1476                 GL_AlphaToCoverage(false);
1477         switch (vid.renderpath)
1478         {
1479         case RENDERPATH_GL32:
1480         case RENDERPATH_GLES2:
1481                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1482                 if (r_glsl_permutation->tex_Texture_First >= 0)
1483                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1484                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1485                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1486                 break;
1487         }
1488 }
1489
1490 void R_SetupShader_Generic_NoTexture(qbool usegamma, qbool notrippy)
1491 {
1492         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1493 }
1494
1495 void R_SetupShader_DepthOrShadow(qbool notrippy, qbool depthrgb, qbool skeletal)
1496 {
1497         uint64_t permutation = 0;
1498         if (r_trippy.integer && !notrippy)
1499                 permutation |= SHADERPERMUTATION_TRIPPY;
1500         if (depthrgb)
1501                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1502         if (skeletal)
1503                 permutation |= SHADERPERMUTATION_SKELETAL;
1504
1505         if (vid.allowalphatocoverage)
1506                 GL_AlphaToCoverage(false);
1507         switch (vid.renderpath)
1508         {
1509         case RENDERPATH_GL32:
1510         case RENDERPATH_GLES2:
1511                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1512 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1513                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1514 #endif
1515                 break;
1516         }
1517 }
1518
1519 #define BLENDFUNC_ALLOWS_COLORMOD      1
1520 #define BLENDFUNC_ALLOWS_FOG           2
1521 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1522 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1523 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1524 static int R_BlendFuncFlags(int src, int dst)
1525 {
1526         int r = 0;
1527
1528         // a blendfunc allows colormod if:
1529         // a) it can never keep the destination pixel invariant, or
1530         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1531         // this is to prevent unintended side effects from colormod
1532
1533         // a blendfunc allows fog if:
1534         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1535         // this is to prevent unintended side effects from fog
1536
1537         // these checks are the output of fogeval.pl
1538
1539         r |= BLENDFUNC_ALLOWS_COLORMOD;
1540         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1541         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1542         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1543         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1544         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1545         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1546         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1547         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1548         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1549         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1551         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1552         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1553         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1554         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1555         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1556         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1557         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1558         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1559         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1560         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1561
1562         return r;
1563 }
1564
1565 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qbool notrippy, qbool ui)
1566 {
1567         // select a permutation of the lighting shader appropriate to this
1568         // combination of texture, entity, light source, and fogging, only use the
1569         // minimum features necessary to avoid wasting rendering time in the
1570         // fragment shader on features that are not being used
1571         uint64_t permutation = 0;
1572         unsigned int mode = 0;
1573         int blendfuncflags;
1574         texture_t *t = rsurface.texture;
1575         float m16f[16];
1576         matrix4x4_t tempmatrix;
1577         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1578         if (r_trippy.integer && !notrippy)
1579                 permutation |= SHADERPERMUTATION_TRIPPY;
1580         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1581                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1582         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1583                 permutation |= SHADERPERMUTATION_OCCLUDE;
1584         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1585                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1586         if (rsurfacepass == RSURFPASS_BACKGROUND)
1587         {
1588                 // distorted background
1589                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1590                 {
1591                         mode = SHADERMODE_WATER;
1592                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1593                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1594                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1595                         {
1596                                 // this is the right thing to do for wateralpha
1597                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1598                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1599                         }
1600                         else
1601                         {
1602                                 // this is the right thing to do for entity alpha
1603                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1604                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1605                         }
1606                 }
1607                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1608                 {
1609                         mode = SHADERMODE_REFRACTION;
1610                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1611                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1612                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1613                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1614                 }
1615                 else
1616                 {
1617                         mode = SHADERMODE_GENERIC;
1618                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1619                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1620                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1621                 }
1622                 if (vid.allowalphatocoverage)
1623                         GL_AlphaToCoverage(false);
1624         }
1625         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1626         {
1627                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1628                 {
1629                         switch(t->offsetmapping)
1630                         {
1631                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1632                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1633                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1634                         case OFFSETMAPPING_OFF: break;
1635                         }
1636                 }
1637                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1638                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1639                 // normalmap (deferred prepass), may use alpha test on diffuse
1640                 mode = SHADERMODE_DEFERREDGEOMETRY;
1641                 GL_BlendFunc(GL_ONE, GL_ZERO);
1642                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1643                 if (vid.allowalphatocoverage)
1644                         GL_AlphaToCoverage(false);
1645         }
1646         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1647         {
1648                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1649                 {
1650                         switch(t->offsetmapping)
1651                         {
1652                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1653                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1654                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1655                         case OFFSETMAPPING_OFF: break;
1656                         }
1657                 }
1658                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1659                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1660                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1661                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1662                 // light source
1663                 mode = SHADERMODE_LIGHTSOURCE;
1664                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1665                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1666                 if (VectorLength2(rtlightdiffuse) > 0)
1667                         permutation |= SHADERPERMUTATION_DIFFUSE;
1668                 if (VectorLength2(rtlightspecular) > 0)
1669                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1670                 if (r_refdef.fogenabled)
1671                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1672                 if (t->colormapping)
1673                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1674                 if (r_shadow_usingshadowmap2d)
1675                 {
1676                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1677                         if(r_shadow_shadowmapvsdct)
1678                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1679
1680                         if (r_shadow_shadowmap2ddepthbuffer)
1681                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1682                 }
1683                 if (t->reflectmasktexture)
1684                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1685                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1686                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1687                 if (vid.allowalphatocoverage)
1688                         GL_AlphaToCoverage(false);
1689         }
1690         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
1691         {
1692                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1693                 {
1694                         switch(t->offsetmapping)
1695                         {
1696                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1697                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1698                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1699                         case OFFSETMAPPING_OFF: break;
1700                         }
1701                 }
1702                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1703                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1704                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1705                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1706                 // directional model lighting
1707                 mode = SHADERMODE_LIGHTGRID;
1708                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1709                         permutation |= SHADERPERMUTATION_GLOW;
1710                 permutation |= SHADERPERMUTATION_DIFFUSE;
1711                 if (t->glosstexture || t->backgroundglosstexture)
1712                         permutation |= SHADERPERMUTATION_SPECULAR;
1713                 if (r_refdef.fogenabled)
1714                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1715                 if (t->colormapping)
1716                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1717                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1718                 {
1719                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1720                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1721
1722                         if (r_shadow_shadowmap2ddepthbuffer)
1723                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1724                 }
1725                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1726                         permutation |= SHADERPERMUTATION_REFLECTION;
1727                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1728                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1729                 if (t->reflectmasktexture)
1730                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1731                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1732                 {
1733                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1734                         if (r_shadow_bouncegrid_state.directional)
1735                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1736                 }
1737                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1738                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1739                 // when using alphatocoverage, we don't need alphakill
1740                 if (vid.allowalphatocoverage)
1741                 {
1742                         if (r_transparent_alphatocoverage.integer)
1743                         {
1744                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1745                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1746                         }
1747                         else
1748                                 GL_AlphaToCoverage(false);
1749                 }
1750         }
1751         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1752         {
1753                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1754                 {
1755                         switch(t->offsetmapping)
1756                         {
1757                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1758                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1759                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1760                         case OFFSETMAPPING_OFF: break;
1761                         }
1762                 }
1763                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1764                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1765                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1766                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1767                 // directional model lighting
1768                 mode = SHADERMODE_LIGHTDIRECTION;
1769                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1770                         permutation |= SHADERPERMUTATION_GLOW;
1771                 if (VectorLength2(t->render_modellight_diffuse))
1772                         permutation |= SHADERPERMUTATION_DIFFUSE;
1773                 if (VectorLength2(t->render_modellight_specular) > 0)
1774                         permutation |= SHADERPERMUTATION_SPECULAR;
1775                 if (r_refdef.fogenabled)
1776                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1777                 if (t->colormapping)
1778                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1779                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1780                 {
1781                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1782                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1783
1784                         if (r_shadow_shadowmap2ddepthbuffer)
1785                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1786                 }
1787                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1788                         permutation |= SHADERPERMUTATION_REFLECTION;
1789                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1790                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1791                 if (t->reflectmasktexture)
1792                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1793                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1794                 {
1795                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1796                         if (r_shadow_bouncegrid_state.directional)
1797                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1798                 }
1799                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1800                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1801                 // when using alphatocoverage, we don't need alphakill
1802                 if (vid.allowalphatocoverage)
1803                 {
1804                         if (r_transparent_alphatocoverage.integer)
1805                         {
1806                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1807                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1808                         }
1809                         else
1810                                 GL_AlphaToCoverage(false);
1811                 }
1812         }
1813         else
1814         {
1815                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1816                 {
1817                         switch(t->offsetmapping)
1818                         {
1819                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1820                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1821                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1822                         case OFFSETMAPPING_OFF: break;
1823                         }
1824                 }
1825                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1826                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1827                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1828                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1829                 // lightmapped wall
1830                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1831                         permutation |= SHADERPERMUTATION_GLOW;
1832                 if (r_refdef.fogenabled && !ui)
1833                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1834                 if (t->colormapping)
1835                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1836                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1837                 {
1838                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1839                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1840
1841                         if (r_shadow_shadowmap2ddepthbuffer)
1842                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1843                 }
1844                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1845                         permutation |= SHADERPERMUTATION_REFLECTION;
1846                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1847                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1848                 if (t->reflectmasktexture)
1849                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1850                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1851                 {
1852                         // deluxemapping (light direction texture)
1853                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1854                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1855                         else
1856                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1857                         permutation |= SHADERPERMUTATION_DIFFUSE;
1858                         if (VectorLength2(t->render_lightmap_specular) > 0)
1859                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1860                 }
1861                 else if (r_glsl_deluxemapping.integer >= 2)
1862                 {
1863                         // fake deluxemapping (uniform light direction in tangentspace)
1864                         if (rsurface.uselightmaptexture)
1865                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1866                         else
1867                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1868                         permutation |= SHADERPERMUTATION_DIFFUSE;
1869                         if (VectorLength2(t->render_lightmap_specular) > 0)
1870                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1871                 }
1872                 else if (rsurface.uselightmaptexture)
1873                 {
1874                         // ordinary lightmapping (q1bsp, q3bsp)
1875                         mode = SHADERMODE_LIGHTMAP;
1876                 }
1877                 else
1878                 {
1879                         // ordinary vertex coloring (q3bsp)
1880                         mode = SHADERMODE_VERTEXCOLOR;
1881                 }
1882                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1883                 {
1884                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1885                         if (r_shadow_bouncegrid_state.directional)
1886                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1887                 }
1888                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1889                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1890                 // when using alphatocoverage, we don't need alphakill
1891                 if (vid.allowalphatocoverage)
1892                 {
1893                         if (r_transparent_alphatocoverage.integer)
1894                         {
1895                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1896                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1897                         }
1898                         else
1899                                 GL_AlphaToCoverage(false);
1900                 }
1901         }
1902         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1903                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1904         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA && !ui)
1905                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1906         switch(vid.renderpath)
1907         {
1908         case RENDERPATH_GL32:
1909         case RENDERPATH_GLES2:
1910                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1911                 RSurf_UploadBuffersForBatch();
1912                 // this has to be after RSurf_PrepareVerticesForBatch
1913                 if (rsurface.batchskeletaltransform3x4buffer)
1914                         permutation |= SHADERPERMUTATION_SKELETAL;
1915                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1916 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1917                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1918 #endif
1919                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1920                 if (mode == SHADERMODE_LIGHTSOURCE)
1921                 {
1922                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1923                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1924                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1925                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1926                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1927                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1928         
1929                         // additive passes are only darkened by fog, not tinted
1930                         if (r_glsl_permutation->loc_FogColor >= 0)
1931                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1932                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1933                 }
1934                 else
1935                 {
1936                         if (mode == SHADERMODE_FLATCOLOR)
1937                         {
1938                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1939                         }
1940                         else if (mode == SHADERMODE_LIGHTGRID)
1941                         {
1942                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1943                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1944                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1945                                 // other LightGrid uniforms handled below
1946                         }
1947                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1948                         {
1949                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1950                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1951                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1952                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1953                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1954                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1955                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir_local[0], t->render_modellight_lightdir_local[1], t->render_modellight_lightdir_local[2]);
1956                         }
1957                         else
1958                         {
1959                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1960                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1961                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1962                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1963                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1964                         }
1965                         // additive passes are only darkened by fog, not tinted
1966                         if (r_glsl_permutation->loc_FogColor >= 0 && !ui)
1967                         {
1968                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1969                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1970                                 else
1971                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1972                         }
1973                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1974                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1975                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1976                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1977                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1978                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1979                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1980                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1981                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1982                 }
1983                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1984                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1985                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1986                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1987                 {
1988                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1989                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1990                 }
1991                 else
1992                 {
1993                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1994                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1995                 }
1996
1997                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1998                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1999                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
2000                 if (r_glsl_permutation->loc_Color_Pants >= 0)
2001                 {
2002                         if (t->pantstexture)
2003                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
2004                         else
2005                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
2006                 }
2007                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
2008                 {
2009                         if (t->shirttexture)
2010                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
2011                         else
2012                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
2013                 }
2014                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
2015                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
2016                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
2017                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
2018                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
2019                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
2020                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2021                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2022                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
2023                         );
2024                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
2025                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
2026                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2027                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2028                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
2029                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
2030                 if (r_glsl_permutation->loc_LightGridMatrix >= 0 && r_refdef.scene.worldmodel)
2031                 {
2032                         float m9f[9];
2033                         Matrix4x4_Concat(&tempmatrix, &r_refdef.scene.worldmodel->brushq3.lightgridworldtotexturematrix, &rsurface.matrix);
2034                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2035                         qglUniformMatrix4fv(r_glsl_permutation->loc_LightGridMatrix, 1, false, m16f);
2036                         Matrix4x4_Normalize3(&tempmatrix, &rsurface.matrix);
2037                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2038                         m9f[0] = m16f[0];m9f[1] = m16f[1];m9f[2] = m16f[2];
2039                         m9f[3] = m16f[4];m9f[4] = m16f[5];m9f[5] = m16f[6];
2040                         m9f[6] = m16f[8];m9f[7] = m16f[9];m9f[8] = m16f[10];
2041                         qglUniformMatrix3fv(r_glsl_permutation->loc_LightGridNormalMatrix, 1, false, m9f);
2042                 }
2043
2044                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
2045                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
2046                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
2047                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
2048                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
2049                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
2050                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
2051                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
2052                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
2053                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
2054                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
2055                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2056                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2057                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2058                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2059                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2060                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2061                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2062                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2063                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2064                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2065                 {
2066                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2067                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2068                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2069                 }
2070                 else
2071                 {
2072                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2073                 }
2074                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2075                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2076                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2077                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2078                 {
2079                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2080                         if (rsurface.rtlight)
2081                         {
2082                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2083                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2084                         }
2085                 }
2086                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2087                 if (r_glsl_permutation->tex_Texture_LightGrid   >= 0 && r_refdef.scene.worldmodel) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_LightGrid, r_refdef.scene.worldmodel->brushq3.lightgridtexture);
2088                 CHECKGLERROR
2089                 break;
2090         }
2091 }
2092
2093 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2094 {
2095         // select a permutation of the lighting shader appropriate to this
2096         // combination of texture, entity, light source, and fogging, only use the
2097         // minimum features necessary to avoid wasting rendering time in the
2098         // fragment shader on features that are not being used
2099         uint64_t permutation = 0;
2100         unsigned int mode = 0;
2101         const float *lightcolorbase = rtlight->currentcolor;
2102         float ambientscale = rtlight->ambientscale;
2103         float diffusescale = rtlight->diffusescale;
2104         float specularscale = rtlight->specularscale;
2105         // this is the location of the light in view space
2106         vec3_t viewlightorigin;
2107         // this transforms from view space (camera) to light space (cubemap)
2108         matrix4x4_t viewtolight;
2109         matrix4x4_t lighttoview;
2110         float viewtolight16f[16];
2111         // light source
2112         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2113         if (rtlight->currentcubemap != r_texture_whitecube)
2114                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2115         if (diffusescale > 0)
2116                 permutation |= SHADERPERMUTATION_DIFFUSE;
2117         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2118                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2119         if (r_shadow_usingshadowmap2d)
2120         {
2121                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2122                 if (r_shadow_shadowmapvsdct)
2123                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2124
2125                 if (r_shadow_shadowmap2ddepthbuffer)
2126                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2127         }
2128         if (vid.allowalphatocoverage)
2129                 GL_AlphaToCoverage(false);
2130         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2131         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2132         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2133         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2134         switch(vid.renderpath)
2135         {
2136         case RENDERPATH_GL32:
2137         case RENDERPATH_GLES2:
2138                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2139                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2140                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2141                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2142                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2143                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2144                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2145                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2146                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2147                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2148                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2149
2150                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2151                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2152                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2153                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2154                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2155                 break;
2156         }
2157 }
2158
2159 #define SKINFRAME_HASH 1024
2160
2161 typedef struct
2162 {
2163         unsigned int loadsequence; // incremented each level change
2164         memexpandablearray_t array;
2165         skinframe_t *hash[SKINFRAME_HASH];
2166 }
2167 r_skinframe_t;
2168 r_skinframe_t r_skinframe;
2169
2170 void R_SkinFrame_PrepareForPurge(void)
2171 {
2172         r_skinframe.loadsequence++;
2173         // wrap it without hitting zero
2174         if (r_skinframe.loadsequence >= 200)
2175                 r_skinframe.loadsequence = 1;
2176 }
2177
2178 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2179 {
2180         if (!skinframe)
2181                 return;
2182         // mark the skinframe as used for the purging code
2183         skinframe->loadsequence = r_skinframe.loadsequence;
2184 }
2185
2186 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2187 {
2188         if (s == NULL)
2189                 return;
2190         if (s->merged == s->base)
2191                 s->merged = NULL;
2192         R_PurgeTexture(s->stain); s->stain = NULL;
2193         R_PurgeTexture(s->merged); s->merged = NULL;
2194         R_PurgeTexture(s->base); s->base = NULL;
2195         R_PurgeTexture(s->pants); s->pants = NULL;
2196         R_PurgeTexture(s->shirt); s->shirt = NULL;
2197         R_PurgeTexture(s->nmap); s->nmap = NULL;
2198         R_PurgeTexture(s->gloss); s->gloss = NULL;
2199         R_PurgeTexture(s->glow); s->glow = NULL;
2200         R_PurgeTexture(s->fog); s->fog = NULL;
2201         R_PurgeTexture(s->reflect); s->reflect = NULL;
2202         s->loadsequence = 0;
2203 }
2204
2205 void R_SkinFrame_Purge(void)
2206 {
2207         int i;
2208         skinframe_t *s;
2209         for (i = 0;i < SKINFRAME_HASH;i++)
2210         {
2211                 for (s = r_skinframe.hash[i];s;s = s->next)
2212                 {
2213                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2214                                 R_SkinFrame_PurgeSkinFrame(s);
2215                 }
2216         }
2217 }
2218
2219 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2220         skinframe_t *item;
2221         char basename[MAX_QPATH];
2222
2223         Image_StripImageExtension(name, basename, sizeof(basename));
2224
2225         if( last == NULL ) {
2226                 int hashindex;
2227                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2228                 item = r_skinframe.hash[hashindex];
2229         } else {
2230                 item = last->next;
2231         }
2232
2233         // linearly search through the hash bucket
2234         for( ; item ; item = item->next ) {
2235                 if( !strcmp( item->basename, basename ) ) {
2236                         return item;
2237                 }
2238         }
2239         return NULL;
2240 }
2241
2242 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qbool add)
2243 {
2244         skinframe_t *item;
2245         int compareflags = textureflags & TEXF_IMPORTANTBITS;
2246         int hashindex;
2247         char basename[MAX_QPATH];
2248
2249         Image_StripImageExtension(name, basename, sizeof(basename));
2250
2251         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2252         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2253                 if (!strcmp(item->basename, basename) &&
2254                         item->textureflags == compareflags &&
2255                         item->comparewidth == comparewidth &&
2256                         item->compareheight == compareheight &&
2257                         item->comparecrc == comparecrc)
2258                         break;
2259
2260         if (!item)
2261         {
2262                 if (!add)
2263                         return NULL;
2264                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2265                 memset(item, 0, sizeof(*item));
2266                 strlcpy(item->basename, basename, sizeof(item->basename));
2267                 item->textureflags = compareflags;
2268                 item->comparewidth = comparewidth;
2269                 item->compareheight = compareheight;
2270                 item->comparecrc = comparecrc;
2271                 item->next = r_skinframe.hash[hashindex];
2272                 r_skinframe.hash[hashindex] = item;
2273         }
2274         else if (textureflags & TEXF_FORCE_RELOAD)
2275                 R_SkinFrame_PurgeSkinFrame(item);
2276
2277         R_SkinFrame_MarkUsed(item);
2278         return item;
2279 }
2280
2281 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2282         { \
2283                 unsigned long long avgcolor[5], wsum; \
2284                 int pix, comp, w; \
2285                 avgcolor[0] = 0; \
2286                 avgcolor[1] = 0; \
2287                 avgcolor[2] = 0; \
2288                 avgcolor[3] = 0; \
2289                 avgcolor[4] = 0; \
2290                 wsum = 0; \
2291                 for(pix = 0; pix < cnt; ++pix) \
2292                 { \
2293                         w = 0; \
2294                         for(comp = 0; comp < 3; ++comp) \
2295                                 w += getpixel; \
2296                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2297                         { \
2298                                 ++wsum; \
2299                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2300                                 w = getpixel; \
2301                                 for(comp = 0; comp < 3; ++comp) \
2302                                         avgcolor[comp] += getpixel * w; \
2303                                 avgcolor[3] += w; \
2304                         } \
2305                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2306                         avgcolor[4] += getpixel; \
2307                 } \
2308                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2309                         avgcolor[3] = 1; \
2310                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2311                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2312                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2313                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2314         }
2315
2316 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2317 {
2318         skinframe_t *skinframe;
2319
2320         if (cls.state == ca_dedicated)
2321                 return NULL;
2322
2323         // return an existing skinframe if already loaded
2324         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
2325         if (skinframe && skinframe->base)
2326                 return skinframe;
2327
2328         // if the skinframe doesn't exist this will create it
2329         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2330 }
2331
2332 extern cvar_t gl_picmip;
2333 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2334 {
2335         int j;
2336         unsigned char *pixels;
2337         unsigned char *bumppixels;
2338         unsigned char *basepixels = NULL;
2339         int basepixels_width = 0;
2340         int basepixels_height = 0;
2341         rtexture_t *ddsbase = NULL;
2342         qbool ddshasalpha = false;
2343         float ddsavgcolor[4];
2344         char basename[MAX_QPATH];
2345         int miplevel = R_PicmipForFlags(textureflags);
2346         int savemiplevel = miplevel;
2347         int mymiplevel;
2348         char vabuf[1024];
2349
2350         if (cls.state == ca_dedicated)
2351                 return NULL;
2352
2353         Image_StripImageExtension(name, basename, sizeof(basename));
2354
2355         // check for DDS texture file first
2356         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2357         {
2358                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2359                 if (basepixels == NULL && fallbacknotexture)
2360                         basepixels = Image_GenerateNoTexture();
2361                 if (basepixels == NULL)
2362                         return NULL;
2363         }
2364
2365         // FIXME handle miplevel
2366
2367         if (developer_loading.integer)
2368                 Con_Printf("loading skin \"%s\"\n", name);
2369
2370         // we've got some pixels to store, so really allocate this new texture now
2371         if (!skinframe)
2372                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2373         textureflags &= ~TEXF_FORCE_RELOAD;
2374         skinframe->stain = NULL;
2375         skinframe->merged = NULL;
2376         skinframe->base = NULL;
2377         skinframe->pants = NULL;
2378         skinframe->shirt = NULL;
2379         skinframe->nmap = NULL;
2380         skinframe->gloss = NULL;
2381         skinframe->glow = NULL;
2382         skinframe->fog = NULL;
2383         skinframe->reflect = NULL;
2384         skinframe->hasalpha = false;
2385         // we could store the q2animname here too
2386
2387         if (ddsbase)
2388         {
2389                 skinframe->base = ddsbase;
2390                 skinframe->hasalpha = ddshasalpha;
2391                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2392                 if (r_loadfog && skinframe->hasalpha)
2393                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2394                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2395         }
2396         else
2397         {
2398                 basepixels_width = image_width;
2399                 basepixels_height = image_height;
2400                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2401                 if (textureflags & TEXF_ALPHA)
2402                 {
2403                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2404                         {
2405                                 if (basepixels[j] < 255)
2406                                 {
2407                                         skinframe->hasalpha = true;
2408                                         break;
2409                                 }
2410                         }
2411                         if (r_loadfog && skinframe->hasalpha)
2412                         {
2413                                 // has transparent pixels
2414                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2415                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2416                                 {
2417                                         pixels[j+0] = 255;
2418                                         pixels[j+1] = 255;
2419                                         pixels[j+2] = 255;
2420                                         pixels[j+3] = basepixels[j+3];
2421                                 }
2422                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2423                                 Mem_Free(pixels);
2424                         }
2425                 }
2426                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2427 #ifndef USE_GLES2
2428                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2429                 if (r_savedds && skinframe->base)
2430                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2431                 if (r_savedds && skinframe->fog)
2432                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2433 #endif
2434         }
2435
2436         if (r_loaddds)
2437         {
2438                 mymiplevel = savemiplevel;
2439                 if (r_loadnormalmap)
2440                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2441                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2442                 if (r_loadgloss)
2443                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2444                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2445                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2446                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2447         }
2448
2449         // _norm is the name used by tenebrae and has been adopted as standard
2450         if (r_loadnormalmap && skinframe->nmap == NULL)
2451         {
2452                 mymiplevel = savemiplevel;
2453                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2454                 {
2455                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2456                         Mem_Free(pixels);
2457                         pixels = NULL;
2458                 }
2459                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2460                 {
2461                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2462                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2463                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2464                         Mem_Free(pixels);
2465                         Mem_Free(bumppixels);
2466                 }
2467                 else if (r_shadow_bumpscale_basetexture.value > 0)
2468                 {
2469                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2470                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2471                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2472                         Mem_Free(pixels);
2473                 }
2474 #ifndef USE_GLES2
2475                 if (r_savedds && skinframe->nmap)
2476                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2477 #endif
2478         }
2479
2480         // _luma is supported only for tenebrae compatibility
2481         // _blend and .blend are supported only for Q3 & QL compatibility, this hack can be removed if better Q3 shader support is implemented
2482         // _glow is the preferred name
2483         mymiplevel = savemiplevel;
2484         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s.blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2485         {
2486                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2487 #ifndef USE_GLES2
2488                 if (r_savedds && skinframe->glow)
2489                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2490 #endif
2491                 Mem_Free(pixels);pixels = NULL;
2492         }
2493
2494         mymiplevel = savemiplevel;
2495         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2496         {
2497                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2498 #ifndef USE_GLES2
2499                 if (r_savedds && skinframe->gloss)
2500                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2501 #endif
2502                 Mem_Free(pixels);
2503                 pixels = NULL;
2504         }
2505
2506         mymiplevel = savemiplevel;
2507         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2508         {
2509                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2510 #ifndef USE_GLES2
2511                 if (r_savedds && skinframe->pants)
2512                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2513 #endif
2514                 Mem_Free(pixels);
2515                 pixels = NULL;
2516         }
2517
2518         mymiplevel = savemiplevel;
2519         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2520         {
2521                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2522 #ifndef USE_GLES2
2523                 if (r_savedds && skinframe->shirt)
2524                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2525 #endif
2526                 Mem_Free(pixels);
2527                 pixels = NULL;
2528         }
2529
2530         mymiplevel = savemiplevel;
2531         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2532         {
2533                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2534 #ifndef USE_GLES2
2535                 if (r_savedds && skinframe->reflect)
2536                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2537 #endif
2538                 Mem_Free(pixels);
2539                 pixels = NULL;
2540         }
2541
2542         if (basepixels)
2543                 Mem_Free(basepixels);
2544
2545         return skinframe;
2546 }
2547
2548 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, int comparewidth, int compareheight, int comparecrc, qbool sRGB)
2549 {
2550         int i;
2551         skinframe_t *skinframe;
2552         char vabuf[1024];
2553
2554         if (cls.state == ca_dedicated)
2555                 return NULL;
2556
2557         // if already loaded just return it, otherwise make a new skinframe
2558         skinframe = R_SkinFrame_Find(name, textureflags, comparewidth, compareheight, comparecrc, true);
2559         if (skinframe->base)
2560                 return skinframe;
2561         textureflags &= ~TEXF_FORCE_RELOAD;
2562
2563         skinframe->stain = NULL;
2564         skinframe->merged = NULL;
2565         skinframe->base = NULL;
2566         skinframe->pants = NULL;
2567         skinframe->shirt = NULL;
2568         skinframe->nmap = NULL;
2569         skinframe->gloss = NULL;
2570         skinframe->glow = NULL;
2571         skinframe->fog = NULL;
2572         skinframe->reflect = NULL;
2573         skinframe->hasalpha = false;
2574
2575         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2576         if (!skindata)
2577                 return NULL;
2578
2579         if (developer_loading.integer)
2580                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2581
2582         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2583         {
2584                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2585                 unsigned char *b = a + width * height * 4;
2586                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2587                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2588                 Mem_Free(a);
2589         }
2590         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2591         if (textureflags & TEXF_ALPHA)
2592         {
2593                 for (i = 3;i < width * height * 4;i += 4)
2594                 {
2595                         if (skindata[i] < 255)
2596                         {
2597                                 skinframe->hasalpha = true;
2598                                 break;
2599                         }
2600                 }
2601                 if (r_loadfog && skinframe->hasalpha)
2602                 {
2603                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2604                         memcpy(fogpixels, skindata, width * height * 4);
2605                         for (i = 0;i < width * height * 4;i += 4)
2606                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2607                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2608                         Mem_Free(fogpixels);
2609                 }
2610         }
2611
2612         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2613         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2614
2615         return skinframe;
2616 }
2617
2618 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2619 {
2620         int i;
2621         int featuresmask;
2622         skinframe_t *skinframe;
2623
2624         if (cls.state == ca_dedicated)
2625                 return NULL;
2626
2627         // if already loaded just return it, otherwise make a new skinframe
2628         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2629         if (skinframe->base)
2630                 return skinframe;
2631         //textureflags &= ~TEXF_FORCE_RELOAD;
2632
2633         skinframe->stain = NULL;
2634         skinframe->merged = NULL;
2635         skinframe->base = NULL;
2636         skinframe->pants = NULL;
2637         skinframe->shirt = NULL;
2638         skinframe->nmap = NULL;
2639         skinframe->gloss = NULL;
2640         skinframe->glow = NULL;
2641         skinframe->fog = NULL;
2642         skinframe->reflect = NULL;
2643         skinframe->hasalpha = false;
2644
2645         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2646         if (!skindata)
2647                 return NULL;
2648
2649         if (developer_loading.integer)
2650                 Con_Printf("loading quake skin \"%s\"\n", name);
2651
2652         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2653         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2654         memcpy(skinframe->qpixels, skindata, width*height);
2655         skinframe->qwidth = width;
2656         skinframe->qheight = height;
2657
2658         featuresmask = 0;
2659         for (i = 0;i < width * height;i++)
2660                 featuresmask |= palette_featureflags[skindata[i]];
2661
2662         skinframe->hasalpha = false;
2663         // fence textures
2664         if (name[0] == '{')
2665                 skinframe->hasalpha = true;
2666         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2667         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2668         skinframe->qgeneratemerged = true;
2669         skinframe->qgeneratebase = skinframe->qhascolormapping;
2670         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2671
2672         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2673         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2674
2675         return skinframe;
2676 }
2677
2678 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qbool colormapped)
2679 {
2680         int width;
2681         int height;
2682         unsigned char *skindata;
2683         char vabuf[1024];
2684
2685         if (!skinframe->qpixels)
2686                 return;
2687
2688         if (!skinframe->qhascolormapping)
2689                 colormapped = false;
2690
2691         if (colormapped)
2692         {
2693                 if (!skinframe->qgeneratebase)
2694                         return;
2695         }
2696         else
2697         {
2698                 if (!skinframe->qgeneratemerged)
2699                         return;
2700         }
2701
2702         width = skinframe->qwidth;
2703         height = skinframe->qheight;
2704         skindata = skinframe->qpixels;
2705
2706         if (skinframe->qgeneratenmap)
2707         {
2708                 unsigned char *a, *b;
2709                 skinframe->qgeneratenmap = false;
2710                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2711                 b = a + width * height * 4;
2712                 // use either a custom palette or the quake palette
2713                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2714                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2715                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2716                 Mem_Free(a);
2717         }
2718
2719         if (skinframe->qgenerateglow)
2720         {
2721                 skinframe->qgenerateglow = false;
2722                 if (skinframe->hasalpha) // fence textures
2723                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2724                 else
2725                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2726         }
2727
2728         if (colormapped)
2729         {
2730                 skinframe->qgeneratebase = false;
2731                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2732                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2733                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2734         }
2735         else
2736         {
2737                 skinframe->qgeneratemerged = false;
2738                 if (skinframe->hasalpha) // fence textures
2739                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2740                 else
2741                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2742         }
2743
2744         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2745         {
2746                 Mem_Free(skinframe->qpixels);
2747                 skinframe->qpixels = NULL;
2748         }
2749 }
2750
2751 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2752 {
2753         int i;
2754         skinframe_t *skinframe;
2755         char vabuf[1024];
2756
2757         if (cls.state == ca_dedicated)
2758                 return NULL;
2759
2760         // if already loaded just return it, otherwise make a new skinframe
2761         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2762         if (skinframe->base)
2763                 return skinframe;
2764         textureflags &= ~TEXF_FORCE_RELOAD;
2765
2766         skinframe->stain = NULL;
2767         skinframe->merged = NULL;
2768         skinframe->base = NULL;
2769         skinframe->pants = NULL;
2770         skinframe->shirt = NULL;
2771         skinframe->nmap = NULL;
2772         skinframe->gloss = NULL;
2773         skinframe->glow = NULL;
2774         skinframe->fog = NULL;
2775         skinframe->reflect = NULL;
2776         skinframe->hasalpha = false;
2777
2778         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2779         if (!skindata)
2780                 return NULL;
2781
2782         if (developer_loading.integer)
2783                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2784
2785         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2786         if ((textureflags & TEXF_ALPHA) && alphapalette)
2787         {
2788                 for (i = 0;i < width * height;i++)
2789                 {
2790                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2791                         {
2792                                 skinframe->hasalpha = true;
2793                                 break;
2794                         }
2795                 }
2796                 if (r_loadfog && skinframe->hasalpha)
2797                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2798         }
2799
2800         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2801         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2802
2803         return skinframe;
2804 }
2805
2806 skinframe_t *R_SkinFrame_LoadMissing(void)
2807 {
2808         skinframe_t *skinframe;
2809
2810         if (cls.state == ca_dedicated)
2811                 return NULL;
2812
2813         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2814         skinframe->stain = NULL;
2815         skinframe->merged = NULL;
2816         skinframe->base = NULL;
2817         skinframe->pants = NULL;
2818         skinframe->shirt = NULL;
2819         skinframe->nmap = NULL;
2820         skinframe->gloss = NULL;
2821         skinframe->glow = NULL;
2822         skinframe->fog = NULL;
2823         skinframe->reflect = NULL;
2824         skinframe->hasalpha = false;
2825
2826         skinframe->avgcolor[0] = rand() / RAND_MAX;
2827         skinframe->avgcolor[1] = rand() / RAND_MAX;
2828         skinframe->avgcolor[2] = rand() / RAND_MAX;
2829         skinframe->avgcolor[3] = 1;
2830
2831         return skinframe;
2832 }
2833
2834 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2835 {
2836         if (cls.state == ca_dedicated)
2837                 return NULL;
2838
2839         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, Image_GenerateNoTexture(), 16, 16, 0, 0, 0, false);
2840 }
2841
2842 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qbool sRGB)
2843 {
2844         skinframe_t *skinframe;
2845         if (cls.state == ca_dedicated)
2846                 return NULL;
2847         // if already loaded just return it, otherwise make a new skinframe
2848         skinframe = R_SkinFrame_Find(name, textureflags, width, height, 0, true);
2849         if (skinframe->base)
2850                 return skinframe;
2851         textureflags &= ~TEXF_FORCE_RELOAD;
2852         skinframe->stain = NULL;
2853         skinframe->merged = NULL;
2854         skinframe->base = NULL;
2855         skinframe->pants = NULL;
2856         skinframe->shirt = NULL;
2857         skinframe->nmap = NULL;
2858         skinframe->gloss = NULL;
2859         skinframe->glow = NULL;
2860         skinframe->fog = NULL;
2861         skinframe->reflect = NULL;
2862         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2863         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2864         if (!tex)
2865                 return NULL;
2866         if (developer_loading.integer)
2867                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2868         skinframe->base = skinframe->merged = tex;
2869         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2870         return skinframe;
2871 }
2872
2873 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2874 typedef struct suffixinfo_s
2875 {
2876         const char *suffix;
2877         qbool flipx, flipy, flipdiagonal;
2878 }
2879 suffixinfo_t;
2880 static suffixinfo_t suffix[3][6] =
2881 {
2882         {
2883                 {"px",   false, false, false},
2884                 {"nx",   false, false, false},
2885                 {"py",   false, false, false},
2886                 {"ny",   false, false, false},
2887                 {"pz",   false, false, false},
2888                 {"nz",   false, false, false}
2889         },
2890         {
2891                 {"posx", false, false, false},
2892                 {"negx", false, false, false},
2893                 {"posy", false, false, false},
2894                 {"negy", false, false, false},
2895                 {"posz", false, false, false},
2896                 {"negz", false, false, false}
2897         },
2898         {
2899                 {"rt",    true, false,  true},
2900                 {"lf",   false,  true,  true},
2901                 {"ft",    true,  true, false},
2902                 {"bk",   false, false, false},
2903                 {"up",    true, false,  true},
2904                 {"dn",    true, false,  true}
2905         }
2906 };
2907
2908 static int componentorder[4] = {0, 1, 2, 3};
2909
2910 static rtexture_t *R_LoadCubemap(const char *basename)
2911 {
2912         int i, j, cubemapsize, forcefilter;
2913         unsigned char *cubemappixels, *image_buffer;
2914         rtexture_t *cubemaptexture;
2915         char name[256];
2916
2917         // HACK: if the cubemap name starts with a !, the cubemap is nearest-filtered
2918         forcefilter = TEXF_FORCELINEAR;
2919         if (basename && basename[0] == '!')
2920         {
2921                 basename++;
2922                 forcefilter = TEXF_FORCENEAREST;
2923         }
2924         // must start 0 so the first loadimagepixels has no requested width/height
2925         cubemapsize = 0;
2926         cubemappixels = NULL;
2927         cubemaptexture = NULL;
2928         // keep trying different suffix groups (posx, px, rt) until one loads
2929         for (j = 0;j < 3 && !cubemappixels;j++)
2930         {
2931                 // load the 6 images in the suffix group
2932                 for (i = 0;i < 6;i++)
2933                 {
2934                         // generate an image name based on the base and and suffix
2935                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2936                         // load it
2937                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2938                         {
2939                                 // an image loaded, make sure width and height are equal
2940                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2941                                 {
2942                                         // if this is the first image to load successfully, allocate the cubemap memory
2943                                         if (!cubemappixels && image_width >= 1)
2944                                         {
2945                                                 cubemapsize = image_width;
2946                                                 // note this clears to black, so unavailable sides are black
2947                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2948                                         }
2949                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2950                                         if (cubemappixels)
2951                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2952                                 }
2953                                 else
2954                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2955                                 // free the image
2956                                 Mem_Free(image_buffer);
2957                         }
2958                 }
2959         }
2960         // if a cubemap loaded, upload it
2961         if (cubemappixels)
2962         {
2963                 if (developer_loading.integer)
2964                         Con_Printf("loading cubemap \"%s\"\n", basename);
2965
2966                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | forcefilter | TEXF_CLAMP, -1, NULL);
2967                 Mem_Free(cubemappixels);
2968         }
2969         else
2970         {
2971                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2972                 if (developer_loading.integer)
2973                 {
2974                         Con_Printf("(tried tried images ");
2975                         for (j = 0;j < 3;j++)
2976                                 for (i = 0;i < 6;i++)
2977                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2978                         Con_Print(" and was unable to find any of them).\n");
2979                 }
2980         }
2981         return cubemaptexture;
2982 }
2983
2984 rtexture_t *R_GetCubemap(const char *basename)
2985 {
2986         int i;
2987         for (i = 0;i < r_texture_numcubemaps;i++)
2988                 if (r_texture_cubemaps[i] != NULL)
2989                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2990                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2991         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2992                 return r_texture_whitecube;
2993         r_texture_numcubemaps++;
2994         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2995         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2996         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2997         return r_texture_cubemaps[i]->texture;
2998 }
2999
3000 static void R_Main_FreeViewCache(void)
3001 {
3002         if (r_refdef.viewcache.entityvisible)
3003                 Mem_Free(r_refdef.viewcache.entityvisible);
3004         if (r_refdef.viewcache.world_pvsbits)
3005                 Mem_Free(r_refdef.viewcache.world_pvsbits);
3006         if (r_refdef.viewcache.world_leafvisible)
3007                 Mem_Free(r_refdef.viewcache.world_leafvisible);
3008         if (r_refdef.viewcache.world_surfacevisible)
3009                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
3010         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
3011 }
3012
3013 static void R_Main_ResizeViewCache(void)
3014 {
3015         int numentities = r_refdef.scene.numentities;
3016         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
3017         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
3018         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
3019         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
3020         if (r_refdef.viewcache.maxentities < numentities)
3021         {
3022                 r_refdef.viewcache.maxentities = numentities;
3023                 if (r_refdef.viewcache.entityvisible)
3024                         Mem_Free(r_refdef.viewcache.entityvisible);
3025                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
3026         }
3027         if (r_refdef.viewcache.world_numclusters != numclusters)
3028         {
3029                 r_refdef.viewcache.world_numclusters = numclusters;
3030                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
3031                 if (r_refdef.viewcache.world_pvsbits)
3032                         Mem_Free(r_refdef.viewcache.world_pvsbits);
3033                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
3034         }
3035         if (r_refdef.viewcache.world_numleafs != numleafs)
3036         {
3037                 r_refdef.viewcache.world_numleafs = numleafs;
3038                 if (r_refdef.viewcache.world_leafvisible)
3039                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3040                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3041         }
3042         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3043         {
3044                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3045                 if (r_refdef.viewcache.world_surfacevisible)
3046                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3047                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3048         }
3049 }
3050
3051 extern rtexture_t *loadingscreentexture;
3052 static void gl_main_start(void)
3053 {
3054         loadingscreentexture = NULL;
3055         r_texture_blanknormalmap = NULL;
3056         r_texture_white = NULL;
3057         r_texture_grey128 = NULL;
3058         r_texture_black = NULL;
3059         r_texture_whitecube = NULL;
3060         r_texture_normalizationcube = NULL;
3061         r_texture_fogattenuation = NULL;
3062         r_texture_fogheighttexture = NULL;
3063         r_texture_gammaramps = NULL;
3064         r_texture_numcubemaps = 0;
3065         r_uniformbufferalignment = 32;
3066
3067         r_loaddds = r_texture_dds_load.integer != 0;
3068         r_savedds = vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3069
3070         switch(vid.renderpath)
3071         {
3072         case RENDERPATH_GL32:
3073         case RENDERPATH_GLES2:
3074                 Cvar_SetValueQuick(&r_textureunits, MAX_TEXTUREUNITS);
3075                 Cvar_SetValueQuick(&gl_combine, 1);
3076                 Cvar_SetValueQuick(&r_glsl, 1);
3077                 r_loadnormalmap = true;
3078                 r_loadgloss = true;
3079                 r_loadfog = false;
3080 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3081                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3082 #endif
3083                 break;
3084         }
3085
3086         R_AnimCache_Free();
3087         R_FrameData_Reset();
3088         R_BufferData_Reset();
3089
3090         r_numqueries = 0;
3091         r_maxqueries = 0;
3092         memset(r_queries, 0, sizeof(r_queries));
3093
3094         r_qwskincache = NULL;
3095         r_qwskincache_size = 0;
3096
3097         // due to caching of texture_t references, the collision cache must be reset
3098         Collision_Cache_Reset(true);
3099
3100         // set up r_skinframe loading system for textures
3101         memset(&r_skinframe, 0, sizeof(r_skinframe));
3102         r_skinframe.loadsequence = 1;
3103         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3104
3105         r_main_texturepool = R_AllocTexturePool();
3106         R_BuildBlankTextures();
3107         R_BuildNoTexture();
3108         R_BuildWhiteCube();
3109 #ifndef USE_GLES2
3110         R_BuildNormalizationCube();
3111 #endif //USE_GLES2
3112         r_texture_fogattenuation = NULL;
3113         r_texture_fogheighttexture = NULL;
3114         r_texture_gammaramps = NULL;
3115         //r_texture_fogintensity = NULL;
3116         memset(&r_fb, 0, sizeof(r_fb));
3117         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3118         r_glsl_permutation = NULL;
3119         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3120         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3121         memset(&r_svbsp, 0, sizeof (r_svbsp));
3122
3123         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3124         r_texture_numcubemaps = 0;
3125
3126         r_refdef.fogmasktable_density = 0;
3127
3128 #ifdef __ANDROID__
3129         // For Steelstorm Android
3130         // FIXME CACHE the program and reload
3131         // FIXME see possible combinations for SS:BR android
3132         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3133         R_SetupShader_SetPermutationGLSL(0, 12);
3134         R_SetupShader_SetPermutationGLSL(0, 13);
3135         R_SetupShader_SetPermutationGLSL(0, 8388621);
3136         R_SetupShader_SetPermutationGLSL(3, 0);
3137         R_SetupShader_SetPermutationGLSL(3, 2048);
3138         R_SetupShader_SetPermutationGLSL(5, 0);
3139         R_SetupShader_SetPermutationGLSL(5, 2);
3140         R_SetupShader_SetPermutationGLSL(5, 2048);
3141         R_SetupShader_SetPermutationGLSL(5, 8388608);
3142         R_SetupShader_SetPermutationGLSL(11, 1);
3143         R_SetupShader_SetPermutationGLSL(11, 2049);
3144         R_SetupShader_SetPermutationGLSL(11, 8193);
3145         R_SetupShader_SetPermutationGLSL(11, 10241);
3146         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3147 #endif
3148 }
3149
3150 extern unsigned int r_shadow_occlusion_buf;
3151
3152 static void gl_main_shutdown(void)
3153 {
3154         R_RenderTarget_FreeUnused(true);
3155         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3156         R_AnimCache_Free();
3157         R_FrameData_Reset();
3158         R_BufferData_Reset();
3159
3160         R_Main_FreeViewCache();
3161
3162         switch(vid.renderpath)
3163         {
3164         case RENDERPATH_GL32:
3165         case RENDERPATH_GLES2:
3166 #if defined(GL_SAMPLES_PASSED) && !defined(USE_GLES2)
3167                 if (r_maxqueries)
3168                         qglDeleteQueries(r_maxqueries, r_queries);
3169 #endif
3170                 break;
3171         }
3172         r_shadow_occlusion_buf = 0;
3173         r_numqueries = 0;
3174         r_maxqueries = 0;
3175         memset(r_queries, 0, sizeof(r_queries));
3176
3177         r_qwskincache = NULL;
3178         r_qwskincache_size = 0;
3179
3180         // clear out the r_skinframe state
3181         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3182         memset(&r_skinframe, 0, sizeof(r_skinframe));
3183
3184         if (r_svbsp.nodes)
3185                 Mem_Free(r_svbsp.nodes);
3186         memset(&r_svbsp, 0, sizeof (r_svbsp));
3187         R_FreeTexturePool(&r_main_texturepool);
3188         loadingscreentexture = NULL;
3189         r_texture_blanknormalmap = NULL;
3190         r_texture_white = NULL;
3191         r_texture_grey128 = NULL;
3192         r_texture_black = NULL;
3193         r_texture_whitecube = NULL;
3194         r_texture_normalizationcube = NULL;
3195         r_texture_fogattenuation = NULL;
3196         r_texture_fogheighttexture = NULL;
3197         r_texture_gammaramps = NULL;
3198         r_texture_numcubemaps = 0;
3199         //r_texture_fogintensity = NULL;
3200         memset(&r_fb, 0, sizeof(r_fb));
3201         R_GLSL_Restart_f(cmd_local);
3202
3203         r_glsl_permutation = NULL;
3204         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3205         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3206 }
3207
3208 static void gl_main_newmap(void)
3209 {
3210         // FIXME: move this code to client
3211         char *entities, entname[MAX_QPATH];
3212         if (r_qwskincache)
3213                 Mem_Free(r_qwskincache);
3214         r_qwskincache = NULL;
3215         r_qwskincache_size = 0;
3216         if (cl.worldmodel)
3217         {
3218                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3219                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3220                 {
3221                         CL_ParseEntityLump(entities);
3222                         Mem_Free(entities);
3223                         return;
3224                 }
3225                 if (cl.worldmodel->brush.entities)
3226                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3227         }
3228         R_Main_FreeViewCache();
3229
3230         R_FrameData_Reset();
3231         R_BufferData_Reset();
3232 }
3233
3234 void GL_Main_Init(void)
3235 {
3236         int i;
3237         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3238         R_InitShaderModeInfo();
3239
3240         Cmd_AddCommand(CF_CLIENT, "r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3241         Cmd_AddCommand(CF_CLIENT, "r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3242         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3243         if (gamemode == GAME_NEHAHRA)
3244         {
3245                 Cvar_RegisterVariable (&gl_fogenable);
3246                 Cvar_RegisterVariable (&gl_fogdensity);
3247                 Cvar_RegisterVariable (&gl_fogred);
3248                 Cvar_RegisterVariable (&gl_foggreen);
3249                 Cvar_RegisterVariable (&gl_fogblue);
3250                 Cvar_RegisterVariable (&gl_fogstart);
3251                 Cvar_RegisterVariable (&gl_fogend);
3252                 Cvar_RegisterVariable (&gl_skyclip);
3253         }
3254         Cvar_RegisterVariable(&r_motionblur);
3255         Cvar_RegisterVariable(&r_damageblur);
3256         Cvar_RegisterVariable(&r_motionblur_averaging);
3257         Cvar_RegisterVariable(&r_motionblur_randomize);
3258         Cvar_RegisterVariable(&r_motionblur_minblur);
3259         Cvar_RegisterVariable(&r_motionblur_maxblur);
3260         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3261         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3262         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3263         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3264         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3265         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3266         Cvar_RegisterVariable(&r_depthfirst);
3267         Cvar_RegisterVariable(&r_useinfinitefarclip);
3268         Cvar_RegisterVariable(&r_farclip_base);
3269         Cvar_RegisterVariable(&r_farclip_world);
3270         Cvar_RegisterVariable(&r_nearclip);
3271         Cvar_RegisterVariable(&r_deformvertexes);
3272         Cvar_RegisterVariable(&r_transparent);
3273         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3274         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3275         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3276         Cvar_RegisterVariable(&r_showoverdraw);
3277         Cvar_RegisterVariable(&r_showbboxes);
3278         Cvar_RegisterVariable(&r_showbboxes_client);
3279         Cvar_RegisterVariable(&r_showsurfaces);
3280         Cvar_RegisterVariable(&r_showtris);
3281         Cvar_RegisterVariable(&r_shownormals);
3282         Cvar_RegisterVariable(&r_showlighting);
3283         Cvar_RegisterVariable(&r_showcollisionbrushes);
3284         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3285         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3286         Cvar_RegisterVariable(&r_showdisabledepthtest);
3287         Cvar_RegisterVariable(&r_showspriteedges);
3288         Cvar_RegisterVariable(&r_showparticleedges);
3289         Cvar_RegisterVariable(&r_drawportals);
3290         Cvar_RegisterVariable(&r_drawentities);
3291         Cvar_RegisterVariable(&r_draw2d);
3292         Cvar_RegisterVariable(&r_drawworld);
3293         Cvar_RegisterVariable(&r_cullentities_trace);
3294         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3295         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3296         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3297         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3298         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3299         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3300         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3301         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3302         Cvar_RegisterVariable(&r_sortentities);
3303         Cvar_RegisterVariable(&r_drawviewmodel);
3304         Cvar_RegisterVariable(&r_drawexteriormodel);
3305         Cvar_RegisterVariable(&r_speeds);
3306         Cvar_RegisterVariable(&r_fullbrights);
3307         Cvar_RegisterVariable(&r_wateralpha);
3308         Cvar_RegisterVariable(&r_dynamic);
3309         Cvar_RegisterVariable(&r_fullbright_directed);
3310         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3311         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3312         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3313         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3314         Cvar_RegisterVariable(&r_fullbright);
3315         Cvar_RegisterVariable(&r_shadows);
3316         Cvar_RegisterVariable(&r_shadows_darken);
3317         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3318         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3319         Cvar_RegisterVariable(&r_shadows_throwdistance);
3320         Cvar_RegisterVariable(&r_shadows_throwdirection);
3321         Cvar_RegisterVariable(&r_shadows_focus);
3322         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3323         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3324         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3325         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3326         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3327         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3328         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3329         Cvar_RegisterVariable(&r_fog_exp2);
3330         Cvar_RegisterVariable(&r_fog_clear);
3331         Cvar_RegisterVariable(&r_drawfog);
3332         Cvar_RegisterVariable(&r_transparentdepthmasking);
3333         Cvar_RegisterVariable(&r_transparent_sortmindist);
3334         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3335         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3336         Cvar_RegisterVariable(&r_texture_dds_load);
3337         Cvar_RegisterVariable(&r_texture_dds_save);
3338         Cvar_RegisterVariable(&r_textureunits);
3339         Cvar_RegisterVariable(&gl_combine);
3340         Cvar_RegisterVariable(&r_usedepthtextures);
3341         Cvar_RegisterVariable(&r_viewfbo);
3342         Cvar_RegisterVariable(&r_rendertarget_debug);
3343         Cvar_RegisterVariable(&r_viewscale);
3344         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3345         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3346         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3347         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3348         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3349         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3350         Cvar_RegisterVariable(&r_glsl);
3351         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3352         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3353         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3354         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3355         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3356         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3357         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3358         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3359         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3360         Cvar_RegisterVariable(&r_glsl_postprocess);
3361         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3362         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3363         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3364         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3365         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3366         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3367         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3368         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3369         Cvar_RegisterVariable(&r_celshading);
3370         Cvar_RegisterVariable(&r_celoutlines);
3371
3372         Cvar_RegisterVariable(&r_water);
3373         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3374         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3375         Cvar_RegisterVariable(&r_water_clippingplanebias);
3376         Cvar_RegisterVariable(&r_water_refractdistort);
3377         Cvar_RegisterVariable(&r_water_reflectdistort);
3378         Cvar_RegisterVariable(&r_water_scissormode);
3379         Cvar_RegisterVariable(&r_water_lowquality);
3380         Cvar_RegisterVariable(&r_water_hideplayer);
3381
3382         Cvar_RegisterVariable(&r_lerpsprites);
3383         Cvar_RegisterVariable(&r_lerpmodels);
3384         Cvar_RegisterVariable(&r_nolerp_list);
3385         Cvar_RegisterVariable(&r_lerplightstyles);
3386         Cvar_RegisterVariable(&r_waterscroll);
3387         Cvar_RegisterVariable(&r_bloom);
3388         Cvar_RegisterVariable(&r_colorfringe);
3389         Cvar_RegisterVariable(&r_bloom_colorscale);
3390         Cvar_RegisterVariable(&r_bloom_brighten);
3391         Cvar_RegisterVariable(&r_bloom_blur);
3392         Cvar_RegisterVariable(&r_bloom_resolution);
3393         Cvar_RegisterVariable(&r_bloom_colorexponent);
3394         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3395         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3396         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3397         Cvar_RegisterVariable(&r_hdr_glowintensity);
3398         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3399         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3400         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3401         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3402         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3403         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3404         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3405         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3406         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3407         Cvar_RegisterVariable(&developer_texturelogging);
3408         Cvar_RegisterVariable(&gl_lightmaps);
3409         Cvar_RegisterVariable(&r_test);
3410         Cvar_RegisterVariable(&r_batch_multidraw);
3411         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3412         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3413         Cvar_RegisterVariable(&r_glsl_skeletal);
3414         Cvar_RegisterVariable(&r_glsl_saturation);
3415         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3416         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3417         Cvar_RegisterVariable(&r_framedatasize);
3418         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3419                 Cvar_RegisterVariable(&r_buffermegs[i]);
3420         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3421         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_enabled);
3422         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_combine);
3423         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_hidden_surfaces);
3424         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3425                 Cvar_SetValue(&cvars_all, "r_fullbrights", 0);
3426 #ifdef DP_MOBILETOUCH
3427         // GLES devices have terrible depth precision in general, so...
3428         Cvar_SetValueQuick(&r_nearclip, 4);
3429         Cvar_SetValueQuick(&r_farclip_base, 4096);
3430         Cvar_SetValueQuick(&r_farclip_world, 0);
3431         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3432 #endif
3433         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3434 }
3435
3436 void Render_Init(void)
3437 {
3438         gl_backend_init();
3439         R_Textures_Init();
3440         GL_Main_Init();
3441         Font_Init();
3442         GL_Draw_Init();
3443         R_Shadow_Init();
3444         R_Sky_Init();
3445         GL_Surf_Init();
3446         Sbar_Init();
3447         R_Particles_Init();
3448         R_Explosion_Init();
3449         R_LightningBeams_Init();
3450         CL_MeshEntities_Init();
3451         Mod_RenderInit();
3452 }
3453
3454 static void R_GetCornerOfBox(vec3_t out, const vec3_t mins, const vec3_t maxs, int signbits)
3455 {
3456         out[0] = ((signbits & 1) ? mins : maxs)[0];
3457         out[1] = ((signbits & 2) ? mins : maxs)[1];
3458         out[2] = ((signbits & 4) ? mins : maxs)[2];
3459 }
3460
3461 static qbool _R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes, int ignore)
3462 {
3463         int i;
3464         const mplane_t *p;
3465         vec3_t corner;
3466         if (r_trippy.integer)
3467                 return false;
3468         for (i = 0;i < numplanes;i++)
3469         {
3470                 if(i == ignore)
3471                         continue;
3472                 p = planes + i;
3473                 R_GetCornerOfBox(corner, mins, maxs, p->signbits);
3474                 if (DotProduct(p->normal, corner) < p->dist)
3475                         return true;
3476         }
3477         return false;
3478 }
3479
3480 qbool R_CullFrustum(const vec3_t mins, const vec3_t maxs)
3481 {
3482         // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
3483         return _R_CullBox(mins, maxs, r_refdef.view.numfrustumplanes, r_refdef.view.frustum, 4);
3484 }
3485
3486 qbool R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3487 {
3488         // nothing to ignore
3489         return _R_CullBox(mins, maxs, numplanes, planes, -1);
3490 }
3491
3492 //==================================================================================
3493
3494 // LadyHavoc: this stores temporary data used within the same frame
3495
3496 typedef struct r_framedata_mem_s
3497 {
3498         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3499         size_t size; // how much usable space
3500         size_t current; // how much space in use
3501         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3502         size_t wantedsize; // how much space was allocated
3503         unsigned char *data; // start of real data (16byte aligned)
3504 }
3505 r_framedata_mem_t;
3506
3507 static r_framedata_mem_t *r_framedata_mem;
3508
3509 void R_FrameData_Reset(void)
3510 {
3511         while (r_framedata_mem)
3512         {
3513                 r_framedata_mem_t *next = r_framedata_mem->purge;
3514                 Mem_Free(r_framedata_mem);
3515                 r_framedata_mem = next;
3516         }
3517 }
3518
3519 static void R_FrameData_Resize(qbool mustgrow)
3520 {
3521         size_t wantedsize;
3522         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3523         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3524         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3525         {
3526                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3527                 newmem->wantedsize = wantedsize;
3528                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3529                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3530                 newmem->current = 0;
3531                 newmem->mark = 0;
3532                 newmem->purge = r_framedata_mem;
3533                 r_framedata_mem = newmem;
3534         }
3535 }
3536
3537 void R_FrameData_NewFrame(void)
3538 {
3539         R_FrameData_Resize(false);
3540         if (!r_framedata_mem)
3541                 return;
3542         // if we ran out of space on the last frame, free the old memory now
3543         while (r_framedata_mem->purge)
3544         {
3545                 // repeatedly remove the second item in the list, leaving only head
3546                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3547                 Mem_Free(r_framedata_mem->purge);
3548                 r_framedata_mem->purge = next;
3549         }
3550         // reset the current mem pointer
3551         r_framedata_mem->current = 0;
3552         r_framedata_mem->mark = 0;
3553 }
3554
3555 void *R_FrameData_Alloc(size_t size)
3556 {
3557         void *data;
3558         float newvalue;
3559
3560         // align to 16 byte boundary - the data pointer is already aligned, so we
3561         // only need to ensure the size of every allocation is also aligned
3562         size = (size + 15) & ~15;
3563
3564         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3565         {
3566                 // emergency - we ran out of space, allocate more memory
3567                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3568                 newvalue = r_framedatasize.value * 2.0f;
3569                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3570                 if (sizeof(size_t) >= 8)
3571                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3572                 else
3573                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3574                 // this might not be a growing it, but we'll allocate another buffer every time
3575                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3576                 R_FrameData_Resize(true);
3577         }
3578
3579         data = r_framedata_mem->data + r_framedata_mem->current;
3580         r_framedata_mem->current += size;
3581
3582         // count the usage for stats
3583         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3584         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3585
3586         return (void *)data;
3587 }
3588
3589 void *R_FrameData_Store(size_t size, void *data)
3590 {
3591         void *d = R_FrameData_Alloc(size);
3592         if (d && data)
3593                 memcpy(d, data, size);
3594         return d;
3595 }
3596
3597 void R_FrameData_SetMark(void)
3598 {
3599         if (!r_framedata_mem)
3600                 return;
3601         r_framedata_mem->mark = r_framedata_mem->current;
3602 }
3603
3604 void R_FrameData_ReturnToMark(void)
3605 {
3606         if (!r_framedata_mem)
3607                 return;
3608         r_framedata_mem->current = r_framedata_mem->mark;
3609 }
3610
3611 //==================================================================================
3612
3613 // avoid reusing the same buffer objects on consecutive frames
3614 #define R_BUFFERDATA_CYCLE 3
3615
3616 typedef struct r_bufferdata_buffer_s
3617 {
3618         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3619         size_t size; // how much usable space
3620         size_t current; // how much space in use
3621         r_meshbuffer_t *buffer; // the buffer itself
3622 }
3623 r_bufferdata_buffer_t;
3624
3625 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3626 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3627
3628 /// frees all dynamic buffers
3629 void R_BufferData_Reset(void)
3630 {
3631         int cycle, type;
3632         r_bufferdata_buffer_t **p, *mem;
3633         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3634         {
3635                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3636                 {
3637                         // free all buffers
3638                         p = &r_bufferdata_buffer[cycle][type];
3639                         while (*p)
3640                         {
3641                                 mem = *p;
3642                                 *p = (*p)->purge;
3643                                 if (mem->buffer)
3644                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3645                                 Mem_Free(mem);
3646                         }
3647                 }
3648         }
3649 }
3650
3651 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3652 static void R_BufferData_Resize(r_bufferdata_type_t type, qbool mustgrow, size_t minsize)
3653 {
3654         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3655         size_t size;
3656         float newvalue = r_buffermegs[type].value;
3657
3658         // increase the cvar if we have to (but only if we already have a mem)
3659         if (mustgrow && mem)
3660                 newvalue *= 2.0f;
3661         newvalue = bound(0.25f, newvalue, 256.0f);
3662         while (newvalue * 1024*1024 < minsize)
3663                 newvalue *= 2.0f;
3664
3665         // clamp the cvar to valid range
3666         newvalue = bound(0.25f, newvalue, 256.0f);
3667         if (r_buffermegs[type].value != newvalue)
3668                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3669
3670         // calculate size in bytes
3671         size = (size_t)(newvalue * 1024*1024);
3672         size = bound(131072, size, 256*1024*1024);
3673
3674         // allocate a new buffer if the size is different (purge old one later)
3675         // or if we were told we must grow the buffer
3676         if (!mem || mem->size != size || mustgrow)
3677         {
3678                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3679                 mem->size = size;
3680                 mem->current = 0;
3681                 if (type == R_BUFFERDATA_VERTEX)
3682                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3683                 else if (type == R_BUFFERDATA_INDEX16)
3684                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3685                 else if (type == R_BUFFERDATA_INDEX32)
3686                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3687                 else if (type == R_BUFFERDATA_UNIFORM)
3688                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3689                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3690                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3691         }
3692 }
3693
3694 void R_BufferData_NewFrame(void)
3695 {
3696         int type;
3697         r_bufferdata_buffer_t **p, *mem;
3698         // cycle to the next frame's buffers
3699         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3700         // if we ran out of space on the last time we used these buffers, free the old memory now
3701         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3702         {
3703                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3704                 {
3705                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3706                         // free all but the head buffer, this is how we recycle obsolete
3707                         // buffers after they are no longer in use
3708                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3709                         while (*p)
3710                         {
3711                                 mem = *p;
3712                                 *p = (*p)->purge;
3713                                 if (mem->buffer)
3714                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3715                                 Mem_Free(mem);
3716                         }
3717                         // reset the current offset
3718                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3719                 }
3720         }
3721 }
3722
3723 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3724 {
3725         r_bufferdata_buffer_t *mem;
3726         int offset = 0;
3727         int padsize;
3728
3729         *returnbufferoffset = 0;
3730
3731         // align size to a byte boundary appropriate for the buffer type, this
3732         // makes all allocations have aligned start offsets
3733         if (type == R_BUFFERDATA_UNIFORM)
3734                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3735         else
3736                 padsize = (datasize + 15) & ~15;
3737
3738         // if we ran out of space in this buffer we must allocate a new one
3739         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3740                 R_BufferData_Resize(type, true, padsize);
3741
3742         // if the resize did not give us enough memory, fail
3743         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3744                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3745
3746         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3747         offset = (int)mem->current;
3748         mem->current += padsize;
3749
3750         // upload the data to the buffer at the chosen offset
3751         if (offset == 0)
3752                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3753         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3754
3755         // count the usage for stats
3756         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3757         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3758
3759         // return the buffer offset
3760         *returnbufferoffset = offset;
3761
3762         return mem->buffer;
3763 }
3764
3765 //==================================================================================
3766
3767 // LadyHavoc: animcache originally written by Echon, rewritten since then
3768
3769 /**
3770  * Animation cache prevents re-generating mesh data for an animated model
3771  * multiple times in one frame for lighting, shadowing, reflections, etc.
3772  */
3773
3774 void R_AnimCache_Free(void)
3775 {
3776 }
3777
3778 void R_AnimCache_ClearCache(void)
3779 {
3780         int i;
3781         entity_render_t *ent;
3782
3783         for (i = 0;i < r_refdef.scene.numentities;i++)
3784         {
3785                 ent = r_refdef.scene.entities[i];
3786                 ent->animcache_vertex3f = NULL;
3787                 ent->animcache_vertex3f_vertexbuffer = NULL;
3788                 ent->animcache_vertex3f_bufferoffset = 0;
3789                 ent->animcache_normal3f = NULL;
3790                 ent->animcache_normal3f_vertexbuffer = NULL;
3791                 ent->animcache_normal3f_bufferoffset = 0;
3792                 ent->animcache_svector3f = NULL;
3793                 ent->animcache_svector3f_vertexbuffer = NULL;
3794                 ent->animcache_svector3f_bufferoffset = 0;
3795                 ent->animcache_tvector3f = NULL;
3796                 ent->animcache_tvector3f_vertexbuffer = NULL;
3797                 ent->animcache_tvector3f_bufferoffset = 0;
3798                 ent->animcache_skeletaltransform3x4 = NULL;
3799                 ent->animcache_skeletaltransform3x4buffer = NULL;
3800                 ent->animcache_skeletaltransform3x4offset = 0;
3801                 ent->animcache_skeletaltransform3x4size = 0;
3802         }
3803 }
3804
3805 qbool R_AnimCache_GetEntity(entity_render_t *ent, qbool wantnormals, qbool wanttangents)
3806 {
3807         model_t *model = ent->model;
3808         int numvertices;
3809
3810         // see if this ent is worth caching
3811         if (!model || !model->Draw || !model->AnimateVertices)
3812                 return false;
3813         // nothing to cache if it contains no animations and has no skeleton
3814         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3815                 return false;
3816         // see if it is already cached for gpuskeletal
3817         if (ent->animcache_skeletaltransform3x4)
3818                 return false;
3819         // see if it is already cached as a mesh
3820         if (ent->animcache_vertex3f)
3821         {
3822                 // check if we need to add normals or tangents
3823                 if (ent->animcache_normal3f)
3824                         wantnormals = false;
3825                 if (ent->animcache_svector3f)
3826                         wanttangents = false;
3827                 if (!wantnormals && !wanttangents)
3828                         return false;
3829         }
3830
3831         // check which kind of cache we need to generate
3832         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3833         {
3834                 // cache the skeleton so the vertex shader can use it
3835                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3836                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3837                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3838                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3839                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3840                 // note: this can fail if the buffer is at the grow limit
3841                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3842                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3843         }
3844         else if (ent->animcache_vertex3f)
3845         {
3846                 // mesh was already cached but we may need to add normals/tangents
3847                 // (this only happens with multiple views, reflections, cameras, etc)
3848                 if (wantnormals || wanttangents)
3849                 {
3850                         numvertices = model->surfmesh.num_vertices;
3851                         if (wantnormals)
3852                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3853                         if (wanttangents)
3854                         {
3855                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3856                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3857                         }
3858                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3859                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3860                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3861                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3862                 }
3863         }
3864         else
3865         {
3866                 // generate mesh cache
3867                 numvertices = model->surfmesh.num_vertices;
3868                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3869                 if (wantnormals)
3870                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3871                 if (wanttangents)
3872                 {
3873                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3874                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3875                 }
3876                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3877                 if (wantnormals || wanttangents)
3878                 {
3879                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3880                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3881                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3882                 }
3883                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3884                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3885                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3886         }
3887         return true;
3888 }
3889
3890 void R_AnimCache_CacheVisibleEntities(void)
3891 {
3892         int i;
3893
3894         // TODO: thread this
3895         // NOTE: R_PrepareRTLights() also caches entities
3896
3897         for (i = 0;i < r_refdef.scene.numentities;i++)
3898                 if (r_refdef.viewcache.entityvisible[i])
3899                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3900 }
3901
3902 //==================================================================================
3903
3904 qbool R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3905 {
3906         long unsigned int i;
3907         int j;
3908         vec3_t eyemins, eyemaxs;
3909         vec3_t boxmins, boxmaxs;
3910         vec3_t padmins, padmaxs;
3911         vec3_t start;
3912         vec3_t end;
3913         model_t *model = r_refdef.scene.worldmodel;
3914         static vec3_t positions[] = {
3915                 { 0.5f, 0.5f, 0.5f },
3916                 { 0.0f, 0.0f, 0.0f },
3917                 { 0.0f, 0.0f, 1.0f },
3918                 { 0.0f, 1.0f, 0.0f },
3919                 { 0.0f, 1.0f, 1.0f },
3920                 { 1.0f, 0.0f, 0.0f },
3921                 { 1.0f, 0.0f, 1.0f },
3922                 { 1.0f, 1.0f, 0.0f },
3923                 { 1.0f, 1.0f, 1.0f },
3924         };
3925
3926         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3927         if (numsamples < 0)
3928                 return true;
3929
3930         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3931         if (!r_refdef.view.usevieworiginculling)
3932                 return true;
3933
3934         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3935                 return true;
3936
3937         // expand the eye box a little
3938         eyemins[0] = eye[0] - eyejitter;
3939         eyemaxs[0] = eye[0] + eyejitter;
3940         eyemins[1] = eye[1] - eyejitter;
3941         eyemaxs[1] = eye[1] + eyejitter;
3942         eyemins[2] = eye[2] - eyejitter;
3943         eyemaxs[2] = eye[2] + eyejitter;
3944         // expand the box a little
3945         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
3946         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
3947         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
3948         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
3949         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
3950         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
3951         // make an even larger box for the acceptable area
3952         padmins[0] = boxmins[0] - pad;
3953         padmaxs[0] = boxmaxs[0] + pad;
3954         padmins[1] = boxmins[1] - pad;
3955         padmaxs[1] = boxmaxs[1] + pad;
3956         padmins[2] = boxmins[2] - pad;
3957         padmaxs[2] = boxmaxs[2] + pad;
3958
3959         // return true if eye overlaps enlarged box
3960         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
3961                 return true;
3962
3963         // try specific positions in the box first - note that these can be cached
3964         if (r_cullentities_trace_entityocclusion.integer)
3965         {
3966                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
3967                 {
3968                         trace_t trace;
3969                         VectorCopy(eye, start);
3970                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
3971                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
3972                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
3973                         //trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3974                         trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
3975                         // not picky - if the trace ended anywhere in the box we're good
3976                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3977                                 return true;
3978                 }
3979         }
3980         else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3981                 return true;
3982
3983         // try various random positions
3984         for (j = 0; j < numsamples; j++)
3985         {
3986                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
3987                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
3988                 if (r_cullentities_trace_entityocclusion.integer)
3989                 {
3990                         trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3991                         // not picky - if the trace ended anywhere in the box we're good
3992                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3993                                 return true;
3994                 }
3995                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3996                         return true;
3997         }
3998
3999         return false;
4000 }
4001
4002
4003 static void R_View_UpdateEntityVisible (void)
4004 {
4005         int i;
4006         int renderimask;
4007         int samples;
4008         entity_render_t *ent;
4009
4010         if (r_refdef.envmap || r_fb.water.hideplayer)
4011                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4012         else if (chase_active.integer || r_fb.water.renderingscene)
4013                 renderimask = RENDER_VIEWMODEL;
4014         else
4015                 renderimask = RENDER_EXTERIORMODEL;
4016         if (!r_drawviewmodel.integer)
4017                 renderimask |= RENDER_VIEWMODEL;
4018         if (!r_drawexteriormodel.integer)
4019                 renderimask |= RENDER_EXTERIORMODEL;
4020         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4021         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4022         {
4023                 // worldmodel can check visibility
4024                 for (i = 0;i < r_refdef.scene.numentities;i++)
4025                 {
4026                         ent = r_refdef.scene.entities[i];
4027                         if (r_refdef.viewcache.world_novis && !(ent->flags & RENDER_VIEWMODEL))
4028                         {
4029                                 r_refdef.viewcache.entityvisible[i] = false;
4030                                 continue;
4031                         }
4032                         if (!(ent->flags & renderimask))
4033                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4034                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4035                                 r_refdef.viewcache.entityvisible[i] = true;
4036                 }
4037         }
4038         else
4039         {
4040                 // no worldmodel or it can't check visibility
4041                 for (i = 0;i < r_refdef.scene.numentities;i++)
4042                 {
4043                         ent = r_refdef.scene.entities[i];
4044                         if (!(ent->flags & renderimask))
4045                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4046                                 r_refdef.viewcache.entityvisible[i] = true;
4047                 }
4048         }
4049         if (r_cullentities_trace.integer)
4050         {
4051                 for (i = 0;i < r_refdef.scene.numentities;i++)
4052                 {
4053                         if (!r_refdef.viewcache.entityvisible[i])
4054                                 continue;
4055                         ent = r_refdef.scene.entities[i];
4056                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4057                         {
4058                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4059                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4060                                         ent->last_trace_visibility = host.realtime;
4061                                 if (ent->last_trace_visibility < host.realtime - r_cullentities_trace_delay.value)
4062                                         r_refdef.viewcache.entityvisible[i] = 0;
4063                         }
4064                 }
4065         }
4066 }
4067
4068 /// only used if skyrendermasked, and normally returns false
4069 static int R_DrawBrushModelsSky (void)
4070 {
4071         int i, sky;
4072         entity_render_t *ent;
4073
4074         sky = false;
4075         for (i = 0;i < r_refdef.scene.numentities;i++)
4076         {
4077                 if (!r_refdef.viewcache.entityvisible[i])
4078                         continue;
4079                 ent = r_refdef.scene.entities[i];
4080                 if (!ent->model || !ent->model->DrawSky)
4081                         continue;
4082                 ent->model->DrawSky(ent);
4083                 sky = true;
4084         }
4085         return sky;
4086 }
4087
4088 static void R_DrawNoModel(entity_render_t *ent);
4089 static void R_DrawModels(void)
4090 {
4091         int i;
4092         entity_render_t *ent;
4093
4094         for (i = 0;i < r_refdef.scene.numentities;i++)
4095         {
4096                 if (!r_refdef.viewcache.entityvisible[i])
4097                         continue;
4098                 ent = r_refdef.scene.entities[i];
4099                 r_refdef.stats[r_stat_entities]++;
4100
4101                 if (ent->model && ent->model->Draw != NULL)
4102                         ent->model->Draw(ent);
4103                 else
4104                         R_DrawNoModel(ent);
4105         }
4106 }
4107
4108 static void R_DrawModelsDepth(void)
4109 {
4110         int i;
4111         entity_render_t *ent;
4112
4113         for (i = 0;i < r_refdef.scene.numentities;i++)
4114         {
4115                 if (!r_refdef.viewcache.entityvisible[i])
4116                         continue;
4117                 ent = r_refdef.scene.entities[i];
4118                 if (ent->model && ent->model->DrawDepth != NULL)
4119                         ent->model->DrawDepth(ent);
4120         }
4121 }
4122
4123 static void R_DrawModelsDebug(void)
4124 {
4125         int i;
4126         entity_render_t *ent;
4127
4128         for (i = 0;i < r_refdef.scene.numentities;i++)
4129         {
4130                 if (!r_refdef.viewcache.entityvisible[i])
4131                         continue;
4132                 ent = r_refdef.scene.entities[i];
4133                 if (ent->model && ent->model->DrawDebug != NULL)
4134                         ent->model->DrawDebug(ent);
4135         }
4136 }
4137
4138 static void R_DrawModelsAddWaterPlanes(void)
4139 {
4140         int i;
4141         entity_render_t *ent;
4142
4143         for (i = 0;i < r_refdef.scene.numentities;i++)
4144         {
4145                 if (!r_refdef.viewcache.entityvisible[i])
4146                         continue;
4147                 ent = r_refdef.scene.entities[i];
4148                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4149                         ent->model->DrawAddWaterPlanes(ent);
4150         }
4151 }
4152
4153 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4154
4155 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4156 {
4157         if (r_hdr_irisadaptation.integer)
4158         {
4159                 vec3_t p;
4160                 vec3_t ambient;
4161                 vec3_t diffuse;
4162                 vec3_t diffusenormal;
4163                 vec3_t forward;
4164                 vec_t brightness = 0.0f;
4165                 vec_t goal;
4166                 vec_t current;
4167                 vec_t d;
4168                 int c;
4169                 VectorCopy(r_refdef.view.forward, forward);
4170                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4171                 {
4172                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4173                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4174                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4175                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4176                         d = DotProduct(forward, diffusenormal);
4177                         brightness += VectorLength(ambient);
4178                         if (d > 0)
4179                                 brightness += d * VectorLength(diffuse);
4180                 }
4181                 brightness *= 1.0f / c;
4182                 brightness += 0.00001f; // make sure it's never zero
4183                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4184                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4185                 current = r_hdr_irisadaptation_value.value;
4186                 if (current < goal)
4187                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4188                 else if (current > goal)
4189                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4190                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4191                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4192         }
4193         else if (r_hdr_irisadaptation_value.value != 1.0f)
4194                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4195 }
4196
4197 extern cvar_t r_lockvisibility;
4198 extern cvar_t r_lockpvs;
4199
4200 static void R_View_SetFrustum(const int *scissor)
4201 {
4202         int i;
4203         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4204         vec3_t forward, left, up, origin, v;
4205         if(r_lockvisibility.integer)
4206                 return;
4207         if(scissor)
4208         {
4209                 // flipped x coordinates (because x points left here)
4210                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4211                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4212                 // non-flipped y coordinates
4213                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4214                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4215         }
4216
4217         // we can't trust r_refdef.view.forward and friends in reflected scenes
4218         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4219
4220 #if 0
4221         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4222         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4223         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4224         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4225         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4226         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4227         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4228         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4229         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4230         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4231         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4232         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4233 #endif
4234
4235 #if 0
4236         zNear = r_refdef.nearclip;
4237         nudge = 1.0 - 1.0 / (1<<23);
4238         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4239         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4240         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4241         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4242         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4243         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4244         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4245         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4246 #endif
4247
4248
4249
4250 #if 0
4251         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4252         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4253         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4254         r_refdef.view.frustum[0].dist = m[15] - m[12];
4255
4256         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4257         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4258         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4259         r_refdef.view.frustum[1].dist = m[15] + m[12];
4260
4261         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4262         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4263         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4264         r_refdef.view.frustum[2].dist = m[15] - m[13];
4265
4266         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4267         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4268         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4269         r_refdef.view.frustum[3].dist = m[15] + m[13];
4270
4271         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4272         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4273         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4274         r_refdef.view.frustum[4].dist = m[15] - m[14];
4275
4276         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4277         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4278         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4279         r_refdef.view.frustum[5].dist = m[15] + m[14];
4280 #endif
4281
4282         if (r_refdef.view.useperspective)
4283         {
4284                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4285                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4286                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4287                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4288                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4289
4290                 // then the normals from the corners relative to origin
4291                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4292                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4293                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4294                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4295
4296                 // in a NORMAL view, forward cross left == up
4297                 // in a REFLECTED view, forward cross left == down
4298                 // so our cross products above need to be adjusted for a left handed coordinate system
4299                 CrossProduct(forward, left, v);
4300                 if(DotProduct(v, up) < 0)
4301                 {
4302                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4303                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4304                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4305                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4306                 }
4307
4308                 // Leaving those out was a mistake, those were in the old code, and they
4309                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4310                 // I couldn't reproduce it after adding those normalizations. --blub
4311                 VectorNormalize(r_refdef.view.frustum[0].normal);
4312                 VectorNormalize(r_refdef.view.frustum[1].normal);
4313                 VectorNormalize(r_refdef.view.frustum[2].normal);
4314                 VectorNormalize(r_refdef.view.frustum[3].normal);
4315
4316                 // make the corners absolute
4317                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4318                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4319                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4320                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4321
4322                 // one more normal
4323                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4324
4325                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4326                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4327                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4328                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4329                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4330         }
4331         else
4332         {
4333                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4334                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4335                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4336                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4337                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4338                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4339                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4340                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4341                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4342                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4343         }
4344         r_refdef.view.numfrustumplanes = 5;
4345
4346         if (r_refdef.view.useclipplane)
4347         {
4348                 r_refdef.view.numfrustumplanes = 6;
4349                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4350         }
4351
4352         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4353                 PlaneClassify(r_refdef.view.frustum + i);
4354
4355         // LadyHavoc: note to all quake engine coders, Quake had a special case
4356         // for 90 degrees which assumed a square view (wrong), so I removed it,
4357         // Quake2 has it disabled as well.
4358
4359         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4360         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4361         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4362         //PlaneClassify(&frustum[0]);
4363
4364         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4365         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4366         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4367         //PlaneClassify(&frustum[1]);
4368
4369         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4370         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4371         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4372         //PlaneClassify(&frustum[2]);
4373
4374         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4375         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4376         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4377         //PlaneClassify(&frustum[3]);
4378
4379         // nearclip plane
4380         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4381         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4382         //PlaneClassify(&frustum[4]);
4383 }
4384
4385 static void R_View_UpdateWithScissor(const int *myscissor)
4386 {
4387         R_Main_ResizeViewCache();
4388         R_View_SetFrustum(myscissor);
4389         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4390         R_View_UpdateEntityVisible();
4391 }
4392
4393 static void R_View_Update(void)
4394 {
4395         R_Main_ResizeViewCache();
4396         R_View_SetFrustum(NULL);
4397         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4398         R_View_UpdateEntityVisible();
4399 }
4400
4401 float viewscalefpsadjusted = 1.0f;
4402
4403 void R_SetupView(qbool allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4404 {
4405         const float *customclipplane = NULL;
4406         float plane[4];
4407         int /*rtwidth,*/ rtheight;
4408         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4409         {
4410                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4411                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4412                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4413                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4414                         dist = r_refdef.view.clipplane.dist;
4415                 plane[0] = r_refdef.view.clipplane.normal[0];
4416                 plane[1] = r_refdef.view.clipplane.normal[1];
4417                 plane[2] = r_refdef.view.clipplane.normal[2];
4418                 plane[3] = -dist;
4419                 customclipplane = plane;
4420         }
4421
4422         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4423         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4424
4425         if (!r_refdef.view.useperspective)
4426                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4427         else if (vid.stencil && r_useinfinitefarclip.integer)
4428                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4429         else
4430                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4431         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4432         R_SetViewport(&r_refdef.view.viewport);
4433 }
4434
4435 void R_EntityMatrix(const matrix4x4_t *matrix)
4436 {
4437         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4438         {
4439                 gl_modelmatrixchanged = false;
4440                 gl_modelmatrix = *matrix;
4441                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4442                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4443                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4444                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4445                 CHECKGLERROR
4446                 switch(vid.renderpath)
4447                 {
4448                 case RENDERPATH_GL32:
4449                 case RENDERPATH_GLES2:
4450                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4451                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4452                         break;
4453                 }
4454         }
4455 }
4456
4457 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4458 {
4459         r_viewport_t viewport;
4460
4461         CHECKGLERROR
4462
4463         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4464         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4465         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4466         R_SetViewport(&viewport);
4467         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4468         GL_Color(1, 1, 1, 1);
4469         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4470         GL_BlendFunc(GL_ONE, GL_ZERO);
4471         GL_ScissorTest(false);
4472         GL_DepthMask(false);
4473         GL_DepthRange(0, 1);
4474         GL_DepthTest(false);
4475         GL_DepthFunc(GL_LEQUAL);
4476         R_EntityMatrix(&identitymatrix);
4477         R_Mesh_ResetTextureState();
4478         GL_PolygonOffset(0, 0);
4479         switch(vid.renderpath)
4480         {
4481         case RENDERPATH_GL32:
4482         case RENDERPATH_GLES2:
4483                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4484                 break;
4485         }
4486         GL_CullFace(GL_NONE);
4487
4488         CHECKGLERROR
4489 }
4490
4491 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4492 {
4493         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4494 }
4495
4496 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4497 {
4498         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4499         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4500         GL_Color(1, 1, 1, 1);
4501         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4502         GL_BlendFunc(GL_ONE, GL_ZERO);
4503         GL_ScissorTest(true);
4504         GL_DepthMask(true);
4505         GL_DepthRange(0, 1);
4506         GL_DepthTest(true);
4507         GL_DepthFunc(GL_LEQUAL);
4508         R_EntityMatrix(&identitymatrix);
4509         R_Mesh_ResetTextureState();
4510         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4511         switch(vid.renderpath)
4512         {
4513         case RENDERPATH_GL32:
4514         case RENDERPATH_GLES2:
4515                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4516                 break;
4517         }
4518         GL_CullFace(r_refdef.view.cullface_back);
4519 }
4520
4521 /*
4522 ================
4523 R_RenderView_UpdateViewVectors
4524 ================
4525 */
4526 void R_RenderView_UpdateViewVectors(void)
4527 {
4528         // break apart the view matrix into vectors for various purposes
4529         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4530         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4531         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4532         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4533         // make an inverted copy of the view matrix for tracking sprites
4534         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4535 }
4536
4537 void R_RenderTarget_FreeUnused(qbool force)
4538 {
4539         unsigned int i, j, end;
4540         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4541         for (i = 0; i < end; i++)
4542         {
4543                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4544                 // free resources for rendertargets that have not been used for a while
4545                 // (note: this check is run after the frame render, so any targets used
4546                 // this frame will not be affected even at low framerates)
4547                 if (r && (host.realtime - r->lastusetime > 0.2 || force))
4548                 {
4549                         if (r->fbo)
4550                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4551                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4552                                 if (r->colortexture[j])
4553                                         R_FreeTexture(r->colortexture[j]);
4554                         if (r->depthtexture)
4555                                 R_FreeTexture(r->depthtexture);
4556                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4557                 }
4558         }
4559 }
4560
4561 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4562 {
4563         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4564         x1 = x * iw;
4565         x2 = (x + w) * iw;
4566         y1 = (th - y) * ih;
4567         y2 = (th - y - h) * ih;
4568         texcoord2f[0] = x1;
4569         texcoord2f[2] = x2;
4570         texcoord2f[4] = x2;
4571         texcoord2f[6] = x1;
4572         texcoord2f[1] = y1;
4573         texcoord2f[3] = y1;
4574         texcoord2f[5] = y2;
4575         texcoord2f[7] = y2;
4576 }
4577
4578 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qbool depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4579 {
4580         unsigned int i, j, end;
4581         r_rendertarget_t *r = NULL;
4582         char vabuf[256];
4583         // first try to reuse an existing slot if possible
4584         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4585         for (i = 0; i < end; i++)
4586         {
4587                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4588                 if (r && r->lastusetime != host.realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4589                         break;
4590         }
4591         if (i == end)
4592         {
4593                 // no unused exact match found, so we have to make one in the first unused slot
4594                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4595                 r->texturewidth = texturewidth;
4596                 r->textureheight = textureheight;
4597                 r->colortextype[0] = colortextype0;
4598                 r->colortextype[1] = colortextype1;
4599                 r->colortextype[2] = colortextype2;
4600                 r->colortextype[3] = colortextype3;
4601                 r->depthtextype = depthtextype;
4602                 r->depthisrenderbuffer = depthisrenderbuffer;
4603                 for (j = 0; j < 4; j++)
4604                         if (r->colortextype[j])
4605                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4606                 if (r->depthtextype)
4607                 {
4608                         if (r->depthisrenderbuffer)
4609                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4610                         else
4611                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4612                 }
4613                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4614         }
4615         r_refdef.stats[r_stat_rendertargets_used]++;
4616         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4617         r->lastusetime = host.realtime;
4618         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4619         return r;
4620 }
4621
4622 static void R_Water_StartFrame(int viewwidth, int viewheight)
4623 {
4624         int waterwidth, waterheight;
4625
4626         if (viewwidth > (int)vid.maxtexturesize_2d || viewheight > (int)vid.maxtexturesize_2d)
4627                 return;
4628
4629         // set waterwidth and waterheight to the water resolution that will be
4630         // used (often less than the screen resolution for faster rendering)
4631         waterwidth = (int)bound(16, viewwidth * r_water_resolutionmultiplier.value, viewwidth);
4632         waterheight = (int)bound(16, viewheight * r_water_resolutionmultiplier.value, viewheight);
4633
4634         if (!r_water.integer || r_showsurfaces.integer || r_lockvisibility.integer || r_lockpvs.integer)
4635                 waterwidth = waterheight = 0;
4636
4637         // set up variables that will be used in shader setup
4638         r_fb.water.waterwidth = waterwidth;
4639         r_fb.water.waterheight = waterheight;
4640         r_fb.water.texturewidth = waterwidth;
4641         r_fb.water.textureheight = waterheight;
4642         r_fb.water.camerawidth = waterwidth;
4643         r_fb.water.cameraheight = waterheight;
4644         r_fb.water.screenscale[0] = 0.5f;
4645         r_fb.water.screenscale[1] = 0.5f;
4646         r_fb.water.screencenter[0] = 0.5f;
4647         r_fb.water.screencenter[1] = 0.5f;
4648         r_fb.water.enabled = waterwidth != 0;
4649
4650         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4651         r_fb.water.numwaterplanes = 0;
4652 }
4653
4654 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4655 {
4656         int planeindex, bestplaneindex, vertexindex;
4657         vec3_t mins, maxs, normal, center, v, n;
4658         vec_t planescore, bestplanescore;
4659         mplane_t plane;
4660         r_waterstate_waterplane_t *p;
4661         texture_t *t = R_GetCurrentTexture(surface->texture);
4662
4663         rsurface.texture = t;
4664         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4665         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4666         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4667                 return;
4668         // average the vertex normals, find the surface bounds (after deformvertexes)
4669         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4670         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4671         VectorCopy(n, normal);
4672         VectorCopy(v, mins);
4673         VectorCopy(v, maxs);
4674         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4675         {
4676                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4677                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4678                 VectorAdd(normal, n, normal);
4679                 mins[0] = min(mins[0], v[0]);
4680                 mins[1] = min(mins[1], v[1]);
4681                 mins[2] = min(mins[2], v[2]);
4682                 maxs[0] = max(maxs[0], v[0]);
4683                 maxs[1] = max(maxs[1], v[1]);
4684                 maxs[2] = max(maxs[2], v[2]);
4685         }
4686         VectorNormalize(normal);
4687         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4688
4689         VectorCopy(normal, plane.normal);
4690         VectorNormalize(plane.normal);
4691         plane.dist = DotProduct(center, plane.normal);
4692         PlaneClassify(&plane);
4693         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4694         {
4695                 // skip backfaces (except if nocullface is set)
4696 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4697 //                      return;
4698                 VectorNegate(plane.normal, plane.normal);
4699                 plane.dist *= -1;
4700                 PlaneClassify(&plane);
4701         }
4702
4703
4704         // find a matching plane if there is one
4705         bestplaneindex = -1;
4706         bestplanescore = 1048576.0f;
4707         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4708         {
4709                 if(p->camera_entity == t->camera_entity)
4710                 {
4711                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4712                         if (bestplaneindex < 0 || bestplanescore > planescore)
4713                         {
4714                                 bestplaneindex = planeindex;
4715                                 bestplanescore = planescore;
4716                         }
4717                 }
4718         }
4719         planeindex = bestplaneindex;
4720
4721         // if this surface does not fit any known plane rendered this frame, add one
4722         if (planeindex < 0 || bestplanescore > 0.001f)
4723         {
4724                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4725                 {
4726                         // store the new plane
4727                         planeindex = r_fb.water.numwaterplanes++;
4728                         p = r_fb.water.waterplanes + planeindex;
4729                         p->plane = plane;
4730                         // clear materialflags and pvs
4731                         p->materialflags = 0;
4732                         p->pvsvalid = false;
4733                         p->camera_entity = t->camera_entity;
4734                         VectorCopy(mins, p->mins);
4735                         VectorCopy(maxs, p->maxs);
4736                 }
4737                 else
4738                 {
4739                         // We're totally screwed.
4740                         return;
4741                 }
4742         }
4743         else
4744         {
4745                 // merge mins/maxs when we're adding this surface to the plane
4746                 p = r_fb.water.waterplanes + planeindex;
4747                 p->mins[0] = min(p->mins[0], mins[0]);
4748                 p->mins[1] = min(p->mins[1], mins[1]);
4749                 p->mins[2] = min(p->mins[2], mins[2]);
4750                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4751                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4752                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4753         }
4754         // merge this surface's materialflags into the waterplane
4755         p->materialflags |= t->currentmaterialflags;
4756         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4757         {
4758                 // merge this surface's PVS into the waterplane
4759                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4760                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4761                 {
4762                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4763                         p->pvsvalid = true;
4764                 }
4765         }
4766 }
4767
4768 extern cvar_t r_drawparticles;
4769 extern cvar_t r_drawdecals;
4770
4771 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4772 {
4773         int myscissor[4];
4774         r_refdef_view_t originalview;
4775         r_refdef_view_t myview;
4776         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4777         r_waterstate_waterplane_t *p;
4778         vec3_t visorigin;
4779         r_rendertarget_t *rt;
4780
4781         originalview = r_refdef.view;
4782
4783         // lowquality hack, temporarily shut down some cvars and restore afterwards
4784         qualityreduction = r_water_lowquality.integer;
4785         if (qualityreduction > 0)
4786         {
4787                 if (qualityreduction >= 1)
4788                 {
4789                         old_r_shadows = r_shadows.integer;
4790                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4791                         old_r_dlight = r_shadow_realtime_dlight.integer;
4792                         Cvar_SetValueQuick(&r_shadows, 0);
4793                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4794                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4795                 }
4796                 if (qualityreduction >= 2)
4797                 {
4798                         old_r_dynamic = r_dynamic.integer;
4799                         old_r_particles = r_drawparticles.integer;
4800                         old_r_decals = r_drawdecals.integer;
4801                         Cvar_SetValueQuick(&r_dynamic, 0);
4802                         Cvar_SetValueQuick(&r_drawparticles, 0);
4803                         Cvar_SetValueQuick(&r_drawdecals, 0);
4804                 }
4805         }
4806
4807         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4808         {
4809                 p->rt_reflection = NULL;
4810                 p->rt_refraction = NULL;
4811                 p->rt_camera = NULL;
4812         }
4813
4814         // render views
4815         r_refdef.view = originalview;
4816         r_refdef.view.showdebug = false;
4817         r_refdef.view.width = r_fb.water.waterwidth;
4818         r_refdef.view.height = r_fb.water.waterheight;
4819         r_refdef.view.useclipplane = true;
4820         myview = r_refdef.view;
4821         r_fb.water.renderingscene = true;
4822         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4823         {
4824                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4825                         continue;
4826
4827                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4828                 {
4829                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4830                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4831                                 goto error;
4832                         r_refdef.view = myview;
4833                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4834                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4835                         if(r_water_scissormode.integer)
4836                         {
4837                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4838                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4839                                 {
4840                                         p->rt_reflection = NULL;
4841                                         p->rt_refraction = NULL;
4842                                         p->rt_camera = NULL;
4843                                         continue;
4844                                 }
4845                         }
4846
4847                         r_refdef.view.clipplane = p->plane;
4848                         // reflected view origin may be in solid, so don't cull with it
4849                         r_refdef.view.usevieworiginculling = false;
4850                         // reverse the cullface settings for this render
4851                         r_refdef.view.cullface_front = GL_FRONT;
4852                         r_refdef.view.cullface_back = GL_BACK;
4853                         // combined pvs (based on what can be seen from each surface center)
4854                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4855                         {
4856                                 r_refdef.view.usecustompvs = true;
4857                                 if (p->pvsvalid)
4858                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4859                                 else
4860                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4861                         }
4862
4863                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4864                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4865                         GL_ScissorTest(false);
4866                         R_ClearScreen(r_refdef.fogenabled);
4867                         GL_ScissorTest(true);
4868                         if(r_water_scissormode.integer & 2)
4869                                 R_View_UpdateWithScissor(myscissor);
4870                         else
4871                                 R_View_Update();
4872                         R_AnimCache_CacheVisibleEntities();
4873                         if(r_water_scissormode.integer & 1)
4874                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4875                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4876
4877                         r_fb.water.hideplayer = false;
4878                         p->rt_reflection = rt;
4879                 }
4880
4881                 // render the normal view scene and copy into texture
4882                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4883                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4884                 {
4885                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4886                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4887                                 goto error;
4888                         r_refdef.view = myview;
4889                         if(r_water_scissormode.integer)
4890                         {
4891                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4892                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4893                                 {
4894                                         p->rt_reflection = NULL;
4895                                         p->rt_refraction = NULL;
4896                                         p->rt_camera = NULL;
4897                                         continue;
4898                                 }
4899                         }
4900
4901                         // combined pvs (based on what can be seen from each surface center)
4902                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4903                         {
4904                                 r_refdef.view.usecustompvs = true;
4905                                 if (p->pvsvalid)
4906                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4907                                 else
4908                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4909                         }
4910
4911                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4912
4913                         r_refdef.view.clipplane = p->plane;
4914                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4915                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4916
4917                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4918                         {
4919                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4920                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4921                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4922                                 R_RenderView_UpdateViewVectors();
4923                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4924                                 {
4925                                         r_refdef.view.usecustompvs = true;
4926                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4927                                 }
4928                         }
4929
4930                         PlaneClassify(&r_refdef.view.clipplane);
4931
4932                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4933                         GL_ScissorTest(false);
4934                         R_ClearScreen(r_refdef.fogenabled);
4935                         GL_ScissorTest(true);
4936                         if(r_water_scissormode.integer & 2)
4937                                 R_View_UpdateWithScissor(myscissor);
4938                         else
4939                                 R_View_Update();
4940                         R_AnimCache_CacheVisibleEntities();
4941                         if(r_water_scissormode.integer & 1)
4942                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4943                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4944
4945                         r_fb.water.hideplayer = false;
4946                         p->rt_refraction = rt;
4947                 }
4948                 else if (p->materialflags & MATERIALFLAG_CAMERA)
4949                 {
4950                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4951                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4952                                 goto error;
4953                         r_refdef.view = myview;
4954
4955                         r_refdef.view.clipplane = p->plane;
4956                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4957                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4958
4959                         r_refdef.view.width = r_fb.water.camerawidth;
4960                         r_refdef.view.height = r_fb.water.cameraheight;
4961                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
4962                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
4963                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
4964                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
4965
4966                         if(p->camera_entity)
4967                         {
4968                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4969                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4970                         }
4971
4972                         // note: all of the view is used for displaying... so
4973                         // there is no use in scissoring
4974
4975                         // reverse the cullface settings for this render
4976                         r_refdef.view.cullface_front = GL_FRONT;
4977                         r_refdef.view.cullface_back = GL_BACK;
4978                         // also reverse the view matrix
4979                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
4980                         R_RenderView_UpdateViewVectors();
4981                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4982                         {
4983                                 r_refdef.view.usecustompvs = true;
4984                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4985                         }
4986                         
4987                         // camera needs no clipplane
4988                         r_refdef.view.useclipplane = false;
4989                         // TODO: is the camera origin always valid?  if so we don't need to clear this
4990                         r_refdef.view.usevieworiginculling = false;
4991
4992                         PlaneClassify(&r_refdef.view.clipplane);
4993
4994                         r_fb.water.hideplayer = false;
4995
4996                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4997                         GL_ScissorTest(false);
4998                         R_ClearScreen(r_refdef.fogenabled);
4999                         GL_ScissorTest(true);
5000                         R_View_Update();
5001                         R_AnimCache_CacheVisibleEntities();
5002                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5003
5004                         r_fb.water.hideplayer = false;
5005                         p->rt_camera = rt;
5006                 }
5007
5008         }
5009         r_fb.water.renderingscene = false;
5010         r_refdef.view = originalview;
5011         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5012         R_View_Update();
5013         R_AnimCache_CacheVisibleEntities();
5014         goto finish;
5015 error:
5016         r_refdef.view = originalview;
5017         r_fb.water.renderingscene = false;
5018         Cvar_SetValueQuick(&r_water, 0);
5019         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5020 finish:
5021         // lowquality hack, restore cvars
5022         if (qualityreduction > 0)
5023         {
5024                 if (qualityreduction >= 1)
5025                 {
5026                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5027                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5028                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5029                 }
5030                 if (qualityreduction >= 2)
5031                 {
5032                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5033                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5034                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5035                 }
5036         }
5037 }
5038
5039 static void R_Bloom_StartFrame(void)
5040 {
5041         int screentexturewidth, screentextureheight;
5042         textype_t textype = TEXTYPE_COLORBUFFER;
5043         double scale;
5044
5045         // clear the pointers to rendertargets from last frame as they're stale
5046         r_fb.rt_screen = NULL;
5047         r_fb.rt_bloom = NULL;
5048
5049         switch (vid.renderpath)
5050         {
5051         case RENDERPATH_GL32:
5052                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5053                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5054                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5055                 break;
5056         case RENDERPATH_GLES2:
5057                 r_fb.usedepthtextures = false;
5058                 break;
5059         }
5060
5061         if (r_viewscale_fpsscaling.integer)
5062         {
5063                 double actualframetime;
5064                 double targetframetime;
5065                 double adjust;
5066                 actualframetime = r_refdef.lastdrawscreentime;
5067                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5068                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5069                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5070                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5071                 {
5072                         if (adjust > 0)
5073                                 adjust = floor(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5074                         else
5075                                 adjust = ceil(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5076                 }
5077                 viewscalefpsadjusted += adjust;
5078                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5079         }
5080         else
5081                 viewscalefpsadjusted = 1.0f;
5082
5083         scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
5084         if (vid.samples)
5085                 scale *= sqrt(vid.samples); // supersampling
5086         scale = bound(0.03125f, scale, 4.0f);
5087         screentexturewidth = (int)ceil(r_refdef.view.width * scale);
5088         screentextureheight = (int)ceil(r_refdef.view.height * scale);
5089         screentexturewidth = bound(1, screentexturewidth, (int)vid.maxtexturesize_2d);
5090         screentextureheight = bound(1, screentextureheight, (int)vid.maxtexturesize_2d);
5091
5092         // set bloomwidth and bloomheight to the bloom resolution that will be
5093         // used (often less than the screen resolution for faster rendering)
5094         r_fb.bloomheight = bound(1, r_bloom_resolution.value * 0.75f, screentextureheight);
5095         r_fb.bloomwidth = r_fb.bloomheight * screentexturewidth / screentextureheight;
5096         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, screentexturewidth);
5097         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5098         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5099
5100         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5101         {
5102                 Cvar_SetValueQuick(&r_bloom, 0);
5103                 Cvar_SetValueQuick(&r_motionblur, 0);
5104                 Cvar_SetValueQuick(&r_damageblur, 0);
5105         }
5106         if (!r_bloom.integer)
5107                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5108
5109         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5110         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5111         {
5112                 if (r_fb.ghosttexture)
5113                         R_FreeTexture(r_fb.ghosttexture);
5114                 r_fb.ghosttexture = NULL;
5115
5116                 r_fb.screentexturewidth = screentexturewidth;
5117                 r_fb.screentextureheight = screentextureheight;
5118                 r_fb.textype = textype;
5119
5120                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5121                 {
5122                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5123                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5124                         r_fb.ghosttexture_valid = false;
5125                 }
5126         }
5127
5128         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5129
5130         r_refdef.view.clear = true;
5131 }
5132
5133 static void R_Bloom_MakeTexture(void)
5134 {
5135         int x, range, dir;
5136         float xoffset, yoffset, r, brighten;
5137         float colorscale = r_bloom_colorscale.value;
5138         r_viewport_t bloomviewport;
5139         r_rendertarget_t *prev, *cur;
5140         textype_t textype = r_fb.rt_screen->colortextype[0];
5141
5142         r_refdef.stats[r_stat_bloom]++;
5143
5144         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5145
5146         // scale down screen texture to the bloom texture size
5147         CHECKGLERROR
5148         prev = r_fb.rt_screen;
5149         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5150         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5151         R_SetViewport(&bloomviewport);
5152         GL_CullFace(GL_NONE);
5153         GL_DepthTest(false);
5154         GL_BlendFunc(GL_ONE, GL_ZERO);
5155         GL_Color(colorscale, colorscale, colorscale, 1);
5156         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5157         // TODO: do boxfilter scale-down in shader?
5158         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5159         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5160         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5161         // we now have a properly scaled bloom image
5162
5163         // multiply bloom image by itself as many times as desired to darken it
5164         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5165         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5166         {
5167                 prev = cur;
5168                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5169                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5170                 x *= 2;
5171                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5172                 if(x <= 2)
5173                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5174                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5175                 GL_Color(1,1,1,1); // no fix factor supported here
5176                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5177                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5178                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5179                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5180         }
5181         CHECKGLERROR
5182
5183         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5184         brighten = r_bloom_brighten.value;
5185         brighten = sqrt(brighten);
5186         if(range >= 1)
5187                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5188
5189         for (dir = 0;dir < 2;dir++)
5190         {
5191                 prev = cur;
5192                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5193                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5194                 // blend on at multiple vertical offsets to achieve a vertical blur
5195                 // TODO: do offset blends using GLSL
5196                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5197                 CHECKGLERROR
5198                 GL_BlendFunc(GL_ONE, GL_ZERO);
5199                 CHECKGLERROR
5200                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5201                 CHECKGLERROR
5202                 for (x = -range;x <= range;x++)
5203                 {
5204                         if (!dir){xoffset = 0;yoffset = x;}
5205                         else {xoffset = x;yoffset = 0;}
5206                         xoffset /= (float)prev->texturewidth;
5207                         yoffset /= (float)prev->textureheight;
5208                         // compute a texcoord array with the specified x and y offset
5209                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5210                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5211                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5212                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5213                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5214                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5215                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5216                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5217                         // this r value looks like a 'dot' particle, fading sharply to
5218                         // black at the edges
5219                         // (probably not realistic but looks good enough)
5220                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5221                         //r = brighten/(range*2+1);
5222                         r = brighten / (range * 2 + 1);
5223                         if(range >= 1)
5224                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5225                         if (r <= 0)
5226                                 continue;
5227                         CHECKGLERROR
5228                         GL_Color(r, r, r, 1);
5229                         CHECKGLERROR
5230                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5231                         CHECKGLERROR
5232                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5233                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5234                         CHECKGLERROR
5235                         GL_BlendFunc(GL_ONE, GL_ONE);
5236                         CHECKGLERROR
5237                 }
5238         }
5239
5240         // now we have the bloom image, so keep track of it
5241         r_fb.rt_bloom = cur;
5242 }
5243
5244 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5245 {
5246         uint64_t permutation;
5247         float uservecs[4][4];
5248         rtexture_t *viewtexture;
5249         rtexture_t *bloomtexture;
5250
5251         R_EntityMatrix(&identitymatrix);
5252
5253         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5254         {
5255                 // declare variables
5256                 float blur_factor, blur_mouseaccel, blur_velocity;
5257                 static float blur_average; 
5258                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5259
5260                 // set a goal for the factoring
5261                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5262                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5263                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5264                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5265                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5266                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5267
5268                 // from the goal, pick an averaged value between goal and last value
5269                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5270                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5271
5272                 // enforce minimum amount of blur 
5273                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5274
5275                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5276
5277                 // calculate values into a standard alpha
5278                 cl.motionbluralpha = 1 - exp(-
5279                                 (
5280                                         (r_motionblur.value * blur_factor / 80)
5281                                         +
5282                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5283                                 )
5284                                 /
5285                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5286                                 );
5287
5288                 // randomization for the blur value to combat persistent ghosting
5289                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5290                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5291
5292                 // apply the blur
5293                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5294                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5295                 {
5296                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5297                         GL_Color(1, 1, 1, cl.motionbluralpha);
5298                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5299                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5300                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5301                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5302                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5303                 }
5304
5305                 // updates old view angles for next pass
5306                 VectorCopy(cl.viewangles, blur_oldangles);
5307
5308                 // copy view into the ghost texture
5309                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5310                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5311                 r_fb.ghosttexture_valid = true;
5312         }
5313
5314         if (r_fb.bloomwidth)
5315         {
5316                 // make the bloom texture
5317                 R_Bloom_MakeTexture();
5318         }
5319
5320 #if _MSC_VER >= 1400
5321 #define sscanf sscanf_s
5322 #endif
5323         memset(uservecs, 0, sizeof(uservecs));
5324         if (r_glsl_postprocess_uservec1_enable.integer)
5325                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5326         if (r_glsl_postprocess_uservec2_enable.integer)
5327                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5328         if (r_glsl_postprocess_uservec3_enable.integer)
5329                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5330         if (r_glsl_postprocess_uservec4_enable.integer)
5331                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5332
5333         // render to the screen fbo
5334         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5335         GL_Color(1, 1, 1, 1);
5336         GL_BlendFunc(GL_ONE, GL_ZERO);
5337
5338         viewtexture = r_fb.rt_screen->colortexture[0];
5339         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5340
5341         if (r_rendertarget_debug.integer >= 0)
5342         {
5343                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5344                 if (rt && rt->colortexture[0])
5345                 {
5346                         viewtexture = rt->colortexture[0];
5347                         bloomtexture = NULL;
5348                 }
5349         }
5350
5351         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5352         switch(vid.renderpath)
5353         {
5354         case RENDERPATH_GL32:
5355         case RENDERPATH_GLES2:
5356                 permutation =
5357                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5358                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5359                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5360                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5361                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5362                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5363                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5364                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5365                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5366                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5367                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5368                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5369                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5370                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5371                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5372                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5373                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
5374                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5375                 if (r_glsl_permutation->loc_ColorFringe             >= 0) qglUniform1f(r_glsl_permutation->loc_ColorFringe, r_colorfringe.value );
5376                 break;
5377         }
5378         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5379         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5380 }
5381
5382 matrix4x4_t r_waterscrollmatrix;
5383
5384 void R_UpdateFog(void)
5385 {
5386         // Nehahra fog
5387         if (gamemode == GAME_NEHAHRA)
5388         {
5389                 if (gl_fogenable.integer)
5390                 {
5391                         r_refdef.oldgl_fogenable = true;
5392                         r_refdef.fog_density = gl_fogdensity.value;
5393                         r_refdef.fog_red = gl_fogred.value;
5394                         r_refdef.fog_green = gl_foggreen.value;
5395                         r_refdef.fog_blue = gl_fogblue.value;
5396                         r_refdef.fog_alpha = 1;
5397                         r_refdef.fog_start = 0;
5398                         r_refdef.fog_end = gl_skyclip.value;
5399                         r_refdef.fog_height = 1<<30;
5400                         r_refdef.fog_fadedepth = 128;
5401                 }
5402                 else if (r_refdef.oldgl_fogenable)
5403                 {
5404                         r_refdef.oldgl_fogenable = false;
5405                         r_refdef.fog_density = 0;
5406                         r_refdef.fog_red = 0;
5407                         r_refdef.fog_green = 0;
5408                         r_refdef.fog_blue = 0;
5409                         r_refdef.fog_alpha = 0;
5410                         r_refdef.fog_start = 0;
5411                         r_refdef.fog_end = 0;
5412                         r_refdef.fog_height = 1<<30;
5413                         r_refdef.fog_fadedepth = 128;
5414                 }
5415         }
5416
5417         // fog parms
5418         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5419         r_refdef.fog_start = max(0, r_refdef.fog_start);
5420         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5421
5422         if (r_refdef.fog_density && r_drawfog.integer)
5423         {
5424                 r_refdef.fogenabled = true;
5425                 // this is the point where the fog reaches 0.9986 alpha, which we
5426                 // consider a good enough cutoff point for the texture
5427                 // (0.9986 * 256 == 255.6)
5428                 if (r_fog_exp2.integer)
5429                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5430                 else
5431                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5432                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5433                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5434                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5435                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5436                         R_BuildFogHeightTexture();
5437                 // fog color was already set
5438                 // update the fog texture
5439                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5440                         R_BuildFogTexture();
5441                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5442                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5443         }
5444         else
5445                 r_refdef.fogenabled = false;
5446
5447         // fog color
5448         if (r_refdef.fog_density)
5449         {
5450                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5451                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5452                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5453
5454                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5455                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5456                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5457                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5458
5459                 {
5460                         vec3_t fogvec;
5461                         VectorCopy(r_refdef.fogcolor, fogvec);
5462                         //   color.rgb *= ContrastBoost * SceneBrightness;
5463                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5464                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5465                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5466                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5467                 }
5468         }
5469 }
5470
5471 void R_UpdateVariables(void)
5472 {
5473         R_Textures_Frame();
5474
5475         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5476
5477         r_refdef.farclip = r_farclip_base.value;
5478         if (r_refdef.scene.worldmodel)
5479                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5480         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5481
5482         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5483                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5484         r_refdef.polygonfactor = 0;
5485         r_refdef.polygonoffset = 0;
5486
5487         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5488         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5489         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5490         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5491         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5492         if (r_refdef.scene.worldmodel)
5493         {
5494                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5495         }
5496         if (r_showsurfaces.integer)
5497         {
5498                 r_refdef.scene.rtworld = false;
5499                 r_refdef.scene.rtworldshadows = false;
5500                 r_refdef.scene.rtdlight = false;
5501                 r_refdef.scene.rtdlightshadows = false;
5502                 r_refdef.scene.lightmapintensity = 0;
5503         }
5504
5505         r_gpuskeletal = false;
5506         switch(vid.renderpath)
5507         {
5508         case RENDERPATH_GL32:
5509                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5510         case RENDERPATH_GLES2:
5511                 if(!vid_gammatables_trivial)
5512                 {
5513                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5514                         {
5515                                 // build GLSL gamma texture
5516 #define RAMPWIDTH 256
5517                                 unsigned short ramp[RAMPWIDTH * 3];
5518                                 unsigned char rampbgr[RAMPWIDTH][4];
5519                                 int i;
5520
5521                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5522
5523                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5524                                 for(i = 0; i < RAMPWIDTH; ++i)
5525                                 {
5526                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5527                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5528                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5529                                         rampbgr[i][3] = 0;
5530                                 }
5531                                 if (r_texture_gammaramps)
5532                                 {
5533                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1, 0);
5534                                 }
5535                                 else
5536                                 {
5537                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5538                                 }
5539                         }
5540                 }
5541                 else
5542                 {
5543                         // remove GLSL gamma texture
5544                 }
5545                 break;
5546         }
5547 }
5548
5549 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5550 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5551 /*
5552 ================
5553 R_SelectScene
5554 ================
5555 */
5556 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5557         if( scenetype != r_currentscenetype ) {
5558                 // store the old scenetype
5559                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5560                 r_currentscenetype = scenetype;
5561                 // move in the new scene
5562                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5563         }
5564 }
5565
5566 /*
5567 ================
5568 R_GetScenePointer
5569 ================
5570 */
5571 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5572 {
5573         // of course, we could also add a qbool that provides a lock state and a ReleaseScenePointer function..
5574         if( scenetype == r_currentscenetype ) {
5575                 return &r_refdef.scene;
5576         } else {
5577                 return &r_scenes_store[ scenetype ];
5578         }
5579 }
5580
5581 static int R_SortEntities_Compare(const void *ap, const void *bp)
5582 {
5583         const entity_render_t *a = *(const entity_render_t **)ap;
5584         const entity_render_t *b = *(const entity_render_t **)bp;
5585
5586         // 1. compare model
5587         if(a->model < b->model)
5588                 return -1;
5589         if(a->model > b->model)
5590                 return +1;
5591
5592         // 2. compare skin
5593         // TODO possibly calculate the REAL skinnum here first using
5594         // skinscenes?
5595         if(a->skinnum < b->skinnum)
5596                 return -1;
5597         if(a->skinnum > b->skinnum)
5598                 return +1;
5599
5600         // everything we compared is equal
5601         return 0;
5602 }
5603 static void R_SortEntities(void)
5604 {
5605         // below or equal 2 ents, sorting never gains anything
5606         if(r_refdef.scene.numentities <= 2)
5607                 return;
5608         // sort
5609         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5610 }
5611
5612 /*
5613 ================
5614 R_RenderView
5615 ================
5616 */
5617 extern cvar_t r_shadow_bouncegrid;
5618 extern cvar_t v_isometric;
5619 extern void V_MakeViewIsometric(void);
5620 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5621 {
5622         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5623         int viewfbo = 0;
5624         rtexture_t *viewdepthtexture = NULL;
5625         rtexture_t *viewcolortexture = NULL;
5626         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5627
5628         // finish any 2D rendering that was queued
5629         DrawQ_Finish();
5630
5631         if (r_timereport_active)
5632                 R_TimeReport("start");
5633         r_textureframe++; // used only by R_GetCurrentTexture
5634         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5635
5636         if(R_CompileShader_CheckStaticParms())
5637                 R_GLSL_Restart_f(cmd_local);
5638
5639         if (!r_drawentities.integer)
5640                 r_refdef.scene.numentities = 0;
5641         else if (r_sortentities.integer)
5642                 R_SortEntities();
5643
5644         R_AnimCache_ClearCache();
5645
5646         /* adjust for stereo display */
5647         if(R_Stereo_Active())
5648         {
5649                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5650                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5651         }
5652
5653         if (r_refdef.view.isoverlay)
5654         {
5655                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5656                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5657                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5658                 R_TimeReport("depthclear");
5659
5660                 r_refdef.view.showdebug = false;
5661
5662                 r_fb.water.enabled = false;
5663                 r_fb.water.numwaterplanes = 0;
5664
5665                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5666
5667                 r_refdef.view.matrix = originalmatrix;
5668
5669                 CHECKGLERROR
5670                 return;
5671         }
5672
5673         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5674         {
5675                 r_refdef.view.matrix = originalmatrix;
5676                 return;
5677         }
5678
5679         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5680         if (v_isometric.integer && r_refdef.view.ismain)
5681                 V_MakeViewIsometric();
5682
5683         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5684
5685         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5686                 // in sRGB fallback, behave similar to true sRGB: convert this
5687                 // value from linear to sRGB
5688                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5689
5690         R_RenderView_UpdateViewVectors();
5691
5692         R_Shadow_UpdateWorldLightSelection();
5693
5694         // this will set up r_fb.rt_screen
5695         R_Bloom_StartFrame();
5696
5697         // apply bloom brightness offset
5698         if(r_fb.rt_bloom)
5699                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5700
5701         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5702         if (r_fb.rt_screen)
5703         {
5704                 viewfbo = r_fb.rt_screen->fbo;
5705                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5706                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5707                 viewx = 0;
5708                 viewy = 0;
5709                 viewwidth = r_fb.rt_screen->texturewidth;
5710                 viewheight = r_fb.rt_screen->textureheight;
5711         }
5712
5713         R_Water_StartFrame(viewwidth, viewheight);
5714
5715         CHECKGLERROR
5716         if (r_timereport_active)
5717                 R_TimeReport("viewsetup");
5718
5719         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5720
5721         // clear the whole fbo every frame - otherwise the driver will consider
5722         // it to be an inter-frame texture and stall in multi-gpu configurations
5723         if (r_fb.rt_screen)
5724                 GL_ScissorTest(false);
5725         R_ClearScreen(r_refdef.fogenabled);
5726         if (r_timereport_active)
5727                 R_TimeReport("viewclear");
5728
5729         r_refdef.view.clear = true;
5730
5731         r_refdef.view.showdebug = true;
5732
5733         R_View_Update();
5734         if (r_timereport_active)
5735                 R_TimeReport("visibility");
5736
5737         R_AnimCache_CacheVisibleEntities();
5738         if (r_timereport_active)
5739                 R_TimeReport("animcache");
5740
5741         R_Shadow_UpdateBounceGridTexture();
5742         // R_Shadow_UpdateBounceGridTexture called R_TimeReport a few times internally, so we don't need to do that here.
5743
5744         r_fb.water.numwaterplanes = 0;
5745         if (r_fb.water.enabled)
5746                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5747
5748         // for the actual view render we use scissoring a fair amount, so scissor
5749         // test needs to be on
5750         if (r_fb.rt_screen)
5751                 GL_ScissorTest(true);
5752         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5753         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5754         r_fb.water.numwaterplanes = 0;
5755
5756         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5757         GL_ScissorTest(false);
5758
5759         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5760         if (r_timereport_active)
5761                 R_TimeReport("blendview");
5762
5763         r_refdef.view.matrix = originalmatrix;
5764
5765         CHECKGLERROR
5766
5767         // go back to 2d rendering
5768         DrawQ_Start();
5769 }
5770
5771 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5772 {
5773         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5774         {
5775                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5776                 if (r_timereport_active)
5777                         R_TimeReport("waterworld");
5778         }
5779
5780         // don't let sound skip if going slow
5781         if (r_refdef.scene.extraupdate)
5782                 S_ExtraUpdate ();
5783
5784         R_DrawModelsAddWaterPlanes();
5785         if (r_timereport_active)
5786                 R_TimeReport("watermodels");
5787
5788         if (r_fb.water.numwaterplanes)
5789         {
5790                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5791                 if (r_timereport_active)
5792                         R_TimeReport("waterscenes");
5793         }
5794 }
5795
5796 extern cvar_t cl_locs_show;
5797 static void R_DrawLocs(void);
5798 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5799 static void R_DrawModelDecals(void);
5800 extern qbool r_shadow_usingdeferredprepass;
5801 extern int r_shadow_shadowmapatlas_modelshadows_size;
5802 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5803 {
5804         qbool shadowmapping = false;
5805
5806         if (r_timereport_active)
5807                 R_TimeReport("beginscene");
5808
5809         r_refdef.stats[r_stat_renders]++;
5810
5811         R_UpdateFog();
5812
5813         // don't let sound skip if going slow
5814         if (r_refdef.scene.extraupdate)
5815                 S_ExtraUpdate ();
5816
5817         R_MeshQueue_BeginScene();
5818
5819         R_SkyStartFrame();
5820
5821         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5822
5823         if (r_timereport_active)
5824                 R_TimeReport("skystartframe");
5825
5826         if (cl.csqc_vidvars.drawworld)
5827         {
5828                 // don't let sound skip if going slow
5829                 if (r_refdef.scene.extraupdate)
5830                         S_ExtraUpdate ();
5831
5832                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5833                 {
5834                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5835                         if (r_timereport_active)
5836                                 R_TimeReport("worldsky");
5837                 }
5838
5839                 if (R_DrawBrushModelsSky() && r_timereport_active)
5840                         R_TimeReport("bmodelsky");
5841
5842                 if (skyrendermasked && skyrenderlater)
5843                 {
5844                         // we have to force off the water clipping plane while rendering sky
5845                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5846                         R_Sky();
5847                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5848                         if (r_timereport_active)
5849                                 R_TimeReport("sky");
5850                 }
5851         }
5852
5853         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5854         r_shadow_viewfbo = viewfbo;
5855         r_shadow_viewdepthtexture = viewdepthtexture;
5856         r_shadow_viewcolortexture = viewcolortexture;
5857         r_shadow_viewx = viewx;
5858         r_shadow_viewy = viewy;
5859         r_shadow_viewwidth = viewwidth;
5860         r_shadow_viewheight = viewheight;
5861
5862         R_Shadow_PrepareModelShadows();
5863         R_Shadow_PrepareLights();
5864         if (r_timereport_active)
5865                 R_TimeReport("preparelights");
5866
5867         // render all the shadowmaps that will be used for this view
5868         shadowmapping = R_Shadow_ShadowMappingEnabled();
5869         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5870         {
5871                 R_Shadow_DrawShadowMaps();
5872                 if (r_timereport_active)
5873                         R_TimeReport("shadowmaps");
5874         }
5875
5876         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5877         if (r_shadow_usingdeferredprepass)
5878                 R_Shadow_DrawPrepass();
5879
5880         // now we begin the forward pass of the view render
5881         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5882         {
5883                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5884                 if (r_timereport_active)
5885                         R_TimeReport("worlddepth");
5886         }
5887         if (r_depthfirst.integer >= 2)
5888         {
5889                 R_DrawModelsDepth();
5890                 if (r_timereport_active)
5891                         R_TimeReport("modeldepth");
5892         }
5893
5894         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5895         {
5896                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5897                 if (r_timereport_active)
5898                         R_TimeReport("world");
5899         }
5900
5901         // don't let sound skip if going slow
5902         if (r_refdef.scene.extraupdate)
5903                 S_ExtraUpdate ();
5904
5905         R_DrawModels();
5906         if (r_timereport_active)
5907                 R_TimeReport("models");
5908
5909         // don't let sound skip if going slow
5910         if (r_refdef.scene.extraupdate)
5911                 S_ExtraUpdate ();
5912
5913         if (!r_shadow_usingdeferredprepass)
5914         {
5915                 R_Shadow_DrawLights();
5916                 if (r_timereport_active)
5917                         R_TimeReport("rtlights");
5918         }
5919
5920         // don't let sound skip if going slow
5921         if (r_refdef.scene.extraupdate)
5922                 S_ExtraUpdate ();
5923
5924         if (cl.csqc_vidvars.drawworld)
5925         {
5926                 R_DrawModelDecals();
5927                 if (r_timereport_active)
5928                         R_TimeReport("modeldecals");
5929
5930                 R_DrawParticles();
5931                 if (r_timereport_active)
5932                         R_TimeReport("particles");
5933
5934                 R_DrawExplosions();
5935                 if (r_timereport_active)
5936                         R_TimeReport("explosions");
5937         }
5938
5939         if (r_refdef.view.showdebug)
5940         {
5941                 if (cl_locs_show.integer)
5942                 {
5943                         R_DrawLocs();
5944                         if (r_timereport_active)
5945                                 R_TimeReport("showlocs");
5946                 }
5947
5948                 if (r_drawportals.integer)
5949                 {
5950                         R_DrawPortals();
5951                         if (r_timereport_active)
5952                                 R_TimeReport("portals");
5953                 }
5954
5955                 if (r_showbboxes_client.value > 0)
5956                 {
5957                         R_DrawEntityBBoxes(CLVM_prog);
5958                         if (r_timereport_active)
5959                                 R_TimeReport("clbboxes");
5960                 }
5961                 if (r_showbboxes.value > 0)
5962                 {
5963                         R_DrawEntityBBoxes(SVVM_prog);
5964                         if (r_timereport_active)
5965                                 R_TimeReport("svbboxes");
5966                 }
5967         }
5968
5969         if (r_transparent.integer)
5970         {
5971                 R_MeshQueue_RenderTransparent();
5972                 if (r_timereport_active)
5973                         R_TimeReport("drawtrans");
5974         }
5975
5976         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
5977         {
5978                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
5979                 if (r_timereport_active)
5980                         R_TimeReport("worlddebug");
5981                 R_DrawModelsDebug();
5982                 if (r_timereport_active)
5983                         R_TimeReport("modeldebug");
5984         }
5985
5986         if (cl.csqc_vidvars.drawworld)
5987         {
5988                 R_Shadow_DrawCoronas();
5989                 if (r_timereport_active)
5990                         R_TimeReport("coronas");
5991         }
5992
5993         // don't let sound skip if going slow
5994         if (r_refdef.scene.extraupdate)
5995                 S_ExtraUpdate ();
5996 }
5997
5998 static const unsigned short bboxelements[36] =
5999 {
6000         5, 1, 3, 5, 3, 7,
6001         6, 2, 0, 6, 0, 4,
6002         7, 3, 2, 7, 2, 6,
6003         4, 0, 1, 4, 1, 5,
6004         4, 5, 7, 4, 7, 6,
6005         1, 0, 2, 1, 2, 3,
6006 };
6007
6008 #define BBOXEDGES 13
6009 static const float bboxedges[BBOXEDGES][6] = 
6010 {
6011         // whole box
6012         { 0, 0, 0, 1, 1, 1 },
6013         // bottom edges
6014         { 0, 0, 0, 0, 1, 0 },
6015         { 0, 0, 0, 1, 0, 0 },
6016         { 0, 1, 0, 1, 1, 0 },
6017         { 1, 0, 0, 1, 1, 0 },
6018         // top edges
6019         { 0, 0, 1, 0, 1, 1 },
6020         { 0, 0, 1, 1, 0, 1 },
6021         { 0, 1, 1, 1, 1, 1 },
6022         { 1, 0, 1, 1, 1, 1 },
6023         // vertical edges
6024         { 0, 0, 0, 0, 0, 1 },
6025         { 1, 0, 0, 1, 0, 1 },
6026         { 0, 1, 0, 0, 1, 1 },
6027         { 1, 1, 0, 1, 1, 1 },
6028 };
6029
6030 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6031 {
6032         int numvertices = BBOXEDGES * 8;
6033         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6034         int numtriangles = BBOXEDGES * 12;
6035         unsigned short elements[BBOXEDGES * 36];
6036         int i, edge;
6037         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6038
6039         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6040
6041         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6042         GL_DepthMask(false);
6043         GL_DepthRange(0, 1);
6044         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6045
6046         for (edge = 0; edge < BBOXEDGES; edge++)
6047         {
6048                 for (i = 0; i < 3; i++)
6049                 {
6050                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6051                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6052                 }
6053                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6054                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6055                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6056                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6057                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6058                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6059                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6060                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6061                 for (i = 0; i < 36; i++)
6062                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6063         }
6064         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6065         if (r_refdef.fogenabled)
6066         {
6067                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6068                 {
6069                         f1 = RSurf_FogVertex(v);
6070                         f2 = 1 - f1;
6071                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6072                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6073                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6074                 }
6075         }
6076         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6077         R_Mesh_ResetTextureState();
6078         R_SetupShader_Generic_NoTexture(false, false);
6079         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6080 }
6081
6082 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6083 {
6084         // hacky overloading of the parameters
6085         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6086         int i;
6087         float color[4];
6088         prvm_edict_t *edict;
6089
6090         GL_CullFace(GL_NONE);
6091         R_SetupShader_Generic_NoTexture(false, false);
6092
6093         for (i = 0;i < numsurfaces;i++)
6094         {
6095                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6096                 switch ((int)PRVM_serveredictfloat(edict, solid))
6097                 {
6098                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6099                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6100                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6101                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6102                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6103                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6104                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6105                 }
6106                 if (prog == CLVM_prog)
6107                         color[3] *= r_showbboxes_client.value;
6108                 else
6109                         color[3] *= r_showbboxes.value;
6110                 color[3] = bound(0, color[3], 1);
6111                 GL_DepthTest(!r_showdisabledepthtest.integer);
6112                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6113         }
6114 }
6115
6116 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6117 {
6118         int i;
6119         prvm_edict_t *edict;
6120         vec3_t center;
6121
6122         if (prog == NULL)
6123                 return;
6124
6125         for (i = 0; i < prog->num_edicts; i++)
6126         {
6127                 edict = PRVM_EDICT_NUM(i);
6128                 if (edict->free)
6129                         continue;
6130                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6131                 if (PRVM_gameedictedict(edict, tag_entity) != 0)
6132                         continue;
6133                 if (prog == SVVM_prog && PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6134                         continue;
6135                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6136                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6137         }
6138 }
6139
6140 static const int nomodelelement3i[24] =
6141 {
6142         5, 2, 0,
6143         5, 1, 2,
6144         5, 0, 3,
6145         5, 3, 1,
6146         0, 2, 4,
6147         2, 1, 4,
6148         3, 0, 4,
6149         1, 3, 4
6150 };
6151
6152 static const unsigned short nomodelelement3s[24] =
6153 {
6154         5, 2, 0,
6155         5, 1, 2,
6156         5, 0, 3,
6157         5, 3, 1,
6158         0, 2, 4,
6159         2, 1, 4,
6160         3, 0, 4,
6161         1, 3, 4
6162 };
6163
6164 static const float nomodelvertex3f[6*3] =
6165 {
6166         -16,   0,   0,
6167          16,   0,   0,
6168           0, -16,   0,
6169           0,  16,   0,
6170           0,   0, -16,
6171           0,   0,  16
6172 };
6173
6174 static const float nomodelcolor4f[6*4] =
6175 {
6176         0.0f, 0.0f, 0.5f, 1.0f,
6177         0.0f, 0.0f, 0.5f, 1.0f,
6178         0.0f, 0.5f, 0.0f, 1.0f,
6179         0.0f, 0.5f, 0.0f, 1.0f,
6180         0.5f, 0.0f, 0.0f, 1.0f,
6181         0.5f, 0.0f, 0.0f, 1.0f
6182 };
6183
6184 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6185 {
6186         int i;
6187         float f1, f2, *c;
6188         float color4f[6*4];
6189
6190         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6191
6192         // this is only called once per entity so numsurfaces is always 1, and
6193         // surfacelist is always {0}, so this code does not handle batches
6194
6195         if (rsurface.ent_flags & RENDER_ADDITIVE)
6196         {
6197                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6198                 GL_DepthMask(false);
6199         }
6200         else if (ent->alpha < 1)
6201         {
6202                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6203                 GL_DepthMask(false);
6204         }
6205         else
6206         {
6207                 GL_BlendFunc(GL_ONE, GL_ZERO);
6208                 GL_DepthMask(true);
6209         }
6210         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6211         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6212         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6213         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6214         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6215         for (i = 0, c = color4f;i < 6;i++, c += 4)
6216         {
6217                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6218                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6219                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6220                 c[3] *= ent->alpha;
6221         }
6222         if (r_refdef.fogenabled)
6223         {
6224                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6225                 {
6226                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6227                         f2 = 1 - f1;
6228                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6229                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6230                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6231                 }
6232         }
6233 //      R_Mesh_ResetTextureState();
6234         R_SetupShader_Generic_NoTexture(false, false);
6235         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6236         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6237 }
6238
6239 void R_DrawNoModel(entity_render_t *ent)
6240 {
6241         vec3_t org;
6242         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6243         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6244                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6245         else
6246                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6247 }
6248
6249 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6250 {
6251         vec3_t right1, right2, diff, normal;
6252
6253         VectorSubtract (org2, org1, normal);
6254
6255         // calculate 'right' vector for start
6256         VectorSubtract (r_refdef.view.origin, org1, diff);
6257         CrossProduct (normal, diff, right1);
6258         VectorNormalize (right1);
6259
6260         // calculate 'right' vector for end
6261         VectorSubtract (r_refdef.view.origin, org2, diff);
6262         CrossProduct (normal, diff, right2);
6263         VectorNormalize (right2);
6264
6265         vert[ 0] = org1[0] + width * right1[0];
6266         vert[ 1] = org1[1] + width * right1[1];
6267         vert[ 2] = org1[2] + width * right1[2];
6268         vert[ 3] = org1[0] - width * right1[0];
6269         vert[ 4] = org1[1] - width * right1[1];
6270         vert[ 5] = org1[2] - width * right1[2];
6271         vert[ 6] = org2[0] - width * right2[0];
6272         vert[ 7] = org2[1] - width * right2[1];
6273         vert[ 8] = org2[2] - width * right2[2];
6274         vert[ 9] = org2[0] + width * right2[0];
6275         vert[10] = org2[1] + width * right2[1];
6276         vert[11] = org2[2] + width * right2[2];
6277 }
6278
6279 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6280 {
6281         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6282         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6283         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6284         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6285         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6286         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6287         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6288         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6289         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6290         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6291         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6292         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6293 }
6294
6295 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6296 {
6297         int i;
6298         float *vertex3f;
6299         float v[3];
6300         VectorSet(v, x, y, z);
6301         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6302                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6303                         break;
6304         if (i == mesh->numvertices)
6305         {
6306                 if (mesh->numvertices < mesh->maxvertices)
6307                 {
6308                         VectorCopy(v, vertex3f);
6309                         mesh->numvertices++;
6310                 }
6311                 return mesh->numvertices;
6312         }
6313         else
6314                 return i;
6315 }
6316
6317 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6318 {
6319         int i;
6320         int *e, element[3];
6321         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6322         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6323         e = mesh->element3i + mesh->numtriangles * 3;
6324         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6325         {
6326                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6327                 if (mesh->numtriangles < mesh->maxtriangles)
6328                 {
6329                         *e++ = element[0];
6330                         *e++ = element[1];
6331                         *e++ = element[2];
6332                         mesh->numtriangles++;
6333                 }
6334                 element[1] = element[2];
6335         }
6336 }
6337
6338 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6339 {
6340         int i;
6341         int *e, element[3];
6342         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6343         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6344         e = mesh->element3i + mesh->numtriangles * 3;
6345         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6346         {
6347                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6348                 if (mesh->numtriangles < mesh->maxtriangles)
6349                 {
6350                         *e++ = element[0];
6351                         *e++ = element[1];
6352                         *e++ = element[2];
6353                         mesh->numtriangles++;
6354                 }
6355                 element[1] = element[2];
6356         }
6357 }
6358
6359 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6360 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6361 {
6362         int planenum, planenum2;
6363         int w;
6364         int tempnumpoints;
6365         mplane_t *plane, *plane2;
6366         double maxdist;
6367         double temppoints[2][256*3];
6368         // figure out how large a bounding box we need to properly compute this brush
6369         maxdist = 0;
6370         for (w = 0;w < numplanes;w++)
6371                 maxdist = max(maxdist, fabs(planes[w].dist));
6372         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6373         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6374         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6375         {
6376                 w = 0;
6377                 tempnumpoints = 4;
6378                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6379                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6380                 {
6381                         if (planenum2 == planenum)
6382                                 continue;
6383                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6384                         w = !w;
6385                 }
6386                 if (tempnumpoints < 3)
6387                         continue;
6388                 // generate elements forming a triangle fan for this polygon
6389                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6390         }
6391 }
6392
6393 static qbool R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6394 {
6395         if(parms[0] == 0 && parms[1] == 0)
6396                 return false;
6397         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6398                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6399                         return false;
6400         return true;
6401 }
6402
6403 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6404 {
6405         double index, f;
6406         index = parms[2] + rsurface.shadertime * parms[3];
6407         index -= floor(index);
6408         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6409         {
6410         default:
6411         case Q3WAVEFUNC_NONE:
6412         case Q3WAVEFUNC_NOISE:
6413         case Q3WAVEFUNC_COUNT:
6414                 f = 0;
6415                 break;
6416         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6417         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6418         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6419         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6420         case Q3WAVEFUNC_TRIANGLE:
6421                 index *= 4;
6422                 f = index - floor(index);
6423                 if (index < 1)
6424                 {
6425                         // f = f;
6426                 }
6427                 else if (index < 2)
6428                         f = 1 - f;
6429                 else if (index < 3)
6430                         f = -f;
6431                 else
6432                         f = -(1 - f);
6433                 break;
6434         }
6435         f = parms[0] + parms[1] * f;
6436         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6437                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6438         return (float) f;
6439 }
6440
6441 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6442 {
6443         int w, h, idx;
6444         float shadertime;
6445         float f;
6446         float offsetd[2];
6447         float tcmat[12];
6448         matrix4x4_t matrix, temp;
6449         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6450         // it's better to have one huge fixup every 9 hours than gradual
6451         // degradation over time which looks consistently bad after many hours.
6452         //
6453         // tcmod scroll in particular suffers from this degradation which can't be
6454         // effectively worked around even with floor() tricks because we don't
6455         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6456         // a workaround involving floor() would be incorrect anyway...
6457         shadertime = rsurface.shadertime;
6458         if (shadertime >= 32768.0f)
6459                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6460         switch(tcmod->tcmod)
6461         {
6462                 case Q3TCMOD_COUNT:
6463                 case Q3TCMOD_NONE:
6464                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6465                                 matrix = r_waterscrollmatrix;
6466                         else
6467                                 matrix = identitymatrix;
6468                         break;
6469                 case Q3TCMOD_ENTITYTRANSLATE:
6470                         // this is used in Q3 to allow the gamecode to control texcoord
6471                         // scrolling on the entity, which is not supported in darkplaces yet.
6472                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6473                         break;
6474                 case Q3TCMOD_ROTATE:
6475                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6476                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6477                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6478                         break;
6479                 case Q3TCMOD_SCALE:
6480                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6481                         break;
6482                 case Q3TCMOD_SCROLL:
6483                         // this particular tcmod is a "bug for bug" compatible one with regards to
6484                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6485                         // specifically did the wrapping and so we must mimic that...
6486                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6487                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6488                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6489                         break;
6490                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6491                         w = (int) tcmod->parms[0];
6492                         h = (int) tcmod->parms[1];
6493                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6494                         f = f - floor(f);
6495                         idx = (int) floor(f * w * h);
6496                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6497                         break;
6498                 case Q3TCMOD_STRETCH:
6499                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6500                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6501                         break;
6502                 case Q3TCMOD_TRANSFORM:
6503                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6504                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6505                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6506                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6507                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6508                         break;
6509                 case Q3TCMOD_TURBULENT:
6510                         // this is handled in the RSurf_PrepareVertices function
6511                         matrix = identitymatrix;
6512                         break;
6513         }
6514         temp = *texmatrix;
6515         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6516 }
6517
6518 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6519 {
6520         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6521         char name[MAX_QPATH];
6522         skinframe_t *skinframe;
6523         unsigned char pixels[296*194];
6524         strlcpy(cache->name, skinname, sizeof(cache->name));
6525         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6526         if (developer_loading.integer)
6527                 Con_Printf("loading %s\n", name);
6528         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6529         if (!skinframe || !skinframe->base)
6530         {
6531                 unsigned char *f;
6532                 fs_offset_t filesize;
6533                 skinframe = NULL;
6534                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6535                 if (f)
6536                 {
6537                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6538                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6539                         Mem_Free(f);
6540                 }
6541         }
6542         cache->skinframe = skinframe;
6543 }
6544
6545 texture_t *R_GetCurrentTexture(texture_t *t)
6546 {
6547         int i, q;
6548         const entity_render_t *ent = rsurface.entity;
6549         model_t *model = ent->model; // when calling this, ent must not be NULL
6550         q3shaderinfo_layer_tcmod_t *tcmod;
6551         float specularscale = 0.0f;
6552
6553         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6554                 return t->currentframe;
6555         t->update_lastrenderframe = r_textureframe;
6556         t->update_lastrenderentity = (void *)ent;
6557
6558         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6559                 t->camera_entity = ent->entitynumber;
6560         else
6561                 t->camera_entity = 0;
6562
6563         // switch to an alternate material if this is a q1bsp animated material
6564         {
6565                 texture_t *texture = t;
6566                 int s = rsurface.ent_skinnum;
6567                 if ((unsigned int)s >= (unsigned int)model->numskins)
6568                         s = 0;
6569                 if (model->skinscenes)
6570                 {
6571                         if (model->skinscenes[s].framecount > 1)
6572                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6573                         else
6574                                 s = model->skinscenes[s].firstframe;
6575                 }
6576                 if (s > 0)
6577                         t = t + s * model->num_surfaces;
6578                 if (t->animated)
6579                 {
6580                         // use an alternate animation if the entity's frame is not 0,
6581                         // and only if the texture has an alternate animation
6582                         if (t->animated == 2) // q2bsp
6583                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6584                         else if (rsurface.ent_alttextures && t->anim_total[1])
6585                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6586                         else
6587                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6588                 }
6589                 texture->currentframe = t;
6590         }
6591
6592         // update currentskinframe to be a qw skin or animation frame
6593         if (rsurface.ent_qwskin >= 0)
6594         {
6595                 i = rsurface.ent_qwskin;
6596                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6597                 {
6598                         r_qwskincache_size = cl.maxclients;
6599                         if (r_qwskincache)
6600                                 Mem_Free(r_qwskincache);
6601                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6602                 }
6603                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6604                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6605                 t->currentskinframe = r_qwskincache[i].skinframe;
6606                 if (t->materialshaderpass && t->currentskinframe == NULL)
6607                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6608         }
6609         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6610                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6611         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6612                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6613
6614         t->currentmaterialflags = t->basematerialflags;
6615         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6616         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6617                 t->currentalpha *= r_wateralpha.value;
6618         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6619                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6620         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6621                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6622
6623         // decide on which type of lighting to use for this surface
6624         if (rsurface.entity->render_modellight_forced)
6625                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6626         if (rsurface.entity->render_rtlight_disabled)
6627                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6628         if (rsurface.entity->render_lightgrid)
6629                 t->currentmaterialflags |= MATERIALFLAG_LIGHTGRID;
6630         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6631         {
6632                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6633                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NORTLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6634                 for (q = 0; q < 3; q++)
6635                 {
6636                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6637                         t->render_modellight_lightdir_world[q] = q == 2;
6638                         t->render_modellight_lightdir_local[q] = q == 2;
6639                         t->render_modellight_ambient[q] = 1;
6640                         t->render_modellight_diffuse[q] = 0;
6641                         t->render_modellight_specular[q] = 0;
6642                         t->render_lightmap_ambient[q] = 0;
6643                         t->render_lightmap_diffuse[q] = 0;
6644                         t->render_lightmap_specular[q] = 0;
6645                         t->render_rtlight_diffuse[q] = 0;
6646                         t->render_rtlight_specular[q] = 0;
6647                 }
6648         }
6649         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6650         {
6651                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6652                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6653                 for (q = 0; q < 3; q++)
6654                 {
6655                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6656                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6657                         t->render_modellight_lightdir_world[q] = q == 2;
6658                         t->render_modellight_lightdir_local[q] = q == 2;
6659                         t->render_modellight_diffuse[q] = 0;
6660                         t->render_modellight_specular[q] = 0;
6661                         t->render_lightmap_ambient[q] = 0;
6662                         t->render_lightmap_diffuse[q] = 0;
6663                         t->render_lightmap_specular[q] = 0;
6664                         t->render_rtlight_diffuse[q] = 0;
6665                         t->render_rtlight_specular[q] = 0;
6666                 }
6667         }
6668         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
6669         {
6670                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6671                 for (q = 0; q < 3; q++)
6672                 {
6673                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6674                         t->render_modellight_lightdir_world[q] = q == 2;
6675                         t->render_modellight_lightdir_local[q] = q == 2;
6676                         t->render_modellight_ambient[q] = 0;
6677                         t->render_modellight_diffuse[q] = 0;
6678                         t->render_modellight_specular[q] = 0;
6679                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6680                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6681                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6682                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6683                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6684                 }
6685         }
6686         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6687         {
6688                 // ambient + single direction light (modellight)
6689                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6690                 for (q = 0; q < 3; q++)
6691                 {
6692                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6693                         t->render_modellight_lightdir_world[q] = rsurface.entity->render_modellight_lightdir_world[q];
6694                         t->render_modellight_lightdir_local[q] = rsurface.entity->render_modellight_lightdir_local[q];
6695                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6696                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6697                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6698                         t->render_lightmap_ambient[q] = 0;
6699                         t->render_lightmap_diffuse[q] = 0;
6700                         t->render_lightmap_specular[q] = 0;
6701                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6702                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6703                 }
6704         }
6705         else
6706         {
6707                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6708                 for (q = 0; q < 3; q++)
6709                 {
6710                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6711                         t->render_modellight_lightdir_world[q] = q == 2;
6712                         t->render_modellight_lightdir_local[q] = q == 2;
6713                         t->render_modellight_ambient[q] = 0;
6714                         t->render_modellight_diffuse[q] = 0;
6715                         t->render_modellight_specular[q] = 0;
6716                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6717                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6718                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6719                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6720                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6721                 }
6722         }
6723
6724         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6725         {
6726                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6727                 // attribute, we punt it to the lightmap path and hope for the best,
6728                 // but lighting doesn't work.
6729                 //
6730                 // FIXME: this is fine for effects but CSQC polygons should be subject
6731                 // to lighting.
6732                 t->currentmaterialflags &= ~(MATERIALFLAG_MODELLIGHT | MATERIALFLAG_LIGHTGRID);
6733                 for (q = 0; q < 3; q++)
6734                 {
6735                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6736                         t->render_modellight_lightdir_world[q] = q == 2;
6737                         t->render_modellight_lightdir_local[q] = q == 2;
6738                         t->render_modellight_ambient[q] = 0;
6739                         t->render_modellight_diffuse[q] = 0;
6740                         t->render_modellight_specular[q] = 0;
6741                         t->render_lightmap_ambient[q] = 0;
6742                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6743                         t->render_lightmap_specular[q] = 0;
6744                         t->render_rtlight_diffuse[q] = 0;
6745                         t->render_rtlight_specular[q] = 0;
6746                 }
6747         }
6748
6749         for (q = 0; q < 3; q++)
6750         {
6751                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6752                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6753         }
6754
6755         if (rsurface.ent_flags & RENDER_ADDITIVE)
6756                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6757         else if (t->currentalpha < 1)
6758                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6759         // LadyHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6760         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6761                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6762         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6763                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6764         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6765                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6766         if (t->backgroundshaderpass)
6767                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6768         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6769         {
6770                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6771                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6772         }
6773         else
6774                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6775         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6776         {
6777                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6778                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6779         }
6780         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6781                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6782
6783         // there is no tcmod
6784         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6785         {
6786                 t->currenttexmatrix = r_waterscrollmatrix;
6787                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6788         }
6789         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6790         {
6791                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6792                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6793         }
6794
6795         if (t->materialshaderpass)
6796                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6797                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6798
6799         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6800         if (t->currentskinframe->qpixels)
6801                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6802         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6803         if (!t->basetexture)
6804                 t->basetexture = r_texture_notexture;
6805         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6806         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6807         t->nmaptexture = t->currentskinframe->nmap;
6808         if (!t->nmaptexture)
6809                 t->nmaptexture = r_texture_blanknormalmap;
6810         t->glosstexture = r_texture_black;
6811         t->glowtexture = t->currentskinframe->glow;
6812         t->fogtexture = t->currentskinframe->fog;
6813         t->reflectmasktexture = t->currentskinframe->reflect;
6814         if (t->backgroundshaderpass)
6815         {
6816                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6817                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6818                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6819                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6820                 t->backgroundglosstexture = r_texture_black;
6821                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6822                 if (!t->backgroundnmaptexture)
6823                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6824                 // make sure that if glow is going to be used, both textures are not NULL
6825                 if (!t->backgroundglowtexture && t->glowtexture)
6826                         t->backgroundglowtexture = r_texture_black;
6827                 if (!t->glowtexture && t->backgroundglowtexture)
6828                         t->glowtexture = r_texture_black;
6829         }
6830         else
6831         {
6832                 t->backgroundbasetexture = r_texture_white;
6833                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6834                 t->backgroundglosstexture = r_texture_black;
6835                 t->backgroundglowtexture = NULL;
6836         }
6837         t->specularpower = r_shadow_glossexponent.value;
6838         // TODO: store reference values for these in the texture?
6839         if (r_shadow_gloss.integer > 0)
6840         {
6841                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6842                 {
6843                         if (r_shadow_glossintensity.value > 0)
6844                         {
6845                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6846                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6847                                 specularscale = r_shadow_glossintensity.value;
6848                         }
6849                 }
6850                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6851                 {
6852                         t->glosstexture = r_texture_white;
6853                         t->backgroundglosstexture = r_texture_white;
6854                         specularscale = r_shadow_gloss2intensity.value;
6855                         t->specularpower = r_shadow_gloss2exponent.value;
6856                 }
6857         }
6858         specularscale *= t->specularscalemod;
6859         t->specularpower *= t->specularpowermod;
6860
6861         // lightmaps mode looks bad with dlights using actual texturing, so turn
6862         // off the colormap and glossmap, but leave the normalmap on as it still
6863         // accurately represents the shading involved
6864         if (gl_lightmaps.integer && ent != &cl_meshentities[MESH_UI].render)
6865         {
6866                 t->basetexture = r_texture_grey128;
6867                 t->pantstexture = r_texture_black;
6868                 t->shirttexture = r_texture_black;
6869                 if (gl_lightmaps.integer < 2)
6870                         t->nmaptexture = r_texture_blanknormalmap;
6871                 t->glosstexture = r_texture_black;
6872                 t->glowtexture = NULL;
6873                 t->fogtexture = NULL;
6874                 t->reflectmasktexture = NULL;
6875                 t->backgroundbasetexture = NULL;
6876                 if (gl_lightmaps.integer < 2)
6877                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6878                 t->backgroundglosstexture = r_texture_black;
6879                 t->backgroundglowtexture = NULL;
6880                 specularscale = 0;
6881                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6882         }
6883
6884         if (specularscale != 1.0f)
6885         {
6886                 for (q = 0; q < 3; q++)
6887                 {
6888                         t->render_modellight_specular[q] *= specularscale;
6889                         t->render_lightmap_specular[q] *= specularscale;
6890                         t->render_rtlight_specular[q] *= specularscale;
6891                 }
6892         }
6893
6894         t->currentblendfunc[0] = GL_ONE;
6895         t->currentblendfunc[1] = GL_ZERO;
6896         if (t->currentmaterialflags & MATERIALFLAG_ADD)
6897         {
6898                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6899                 t->currentblendfunc[1] = GL_ONE;
6900         }
6901         else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6902         {
6903                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6904                 t->currentblendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
6905         }
6906         else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6907         {
6908                 t->currentblendfunc[0] = t->customblendfunc[0];
6909                 t->currentblendfunc[1] = t->customblendfunc[1];
6910         }
6911
6912         return t;
6913 }
6914
6915 rsurfacestate_t rsurface;
6916
6917 void RSurf_ActiveModelEntity(const entity_render_t *ent, qbool wantnormals, qbool wanttangents, qbool prepass)
6918 {
6919         model_t *model = ent->model;
6920         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
6921         //      return;
6922         rsurface.entity = (entity_render_t *)ent;
6923         rsurface.skeleton = ent->skeleton;
6924         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
6925         rsurface.ent_skinnum = ent->skinnum;
6926         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
6927         rsurface.ent_flags = ent->flags;
6928         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
6929                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
6930         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
6931         rsurface.matrix = ent->matrix;
6932         rsurface.inversematrix = ent->inversematrix;
6933         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
6934         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
6935         R_EntityMatrix(&rsurface.matrix);
6936         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
6937         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
6938         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
6939         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
6940         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
6941         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
6942         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
6943         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
6944         rsurface.basepolygonfactor = r_refdef.polygonfactor;
6945         rsurface.basepolygonoffset = r_refdef.polygonoffset;
6946         if (ent->model->brush.submodel && !prepass)
6947         {
6948                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
6949                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
6950         }
6951         // if the animcache code decided it should use the shader path, skip the deform step
6952         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
6953         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
6954         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
6955         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
6956         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
6957         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
6958         {
6959                 if (ent->animcache_vertex3f)
6960                 {
6961                         r_refdef.stats[r_stat_batch_entitycache_count]++;
6962                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
6963                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
6964                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
6965                         rsurface.modelvertex3f = ent->animcache_vertex3f;
6966                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
6967                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
6968                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
6969                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
6970                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
6971                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
6972                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
6973                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
6974                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
6975                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
6976                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
6977                 }
6978                 else if (wanttangents)
6979                 {
6980                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
6981                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
6982                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
6983                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
6984                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6985                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6986                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6987                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6988                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
6989                         rsurface.modelvertex3f_vertexbuffer = NULL;
6990                         rsurface.modelvertex3f_bufferoffset = 0;
6991                         rsurface.modelvertex3f_vertexbuffer = 0;
6992                         rsurface.modelvertex3f_bufferoffset = 0;
6993                         rsurface.modelsvector3f_vertexbuffer = 0;
6994                         rsurface.modelsvector3f_bufferoffset = 0;
6995                         rsurface.modeltvector3f_vertexbuffer = 0;
6996                         rsurface.modeltvector3f_bufferoffset = 0;
6997                         rsurface.modelnormal3f_vertexbuffer = 0;
6998                         rsurface.modelnormal3f_bufferoffset = 0;
6999                 }
7000                 else if (wantnormals)
7001                 {
7002                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7003                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7004                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7005                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7006                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7007                         rsurface.modelsvector3f = NULL;
7008                         rsurface.modeltvector3f = NULL;
7009                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7010                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7011                         rsurface.modelvertex3f_vertexbuffer = NULL;
7012                         rsurface.modelvertex3f_bufferoffset = 0;
7013                         rsurface.modelvertex3f_vertexbuffer = 0;
7014                         rsurface.modelvertex3f_bufferoffset = 0;
7015                         rsurface.modelsvector3f_vertexbuffer = 0;
7016                         rsurface.modelsvector3f_bufferoffset = 0;
7017                         rsurface.modeltvector3f_vertexbuffer = 0;
7018                         rsurface.modeltvector3f_bufferoffset = 0;
7019                         rsurface.modelnormal3f_vertexbuffer = 0;
7020                         rsurface.modelnormal3f_bufferoffset = 0;
7021                 }
7022                 else
7023                 {
7024                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7025                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7026                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7027                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7028                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7029                         rsurface.modelsvector3f = NULL;
7030                         rsurface.modeltvector3f = NULL;
7031                         rsurface.modelnormal3f = NULL;
7032                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7033                         rsurface.modelvertex3f_vertexbuffer = NULL;
7034                         rsurface.modelvertex3f_bufferoffset = 0;
7035                         rsurface.modelvertex3f_vertexbuffer = 0;
7036                         rsurface.modelvertex3f_bufferoffset = 0;
7037                         rsurface.modelsvector3f_vertexbuffer = 0;
7038                         rsurface.modelsvector3f_bufferoffset = 0;
7039                         rsurface.modeltvector3f_vertexbuffer = 0;
7040                         rsurface.modeltvector3f_bufferoffset = 0;
7041                         rsurface.modelnormal3f_vertexbuffer = 0;
7042                         rsurface.modelnormal3f_bufferoffset = 0;
7043                 }
7044                 rsurface.modelgeneratedvertex = true;
7045         }
7046         else
7047         {
7048                 if (rsurface.entityskeletaltransform3x4)
7049                 {
7050                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7051                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7052                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7053                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7054                 }
7055                 else
7056                 {
7057                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7058                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7059                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7060                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7061                 }
7062                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7063                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.data_vertex3f_vertexbuffer;
7064                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.data_vertex3f_bufferoffset;
7065                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7066                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.data_svector3f_vertexbuffer;
7067                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.data_svector3f_bufferoffset;
7068                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7069                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.data_tvector3f_vertexbuffer;
7070                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.data_tvector3f_bufferoffset;
7071                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7072                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.data_normal3f_vertexbuffer;
7073                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.data_normal3f_bufferoffset;
7074                 rsurface.modelgeneratedvertex = false;
7075         }
7076         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7077         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.data_lightmapcolor4f_vertexbuffer;
7078         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.data_lightmapcolor4f_bufferoffset;
7079         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7080         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.data_texcoordtexture2f_vertexbuffer;
7081         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.data_texcoordtexture2f_bufferoffset;
7082         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7083         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.data_texcoordlightmap2f_vertexbuffer;
7084         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.data_texcoordlightmap2f_bufferoffset;
7085         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7086         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.data_skeletalindex4ub_vertexbuffer;
7087         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.data_skeletalindex4ub_bufferoffset;
7088         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7089         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.data_skeletalweight4ub_vertexbuffer;
7090         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.data_skeletalweight4ub_bufferoffset;
7091         rsurface.modelelement3i = model->surfmesh.data_element3i;
7092         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7093         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7094         rsurface.modelelement3s = model->surfmesh.data_element3s;
7095         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7096         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7097         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7098         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7099         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7100         rsurface.modelsurfaces = model->data_surfaces;
7101         rsurface.batchgeneratedvertex = false;
7102         rsurface.batchfirstvertex = 0;
7103         rsurface.batchnumvertices = 0;
7104         rsurface.batchfirsttriangle = 0;
7105         rsurface.batchnumtriangles = 0;
7106         rsurface.batchvertex3f  = NULL;
7107         rsurface.batchvertex3f_vertexbuffer = NULL;
7108         rsurface.batchvertex3f_bufferoffset = 0;
7109         rsurface.batchsvector3f = NULL;
7110         rsurface.batchsvector3f_vertexbuffer = NULL;
7111         rsurface.batchsvector3f_bufferoffset = 0;
7112         rsurface.batchtvector3f = NULL;
7113         rsurface.batchtvector3f_vertexbuffer = NULL;
7114         rsurface.batchtvector3f_bufferoffset = 0;
7115         rsurface.batchnormal3f  = NULL;
7116         rsurface.batchnormal3f_vertexbuffer = NULL;
7117         rsurface.batchnormal3f_bufferoffset = 0;
7118         rsurface.batchlightmapcolor4f = NULL;
7119         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7120         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7121         rsurface.batchtexcoordtexture2f = NULL;
7122         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7123         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7124         rsurface.batchtexcoordlightmap2f = NULL;
7125         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7126         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7127         rsurface.batchskeletalindex4ub = NULL;
7128         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7129         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7130         rsurface.batchskeletalweight4ub = NULL;
7131         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7132         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7133         rsurface.batchelement3i = NULL;
7134         rsurface.batchelement3i_indexbuffer = NULL;
7135         rsurface.batchelement3i_bufferoffset = 0;
7136         rsurface.batchelement3s = NULL;
7137         rsurface.batchelement3s_indexbuffer = NULL;
7138         rsurface.batchelement3s_bufferoffset = 0;
7139         rsurface.forcecurrenttextureupdate = false;
7140 }
7141
7142 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qbool wantnormals, qbool wanttangents)
7143 {
7144         rsurface.entity = r_refdef.scene.worldentity;
7145         if (r != 1.0f || g != 1.0f || b != 1.0f || a != 1.0f) {
7146                 // HACK to provide a valid entity with modded colors to R_GetCurrentTexture.
7147                 // A better approach could be making this copy only once per frame.
7148                 static entity_render_t custom_entity;
7149                 int q;
7150                 custom_entity = *rsurface.entity;
7151                 for (q = 0; q < 3; ++q) {
7152                         float colormod = q == 0 ? r : q == 1 ? g : b;
7153                         custom_entity.render_fullbright[q] *= colormod;
7154                         custom_entity.render_modellight_ambient[q] *= colormod;
7155                         custom_entity.render_modellight_diffuse[q] *= colormod;
7156                         custom_entity.render_lightmap_ambient[q] *= colormod;
7157                         custom_entity.render_lightmap_diffuse[q] *= colormod;
7158                         custom_entity.render_rtlight_diffuse[q] *= colormod;
7159                 }
7160                 custom_entity.alpha *= a;
7161                 rsurface.entity = &custom_entity;
7162         }
7163         rsurface.skeleton = NULL;
7164         rsurface.ent_skinnum = 0;
7165         rsurface.ent_qwskin = -1;
7166         rsurface.ent_flags = entflags;
7167         rsurface.shadertime = r_refdef.scene.time - shadertime;
7168         rsurface.modelnumvertices = numvertices;
7169         rsurface.modelnumtriangles = numtriangles;
7170         rsurface.matrix = *matrix;
7171         rsurface.inversematrix = *inversematrix;
7172         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7173         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7174         R_EntityMatrix(&rsurface.matrix);
7175         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7176         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7177         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7178         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7179         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7180         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7181         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7182         rsurface.frameblend[0].lerp = 1;
7183         rsurface.ent_alttextures = false;
7184         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7185         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7186         rsurface.entityskeletaltransform3x4 = NULL;
7187         rsurface.entityskeletaltransform3x4buffer = NULL;
7188         rsurface.entityskeletaltransform3x4offset = 0;
7189         rsurface.entityskeletaltransform3x4size = 0;
7190         rsurface.entityskeletalnumtransforms = 0;
7191         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7192         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7193         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7194         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7195         if (wanttangents)
7196         {
7197                 rsurface.modelvertex3f = (float *)vertex3f;
7198                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7199                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7200                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7201         }
7202         else if (wantnormals)
7203         {
7204                 rsurface.modelvertex3f = (float *)vertex3f;
7205                 rsurface.modelsvector3f = NULL;
7206                 rsurface.modeltvector3f = NULL;
7207                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7208         }
7209         else
7210         {
7211                 rsurface.modelvertex3f = (float *)vertex3f;
7212                 rsurface.modelsvector3f = NULL;
7213                 rsurface.modeltvector3f = NULL;
7214                 rsurface.modelnormal3f = NULL;
7215         }
7216         rsurface.modelvertex3f_vertexbuffer = 0;
7217         rsurface.modelvertex3f_bufferoffset = 0;
7218         rsurface.modelsvector3f_vertexbuffer = 0;
7219         rsurface.modelsvector3f_bufferoffset = 0;
7220         rsurface.modeltvector3f_vertexbuffer = 0;
7221         rsurface.modeltvector3f_bufferoffset = 0;
7222         rsurface.modelnormal3f_vertexbuffer = 0;
7223         rsurface.modelnormal3f_bufferoffset = 0;
7224         rsurface.modelgeneratedvertex = true;
7225         rsurface.modellightmapcolor4f  = (float *)color4f;
7226         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7227         rsurface.modellightmapcolor4f_bufferoffset = 0;
7228         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7229         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7230         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7231         rsurface.modeltexcoordlightmap2f  = NULL;
7232         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7233         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7234         rsurface.modelskeletalindex4ub = NULL;
7235         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7236         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7237         rsurface.modelskeletalweight4ub = NULL;
7238         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7239         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7240         rsurface.modelelement3i = (int *)element3i;
7241         rsurface.modelelement3i_indexbuffer = NULL;
7242         rsurface.modelelement3i_bufferoffset = 0;
7243         rsurface.modelelement3s = (unsigned short *)element3s;
7244         rsurface.modelelement3s_indexbuffer = NULL;
7245         rsurface.modelelement3s_bufferoffset = 0;
7246         rsurface.modellightmapoffsets = NULL;
7247         rsurface.modelsurfaces = NULL;
7248         rsurface.batchgeneratedvertex = false;
7249         rsurface.batchfirstvertex = 0;
7250         rsurface.batchnumvertices = 0;
7251         rsurface.batchfirsttriangle = 0;
7252         rsurface.batchnumtriangles = 0;
7253         rsurface.batchvertex3f  = NULL;
7254         rsurface.batchvertex3f_vertexbuffer = NULL;
7255         rsurface.batchvertex3f_bufferoffset = 0;
7256         rsurface.batchsvector3f = NULL;
7257         rsurface.batchsvector3f_vertexbuffer = NULL;
7258         rsurface.batchsvector3f_bufferoffset = 0;
7259         rsurface.batchtvector3f = NULL;
7260         rsurface.batchtvector3f_vertexbuffer = NULL;
7261         rsurface.batchtvector3f_bufferoffset = 0;
7262         rsurface.batchnormal3f  = NULL;
7263         rsurface.batchnormal3f_vertexbuffer = NULL;
7264         rsurface.batchnormal3f_bufferoffset = 0;
7265         rsurface.batchlightmapcolor4f = NULL;
7266         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7267         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7268         rsurface.batchtexcoordtexture2f = NULL;
7269         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7270         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7271         rsurface.batchtexcoordlightmap2f = NULL;
7272         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7273         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7274         rsurface.batchskeletalindex4ub = NULL;
7275         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7276         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7277         rsurface.batchskeletalweight4ub = NULL;
7278         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7279         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7280         rsurface.batchelement3i = NULL;
7281         rsurface.batchelement3i_indexbuffer = NULL;
7282         rsurface.batchelement3i_bufferoffset = 0;
7283         rsurface.batchelement3s = NULL;
7284         rsurface.batchelement3s_indexbuffer = NULL;
7285         rsurface.batchelement3s_bufferoffset = 0;
7286         rsurface.forcecurrenttextureupdate = true;
7287
7288         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7289         {
7290                 if ((wantnormals || wanttangents) && !normal3f)
7291                 {
7292                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7293                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7294                 }
7295                 if (wanttangents && !svector3f)
7296                 {
7297                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7298                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7299                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7300                 }
7301         }
7302 }
7303
7304 float RSurf_FogPoint(const float *v)
7305 {
7306         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7307         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7308         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7309         float FogHeightFade = r_refdef.fogheightfade;
7310         float fogfrac;
7311         unsigned int fogmasktableindex;
7312         if (r_refdef.fogplaneviewabove)
7313                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7314         else
7315                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7316         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7317         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7318 }
7319
7320 float RSurf_FogVertex(const float *v)
7321 {
7322         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7323         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7324         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7325         float FogHeightFade = rsurface.fogheightfade;
7326         float fogfrac;
7327         unsigned int fogmasktableindex;
7328         if (r_refdef.fogplaneviewabove)
7329                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7330         else
7331                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7332         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7333         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7334 }
7335
7336 void RSurf_UploadBuffersForBatch(void)
7337 {
7338         // upload buffer data for generated vertex data (dynamicvertex case) or index data (copytriangles case) and models that lack it to begin with (e.g. DrawQ_FlushUI)
7339         // note that if rsurface.batchvertex3f_vertexbuffer is NULL, dynamicvertex is forced as we don't account for the proper base vertex here.
7340         if (rsurface.batchvertex3f && !rsurface.batchvertex3f_vertexbuffer)
7341                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
7342         if (rsurface.batchsvector3f && !rsurface.batchsvector3f_vertexbuffer)
7343                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
7344         if (rsurface.batchtvector3f && !rsurface.batchtvector3f_vertexbuffer)
7345                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
7346         if (rsurface.batchnormal3f && !rsurface.batchnormal3f_vertexbuffer)
7347                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
7348         if (rsurface.batchlightmapcolor4f && !rsurface.batchlightmapcolor4f_vertexbuffer)
7349                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
7350         if (rsurface.batchtexcoordtexture2f && !rsurface.batchtexcoordtexture2f_vertexbuffer)
7351                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
7352         if (rsurface.batchtexcoordlightmap2f && !rsurface.batchtexcoordlightmap2f_vertexbuffer)
7353                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
7354         if (rsurface.batchskeletalindex4ub && !rsurface.batchskeletalindex4ub_vertexbuffer)
7355                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
7356         if (rsurface.batchskeletalweight4ub && !rsurface.batchskeletalweight4ub_vertexbuffer)
7357                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
7358
7359         if (rsurface.batchelement3s && !rsurface.batchelement3s_indexbuffer)
7360                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7361         else if (rsurface.batchelement3i && !rsurface.batchelement3i_indexbuffer)
7362                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7363
7364         R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
7365         R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
7366         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
7367         R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
7368         R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
7369         R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
7370         R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
7371         R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
7372         R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
7373         R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
7374 }
7375
7376 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7377 {
7378         int i;
7379         for (i = 0;i < numelements;i++)
7380                 outelement3i[i] = inelement3i[i] + adjust;
7381 }
7382
7383 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7384 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7385 {
7386         int deformindex;
7387         int firsttriangle;
7388         int numtriangles;
7389         int firstvertex;
7390         int endvertex;
7391         int numvertices;
7392         int surfacefirsttriangle;
7393         int surfacenumtriangles;
7394         int surfacefirstvertex;
7395         int surfaceendvertex;
7396         int surfacenumvertices;
7397         int batchnumsurfaces = texturenumsurfaces;
7398         int batchnumvertices;
7399         int batchnumtriangles;
7400         int i, j;
7401         qbool gaps;
7402         qbool dynamicvertex;
7403         float amplitude;
7404         float animpos;
7405         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7406         float waveparms[4];
7407         unsigned char *ub;
7408         q3shaderinfo_deform_t *deform;
7409         const msurface_t *surface, *firstsurface;
7410         if (!texturenumsurfaces)
7411                 return;
7412         // find vertex range of this surface batch
7413         gaps = false;
7414         firstsurface = texturesurfacelist[0];
7415         firsttriangle = firstsurface->num_firsttriangle;
7416         batchnumvertices = 0;
7417         batchnumtriangles = 0;
7418         firstvertex = endvertex = firstsurface->num_firstvertex;
7419         for (i = 0;i < texturenumsurfaces;i++)
7420         {
7421                 surface = texturesurfacelist[i];
7422                 if (surface != firstsurface + i)
7423                         gaps = true;
7424                 surfacefirstvertex = surface->num_firstvertex;
7425                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7426                 surfacenumvertices = surface->num_vertices;
7427                 surfacenumtriangles = surface->num_triangles;
7428                 if (firstvertex > surfacefirstvertex)
7429                         firstvertex = surfacefirstvertex;
7430                 if (endvertex < surfaceendvertex)
7431                         endvertex = surfaceendvertex;
7432                 batchnumvertices += surfacenumvertices;
7433                 batchnumtriangles += surfacenumtriangles;
7434         }
7435
7436         r_refdef.stats[r_stat_batch_batches]++;
7437         if (gaps)
7438                 r_refdef.stats[r_stat_batch_withgaps]++;
7439         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7440         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7441         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7442
7443         // we now know the vertex range used, and if there are any gaps in it
7444         rsurface.batchfirstvertex = firstvertex;
7445         rsurface.batchnumvertices = endvertex - firstvertex;
7446         rsurface.batchfirsttriangle = firsttriangle;
7447         rsurface.batchnumtriangles = batchnumtriangles;
7448
7449         // check if any dynamic vertex processing must occur
7450         dynamicvertex = false;
7451
7452         // we must use vertexbuffers for rendering, we can upload vertex buffers
7453         // easily enough but if the basevertex is non-zero it becomes more
7454         // difficult, so force dynamicvertex path in that case - it's suboptimal
7455         // but the most optimal case is to have the geometry sources provide their
7456         // own anyway.
7457         if (!rsurface.modelvertex3f_vertexbuffer && firstvertex != 0)
7458                 dynamicvertex = true;
7459
7460         // a cvar to force the dynamic vertex path to be taken, for debugging
7461         if (r_batch_debugdynamicvertexpath.integer)
7462         {
7463                 if (!dynamicvertex)
7464                 {
7465                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7466                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7467                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7468                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7469                 }
7470                 dynamicvertex = true;
7471         }
7472
7473         // if there is a chance of animated vertex colors, it's a dynamic batch
7474         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7475         {
7476                 if (!dynamicvertex)
7477                 {
7478                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7479                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7480                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7481                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7482                 }
7483                 dynamicvertex = true;
7484         }
7485
7486         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7487         {
7488                 switch (deform->deform)
7489                 {
7490                 default:
7491                 case Q3DEFORM_PROJECTIONSHADOW:
7492                 case Q3DEFORM_TEXT0:
7493                 case Q3DEFORM_TEXT1:
7494                 case Q3DEFORM_TEXT2:
7495                 case Q3DEFORM_TEXT3:
7496                 case Q3DEFORM_TEXT4:
7497                 case Q3DEFORM_TEXT5:
7498                 case Q3DEFORM_TEXT6:
7499                 case Q3DEFORM_TEXT7:
7500                 case Q3DEFORM_NONE:
7501                         break;
7502                 case Q3DEFORM_AUTOSPRITE:
7503                         if (!dynamicvertex)
7504                         {
7505                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7506                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7507                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7508                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7509                         }
7510                         dynamicvertex = true;
7511                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7512                         break;
7513                 case Q3DEFORM_AUTOSPRITE2:
7514                         if (!dynamicvertex)
7515                         {
7516                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7517                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7518                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7519                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7520                         }
7521                         dynamicvertex = true;
7522                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7523                         break;
7524                 case Q3DEFORM_NORMAL:
7525                         if (!dynamicvertex)
7526                         {
7527                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7528                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7529                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7530                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7531                         }
7532                         dynamicvertex = true;
7533                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7534                         break;
7535                 case Q3DEFORM_WAVE:
7536                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7537                                 break; // if wavefunc is a nop, ignore this transform
7538                         if (!dynamicvertex)
7539                         {
7540                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7541                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7542                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7543                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7544                         }
7545                         dynamicvertex = true;
7546                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7547                         break;
7548                 case Q3DEFORM_BULGE:
7549                         if (!dynamicvertex)
7550                         {
7551                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7552                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7553                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7554                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7555                         }
7556                         dynamicvertex = true;
7557                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7558                         break;
7559                 case Q3DEFORM_MOVE:
7560                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7561                                 break; // if wavefunc is a nop, ignore this transform
7562                         if (!dynamicvertex)
7563                         {
7564                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7565                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7566                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7567                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7568                         }
7569                         dynamicvertex = true;
7570                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7571                         break;
7572                 }
7573         }
7574         if (rsurface.texture->materialshaderpass)
7575         {
7576                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7577                 {
7578                 default:
7579                 case Q3TCGEN_TEXTURE:
7580                         break;
7581                 case Q3TCGEN_LIGHTMAP:
7582                         if (!dynamicvertex)
7583                         {
7584                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7585                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7586                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7587                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7588                         }
7589                         dynamicvertex = true;
7590                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7591                         break;
7592                 case Q3TCGEN_VECTOR:
7593                         if (!dynamicvertex)
7594                         {
7595                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7596                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7597                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7598                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7599                         }
7600                         dynamicvertex = true;
7601                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7602                         break;
7603                 case Q3TCGEN_ENVIRONMENT:
7604                         if (!dynamicvertex)
7605                         {
7606                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7607                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7608                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7609                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7610                         }
7611                         dynamicvertex = true;
7612                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7613                         break;
7614                 }
7615                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7616                 {
7617                         if (!dynamicvertex)
7618                         {
7619                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7620                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7621                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7622                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7623                         }
7624                         dynamicvertex = true;
7625                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7626                 }
7627         }
7628
7629         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7630         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7631         // we ensure this by treating the vertex batch as dynamic...
7632         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7633         {
7634                 if (!dynamicvertex)
7635                 {
7636                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7637                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7638                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7639                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7640                 }
7641                 dynamicvertex = true;
7642         }
7643
7644         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7645         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7646                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7647
7648         rsurface.batchvertex3f = rsurface.modelvertex3f;
7649         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7650         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7651         rsurface.batchsvector3f = rsurface.modelsvector3f;
7652         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7653         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7654         rsurface.batchtvector3f = rsurface.modeltvector3f;
7655         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7656         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7657         rsurface.batchnormal3f = rsurface.modelnormal3f;
7658         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7659         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7660         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7661         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7662         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7663         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7664         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7665         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7666         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7667         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7668         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7669         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7670         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7671         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7672         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7673         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7674         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7675         rsurface.batchelement3i = rsurface.modelelement3i;
7676         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7677         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7678         rsurface.batchelement3s = rsurface.modelelement3s;
7679         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7680         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7681         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7682         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7683         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7684         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7685         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7686
7687         // if any dynamic vertex processing has to occur in software, we copy the
7688         // entire surface list together before processing to rebase the vertices
7689         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7690         //
7691         // if any gaps exist and we do not have a static vertex buffer, we have to
7692         // copy the surface list together to avoid wasting upload bandwidth on the
7693         // vertices in the gaps.
7694         //
7695         // if gaps exist and we have a static vertex buffer, we can choose whether
7696         // to combine the index buffer ranges into one dynamic index buffer or
7697         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7698         //
7699         // in many cases the batch is reduced to one draw call.
7700
7701         rsurface.batchmultidraw = false;
7702         rsurface.batchmultidrawnumsurfaces = 0;
7703         rsurface.batchmultidrawsurfacelist = NULL;
7704
7705         if (!dynamicvertex)
7706         {
7707                 // static vertex data, just set pointers...
7708                 rsurface.batchgeneratedvertex = false;
7709                 // if there are gaps, we want to build a combined index buffer,
7710                 // otherwise use the original static buffer with an appropriate offset
7711                 if (gaps)
7712                 {
7713                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7714                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7715                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7716                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7717                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7718                         {
7719                                 rsurface.batchmultidraw = true;
7720                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7721                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7722                                 return;
7723                         }
7724                         // build a new triangle elements array for this batch
7725                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7726                         rsurface.batchfirsttriangle = 0;
7727                         numtriangles = 0;
7728                         for (i = 0;i < texturenumsurfaces;i++)
7729                         {
7730                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7731                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7732                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7733                                 numtriangles += surfacenumtriangles;
7734                         }
7735                         rsurface.batchelement3i_indexbuffer = NULL;
7736                         rsurface.batchelement3i_bufferoffset = 0;
7737                         rsurface.batchelement3s = NULL;
7738                         rsurface.batchelement3s_indexbuffer = NULL;
7739                         rsurface.batchelement3s_bufferoffset = 0;
7740                         if (endvertex <= 65536)
7741                         {
7742                                 // make a 16bit (unsigned short) index array if possible
7743                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7744                                 for (i = 0;i < numtriangles*3;i++)
7745                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7746                         }
7747                 }
7748                 else
7749                 {
7750                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7751                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7752                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7753                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7754                 }
7755                 return;
7756         }
7757
7758         // something needs software processing, do it for real...
7759         // we only directly handle separate array data in this case and then
7760         // generate interleaved data if needed...
7761         rsurface.batchgeneratedvertex = true;
7762         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7763         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7764         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7765         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7766
7767         // now copy the vertex data into a combined array and make an index array
7768         // (this is what Quake3 does all the time)
7769         // we also apply any skeletal animation here that would have been done in
7770         // the vertex shader, because most of the dynamic vertex animation cases
7771         // need actual vertex positions and normals
7772         //if (dynamicvertex)
7773         {
7774                 rsurface.batchvertex3f = NULL;
7775                 rsurface.batchvertex3f_vertexbuffer = NULL;
7776                 rsurface.batchvertex3f_bufferoffset = 0;
7777                 rsurface.batchsvector3f = NULL;
7778                 rsurface.batchsvector3f_vertexbuffer = NULL;
7779                 rsurface.batchsvector3f_bufferoffset = 0;
7780                 rsurface.batchtvector3f = NULL;
7781                 rsurface.batchtvector3f_vertexbuffer = NULL;
7782                 rsurface.batchtvector3f_bufferoffset = 0;
7783                 rsurface.batchnormal3f = NULL;
7784                 rsurface.batchnormal3f_vertexbuffer = NULL;
7785                 rsurface.batchnormal3f_bufferoffset = 0;
7786                 rsurface.batchlightmapcolor4f = NULL;
7787                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7788                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7789                 rsurface.batchtexcoordtexture2f = NULL;
7790                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7791                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7792                 rsurface.batchtexcoordlightmap2f = NULL;
7793                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7794                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7795                 rsurface.batchskeletalindex4ub = NULL;
7796                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7797                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7798                 rsurface.batchskeletalweight4ub = NULL;
7799                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7800                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7801                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7802                 rsurface.batchelement3i_indexbuffer = NULL;
7803                 rsurface.batchelement3i_bufferoffset = 0;
7804                 rsurface.batchelement3s = NULL;
7805                 rsurface.batchelement3s_indexbuffer = NULL;
7806                 rsurface.batchelement3s_bufferoffset = 0;
7807                 rsurface.batchskeletaltransform3x4buffer = NULL;
7808                 rsurface.batchskeletaltransform3x4offset = 0;
7809                 rsurface.batchskeletaltransform3x4size = 0;
7810                 // we'll only be setting up certain arrays as needed
7811                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7812                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7813                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7814                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7815                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7816                 {
7817                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7818                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7819                 }
7820                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7821                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7822                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7823                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7824                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7825                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7826                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7827                 {
7828                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7829                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7830                 }
7831                 numvertices = 0;
7832                 numtriangles = 0;
7833                 for (i = 0;i < texturenumsurfaces;i++)
7834                 {
7835                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7836                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7837                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7838                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7839                         // copy only the data requested
7840                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7841                         {
7842                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7843                                 {
7844                                         if (rsurface.batchvertex3f)
7845                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7846                                         else
7847                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7848                                 }
7849                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7850                                 {
7851                                         if (rsurface.modelnormal3f)
7852                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7853                                         else
7854                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7855                                 }
7856                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7857                                 {
7858                                         if (rsurface.modelsvector3f)
7859                                         {
7860                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7861                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7862                                         }
7863                                         else
7864                                         {
7865                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7866                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7867                                         }
7868                                 }
7869                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7870                                 {
7871                                         if (rsurface.modellightmapcolor4f)
7872                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7873                                         else
7874                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7875                                 }
7876                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7877                                 {
7878                                         if (rsurface.modeltexcoordtexture2f)
7879                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7880                                         else
7881                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7882                                 }
7883                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7884                                 {
7885                                         if (rsurface.modeltexcoordlightmap2f)
7886                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7887                                         else
7888                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7889                                 }
7890                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7891                                 {
7892                                         if (rsurface.modelskeletalindex4ub)
7893                                         {
7894                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7895                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7896                                         }
7897                                         else
7898                                         {
7899                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7900                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7901                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7902                                                 for (j = 0;j < surfacenumvertices;j++)
7903                                                         ub[j*4] = 255;
7904                                         }
7905                                 }
7906                         }
7907                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7908                         numvertices += surfacenumvertices;
7909                         numtriangles += surfacenumtriangles;
7910                 }
7911
7912                 // generate a 16bit index array as well if possible
7913                 // (in general, dynamic batches fit)
7914                 if (numvertices <= 65536)
7915                 {
7916                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7917                         for (i = 0;i < numtriangles*3;i++)
7918                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7919                 }
7920
7921                 // since we've copied everything, the batch now starts at 0
7922                 rsurface.batchfirstvertex = 0;
7923                 rsurface.batchnumvertices = batchnumvertices;
7924                 rsurface.batchfirsttriangle = 0;
7925                 rsurface.batchnumtriangles = batchnumtriangles;
7926         }
7927
7928         // apply skeletal animation that would have been done in the vertex shader
7929         if (rsurface.batchskeletaltransform3x4)
7930         {
7931                 const unsigned char *si;
7932                 const unsigned char *sw;
7933                 const float *t[4];
7934                 const float *b = rsurface.batchskeletaltransform3x4;
7935                 float *vp, *vs, *vt, *vn;
7936                 float w[4];
7937                 float m[3][4], n[3][4];
7938                 float tp[3], ts[3], tt[3], tn[3];
7939                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
7940                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
7941                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
7942                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
7943                 si = rsurface.batchskeletalindex4ub;
7944                 sw = rsurface.batchskeletalweight4ub;
7945                 vp = rsurface.batchvertex3f;
7946                 vs = rsurface.batchsvector3f;
7947                 vt = rsurface.batchtvector3f;
7948                 vn = rsurface.batchnormal3f;
7949                 memset(m[0], 0, sizeof(m));
7950                 memset(n[0], 0, sizeof(n));
7951                 for (i = 0;i < batchnumvertices;i++)
7952                 {
7953                         t[0] = b + si[0]*12;
7954                         if (sw[0] == 255)
7955                         {
7956                                 // common case - only one matrix
7957                                 m[0][0] = t[0][ 0];
7958                                 m[0][1] = t[0][ 1];
7959                                 m[0][2] = t[0][ 2];
7960                                 m[0][3] = t[0][ 3];
7961                                 m[1][0] = t[0][ 4];
7962                                 m[1][1] = t[0][ 5];
7963                                 m[1][2] = t[0][ 6];
7964                                 m[1][3] = t[0][ 7];
7965                                 m[2][0] = t[0][ 8];
7966                                 m[2][1] = t[0][ 9];
7967                                 m[2][2] = t[0][10];
7968                                 m[2][3] = t[0][11];
7969                         }
7970                         else if (sw[2] + sw[3])
7971                         {
7972                                 // blend 4 matrices
7973                                 t[1] = b + si[1]*12;
7974                                 t[2] = b + si[2]*12;
7975                                 t[3] = b + si[3]*12;
7976                                 w[0] = sw[0] * (1.0f / 255.0f);
7977                                 w[1] = sw[1] * (1.0f / 255.0f);
7978                                 w[2] = sw[2] * (1.0f / 255.0f);
7979                                 w[3] = sw[3] * (1.0f / 255.0f);
7980                                 // blend the matrices
7981                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
7982                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
7983                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
7984                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
7985                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
7986                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
7987                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
7988                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
7989                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
7990                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
7991                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
7992                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
7993                         }
7994                         else
7995                         {
7996                                 // blend 2 matrices
7997                                 t[1] = b + si[1]*12;
7998                                 w[0] = sw[0] * (1.0f / 255.0f);
7999                                 w[1] = sw[1] * (1.0f / 255.0f);
8000                                 // blend the matrices
8001                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8002                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8003                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8004                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8005                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8006                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8007                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8008                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8009                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8010                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8011                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8012                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8013                         }
8014                         si += 4;
8015                         sw += 4;
8016                         // modify the vertex
8017                         VectorCopy(vp, tp);
8018                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8019                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8020                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8021                         vp += 3;
8022                         if (vn)
8023                         {
8024                                 // the normal transformation matrix is a set of cross products...
8025                                 CrossProduct(m[1], m[2], n[0]);
8026                                 CrossProduct(m[2], m[0], n[1]);
8027                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8028                                 VectorCopy(vn, tn);
8029                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8030                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8031                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8032                                 VectorNormalize(vn);
8033                                 vn += 3;
8034                                 if (vs)
8035                                 {
8036                                         VectorCopy(vs, ts);
8037                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8038                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8039                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8040                                         VectorNormalize(vs);
8041                                         vs += 3;
8042                                         VectorCopy(vt, tt);
8043                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8044                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8045                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8046                                         VectorNormalize(vt);
8047                                         vt += 3;
8048                                 }
8049                         }
8050                 }
8051                 rsurface.batchskeletaltransform3x4 = NULL;
8052                 rsurface.batchskeletalnumtransforms = 0;
8053         }
8054
8055         // q1bsp surfaces rendered in vertex color mode have to have colors
8056         // calculated based on lightstyles
8057         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8058         {
8059                 // generate color arrays for the surfaces in this list
8060                 int c[4];
8061                 int scale;
8062                 int size3;
8063                 const int *offsets;
8064                 const unsigned char *lm;
8065                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8066                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8067                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8068                 numvertices = 0;
8069                 for (i = 0;i < texturenumsurfaces;i++)
8070                 {
8071                         surface = texturesurfacelist[i];
8072                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8073                         surfacenumvertices = surface->num_vertices;
8074                         if (surface->lightmapinfo->samples)
8075                         {
8076                                 for (j = 0;j < surfacenumvertices;j++)
8077                                 {
8078                                         lm = surface->lightmapinfo->samples + offsets[j];
8079                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8080                                         VectorScale(lm, scale, c);
8081                                         if (surface->lightmapinfo->styles[1] != 255)
8082                                         {
8083                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8084                                                 lm += size3;
8085                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8086                                                 VectorMA(c, scale, lm, c);
8087                                                 if (surface->lightmapinfo->styles[2] != 255)
8088                                                 {
8089                                                         lm += size3;
8090                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8091                                                         VectorMA(c, scale, lm, c);
8092                                                         if (surface->lightmapinfo->styles[3] != 255)
8093                                                         {
8094                                                                 lm += size3;
8095                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8096                                                                 VectorMA(c, scale, lm, c);
8097                                                         }
8098                                                 }
8099                                         }
8100                                         c[0] >>= 7;
8101                                         c[1] >>= 7;
8102                                         c[2] >>= 7;
8103                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8104                                         numvertices++;
8105                                 }
8106                         }
8107                         else
8108                         {
8109                                 for (j = 0;j < surfacenumvertices;j++)
8110                                 {
8111                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8112                                         numvertices++;
8113                                 }
8114                         }
8115                 }
8116         }
8117
8118         // if vertices are deformed (sprite flares and things in maps, possibly
8119         // water waves, bulges and other deformations), modify the copied vertices
8120         // in place
8121         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8122         {
8123                 float scale;
8124                 switch (deform->deform)
8125                 {
8126                 default:
8127                 case Q3DEFORM_PROJECTIONSHADOW:
8128                 case Q3DEFORM_TEXT0:
8129                 case Q3DEFORM_TEXT1:
8130                 case Q3DEFORM_TEXT2:
8131                 case Q3DEFORM_TEXT3:
8132                 case Q3DEFORM_TEXT4:
8133                 case Q3DEFORM_TEXT5:
8134                 case Q3DEFORM_TEXT6:
8135                 case Q3DEFORM_TEXT7:
8136                 case Q3DEFORM_NONE:
8137                         break;
8138                 case Q3DEFORM_AUTOSPRITE:
8139                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8140                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8141                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8142                         VectorNormalize(newforward);
8143                         VectorNormalize(newright);
8144                         VectorNormalize(newup);
8145 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8146 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8147 //                      rsurface.batchvertex3f_bufferoffset = 0;
8148 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8149 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8150 //                      rsurface.batchsvector3f_bufferoffset = 0;
8151 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8152 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8153 //                      rsurface.batchtvector3f_bufferoffset = 0;
8154 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8155 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8156 //                      rsurface.batchnormal3f_bufferoffset = 0;
8157                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8158                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8159                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8160                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8161                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8162                         // a single autosprite surface can contain multiple sprites...
8163                         for (j = 0;j < batchnumvertices - 3;j += 4)
8164                         {
8165                                 VectorClear(center);
8166                                 for (i = 0;i < 4;i++)
8167                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8168                                 VectorScale(center, 0.25f, center);
8169                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8170                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8171                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8172                                 for (i = 0;i < 4;i++)
8173                                 {
8174                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8175                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8176                                 }
8177                         }
8178                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8179                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8180                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8181                         break;
8182                 case Q3DEFORM_AUTOSPRITE2:
8183                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8184                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8185                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8186                         VectorNormalize(newforward);
8187                         VectorNormalize(newright);
8188                         VectorNormalize(newup);
8189 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8190 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8191 //                      rsurface.batchvertex3f_bufferoffset = 0;
8192                         {
8193                                 const float *v1, *v2;
8194                                 vec3_t start, end;
8195                                 float f, l;
8196                                 struct
8197                                 {
8198                                         float length2;
8199                                         const float *v1;
8200                                         const float *v2;
8201                                 }
8202                                 shortest[2];
8203                                 memset(shortest, 0, sizeof(shortest));
8204                                 // a single autosprite surface can contain multiple sprites...
8205                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8206                                 {
8207                                         VectorClear(center);
8208                                         for (i = 0;i < 4;i++)
8209                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8210                                         VectorScale(center, 0.25f, center);
8211                                         // find the two shortest edges, then use them to define the
8212                                         // axis vectors for rotating around the central axis
8213                                         for (i = 0;i < 6;i++)
8214                                         {
8215                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8216                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8217                                                 l = VectorDistance2(v1, v2);
8218                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8219                                                 if (v1[2] != v2[2])
8220                                                         l += (1.0f / 1024.0f);
8221                                                 if (shortest[0].length2 > l || i == 0)
8222                                                 {
8223                                                         shortest[1] = shortest[0];
8224                                                         shortest[0].length2 = l;
8225                                                         shortest[0].v1 = v1;
8226                                                         shortest[0].v2 = v2;
8227                                                 }
8228                                                 else if (shortest[1].length2 > l || i == 1)
8229                                                 {
8230                                                         shortest[1].length2 = l;
8231                                                         shortest[1].v1 = v1;
8232                                                         shortest[1].v2 = v2;
8233                                                 }
8234                                         }
8235                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8236                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8237                                         // this calculates the right vector from the shortest edge
8238                                         // and the up vector from the edge midpoints
8239                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8240                                         VectorNormalize(right);
8241                                         VectorSubtract(end, start, up);
8242                                         VectorNormalize(up);
8243                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8244                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8245                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8246                                         VectorNegate(forward, forward);
8247                                         VectorReflect(forward, 0, up, forward);
8248                                         VectorNormalize(forward);
8249                                         CrossProduct(up, forward, newright);
8250                                         VectorNormalize(newright);
8251                                         // rotate the quad around the up axis vector, this is made
8252                                         // especially easy by the fact we know the quad is flat,
8253                                         // so we only have to subtract the center position and
8254                                         // measure distance along the right vector, and then
8255                                         // multiply that by the newright vector and add back the
8256                                         // center position
8257                                         // we also need to subtract the old position to undo the
8258                                         // displacement from the center, which we do with a
8259                                         // DotProduct, the subtraction/addition of center is also
8260                                         // optimized into DotProducts here
8261                                         l = DotProduct(right, center);
8262                                         for (i = 0;i < 4;i++)
8263                                         {
8264                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8265                                                 f = DotProduct(right, v1) - l;
8266                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8267                                         }
8268                                 }
8269                         }
8270                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8271                         {
8272 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8273 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8274 //                              rsurface.batchnormal3f_bufferoffset = 0;
8275                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8276                         }
8277                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8278                         {
8279 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8280 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8281 //                              rsurface.batchsvector3f_bufferoffset = 0;
8282 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8283 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8284 //                              rsurface.batchtvector3f_bufferoffset = 0;
8285                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8286                         }
8287                         break;
8288                 case Q3DEFORM_NORMAL:
8289                         // deform the normals to make reflections wavey
8290                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8291                         rsurface.batchnormal3f_vertexbuffer = NULL;
8292                         rsurface.batchnormal3f_bufferoffset = 0;
8293                         for (j = 0;j < batchnumvertices;j++)
8294                         {
8295                                 float vertex[3];
8296                                 float *normal = rsurface.batchnormal3f + 3*j;
8297                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8298                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8299                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8300                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8301                                 VectorNormalize(normal);
8302                         }
8303                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8304                         {
8305 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8306 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8307 //                              rsurface.batchsvector3f_bufferoffset = 0;
8308 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8309 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8310 //                              rsurface.batchtvector3f_bufferoffset = 0;
8311                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8312                         }
8313                         break;
8314                 case Q3DEFORM_WAVE:
8315                         // deform vertex array to make wavey water and flags and such
8316                         waveparms[0] = deform->waveparms[0];
8317                         waveparms[1] = deform->waveparms[1];
8318                         waveparms[2] = deform->waveparms[2];
8319                         waveparms[3] = deform->waveparms[3];
8320                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8321                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8322                         // this is how a divisor of vertex influence on deformation
8323                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8324                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8325 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8326 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8327 //                      rsurface.batchvertex3f_bufferoffset = 0;
8328 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8329 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8330 //                      rsurface.batchnormal3f_bufferoffset = 0;
8331                         for (j = 0;j < batchnumvertices;j++)
8332                         {
8333                                 // if the wavefunc depends on time, evaluate it per-vertex
8334                                 if (waveparms[3])
8335                                 {
8336                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8337                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8338                                 }
8339                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8340                         }
8341                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8342                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8343                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8344                         {
8345 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8346 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8347 //                              rsurface.batchsvector3f_bufferoffset = 0;
8348 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8349 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8350 //                              rsurface.batchtvector3f_bufferoffset = 0;
8351                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8352                         }
8353                         break;
8354                 case Q3DEFORM_BULGE:
8355                         // deform vertex array to make the surface have moving bulges
8356 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8357 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8358 //                      rsurface.batchvertex3f_bufferoffset = 0;
8359 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8360 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8361 //                      rsurface.batchnormal3f_bufferoffset = 0;
8362                         for (j = 0;j < batchnumvertices;j++)
8363                         {
8364                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8365                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8366                         }
8367                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8368                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8369                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8370                         {
8371 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8372 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8373 //                              rsurface.batchsvector3f_bufferoffset = 0;
8374 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8375 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8376 //                              rsurface.batchtvector3f_bufferoffset = 0;
8377                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8378                         }
8379                         break;
8380                 case Q3DEFORM_MOVE:
8381                         // deform vertex array
8382                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8383                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8384                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8385                         VectorScale(deform->parms, scale, waveparms);
8386 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8387 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8388 //                      rsurface.batchvertex3f_bufferoffset = 0;
8389                         for (j = 0;j < batchnumvertices;j++)
8390                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8391                         break;
8392                 }
8393         }
8394
8395         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8396         {
8397         // generate texcoords based on the chosen texcoord source
8398                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8399                 {
8400                 default:
8401                 case Q3TCGEN_TEXTURE:
8402                         break;
8403                 case Q3TCGEN_LIGHTMAP:
8404         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8405         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8406         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8407                         if (rsurface.batchtexcoordlightmap2f)
8408                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8409                         break;
8410                 case Q3TCGEN_VECTOR:
8411         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8412         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8413         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8414                         for (j = 0;j < batchnumvertices;j++)
8415                         {
8416                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8417                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8418                         }
8419                         break;
8420                 case Q3TCGEN_ENVIRONMENT:
8421                         // make environment reflections using a spheremap
8422                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8423                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8424                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8425                         for (j = 0;j < batchnumvertices;j++)
8426                         {
8427                                 // identical to Q3A's method, but executed in worldspace so
8428                                 // carried models can be shiny too
8429
8430                                 float viewer[3], d, reflected[3], worldreflected[3];
8431
8432                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8433                                 // VectorNormalize(viewer);
8434
8435                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8436
8437                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8438                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8439                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8440                                 // note: this is proportinal to viewer, so we can normalize later
8441
8442                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8443                                 VectorNormalize(worldreflected);
8444
8445                                 // note: this sphere map only uses world x and z!
8446                                 // so positive and negative y will LOOK THE SAME.
8447                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8448                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8449                         }
8450                         break;
8451                 }
8452                 // the only tcmod that needs software vertex processing is turbulent, so
8453                 // check for it here and apply the changes if needed
8454                 // and we only support that as the first one
8455                 // (handling a mixture of turbulent and other tcmods would be problematic
8456                 //  without punting it entirely to a software path)
8457                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8458                 {
8459                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8460                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8461         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8462         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8463         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8464                         for (j = 0;j < batchnumvertices;j++)
8465                         {
8466                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8467                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8468                         }
8469                 }
8470         }
8471 }
8472
8473 void RSurf_DrawBatch(void)
8474 {
8475         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8476         // through the pipeline, killing it earlier in the pipeline would have
8477         // per-surface overhead rather than per-batch overhead, so it's best to
8478         // reject it here, before it hits glDraw.
8479         if (rsurface.batchnumtriangles == 0)
8480                 return;
8481 #if 0
8482         // batch debugging code
8483         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8484         {
8485                 int i;
8486                 int j;
8487                 int c;
8488                 const int *e;
8489                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8490                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8491                 {
8492                         c = e[i];
8493                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8494                         {
8495                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8496                                 {
8497                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8498                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8499                                         break;
8500                                 }
8501                         }
8502                 }
8503         }
8504 #endif
8505         if (rsurface.batchmultidraw)
8506         {
8507                 // issue multiple draws rather than copying index data
8508                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8509                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8510                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8511                 for (i = 0;i < numsurfaces;)
8512                 {
8513                         // combine consecutive surfaces as one draw
8514                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8515                                 if (surfacelist[j] != surfacelist[k] + 1)
8516                                         break;
8517                         firstvertex = surfacelist[i]->num_firstvertex;
8518                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8519                         firsttriangle = surfacelist[i]->num_firsttriangle;
8520                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8521                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8522                         i = j;
8523                 }
8524         }
8525         else
8526         {
8527                 // there is only one consecutive run of index data (may have been combined)
8528                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8529         }
8530 }
8531
8532 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8533 {
8534         // pick the closest matching water plane
8535         int planeindex, vertexindex, bestplaneindex = -1;
8536         float d, bestd;
8537         vec3_t vert;
8538         const float *v;
8539         r_waterstate_waterplane_t *p;
8540         qbool prepared = false;
8541         bestd = 0;
8542         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8543         {
8544                 if(p->camera_entity != rsurface.texture->camera_entity)
8545                         continue;
8546                 d = 0;
8547                 if(!prepared)
8548                 {
8549                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8550                         prepared = true;
8551                         if(rsurface.batchnumvertices == 0)
8552                                 break;
8553                 }
8554                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8555                 {
8556                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8557                         d += fabs(PlaneDiff(vert, &p->plane));
8558                 }
8559                 if (bestd > d || bestplaneindex < 0)
8560                 {
8561                         bestd = d;
8562                         bestplaneindex = planeindex;
8563                 }
8564         }
8565         return bestplaneindex;
8566         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8567         // this situation though, as it might be better to render single larger
8568         // batches with useless stuff (backface culled for example) than to
8569         // render multiple smaller batches
8570 }
8571
8572 void RSurf_SetupDepthAndCulling(void)
8573 {
8574         // submodels are biased to avoid z-fighting with world surfaces that they
8575         // may be exactly overlapping (avoids z-fighting artifacts on certain
8576         // doors and things in Quake maps)
8577         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8578         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8579         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8580         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8581 }
8582
8583 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8584 {
8585         int j;
8586         const float *v;
8587         float p[3], mins[3], maxs[3];
8588         int scissor[4];
8589         // transparent sky would be ridiculous
8590         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8591                 return;
8592         R_SetupShader_Generic_NoTexture(false, false);
8593         skyrenderlater = true;
8594         RSurf_SetupDepthAndCulling();
8595         GL_DepthMask(true);
8596
8597         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8598         if (r_sky_scissor.integer)
8599         {
8600                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8601                 for (j = 0, v = rsurface.batchvertex3f + 3 * rsurface.batchfirstvertex; j < rsurface.batchnumvertices; j++, v += 3)
8602                 {
8603                         Matrix4x4_Transform(&rsurface.matrix, v, p);
8604                         if (j > 0)
8605                         {
8606                                 if (mins[0] > p[0]) mins[0] = p[0];
8607                                 if (mins[1] > p[1]) mins[1] = p[1];
8608                                 if (mins[2] > p[2]) mins[2] = p[2];
8609                                 if (maxs[0] < p[0]) maxs[0] = p[0];
8610                                 if (maxs[1] < p[1]) maxs[1] = p[1];
8611                                 if (maxs[2] < p[2]) maxs[2] = p[2];
8612                         }
8613                         else
8614                         {
8615                                 VectorCopy(p, mins);
8616                                 VectorCopy(p, maxs);
8617                         }
8618                 }
8619                 if (!R_ScissorForBBox(mins, maxs, scissor))
8620                 {
8621                         if (skyscissor[2])
8622                         {
8623                                 if (skyscissor[0] > scissor[0])
8624                                 {
8625                                         skyscissor[2] += skyscissor[0] - scissor[0];
8626                                         skyscissor[0] = scissor[0];
8627                                 }
8628                                 if (skyscissor[1] > scissor[1])
8629                                 {
8630                                         skyscissor[3] += skyscissor[1] - scissor[1];
8631                                         skyscissor[1] = scissor[1];
8632                                 }
8633                                 if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8634                                         skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8635                                 if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8636                                         skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8637                         }
8638                         else
8639                                 Vector4Copy(scissor, skyscissor);
8640                 }
8641         }
8642
8643         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8644         // skymasking on them, and Quake3 never did sky masking (unlike
8645         // software Quake and software Quake2), so disable the sky masking
8646         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8647         // and skymasking also looks very bad when noclipping outside the
8648         // level, so don't use it then either.
8649         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8650         {
8651                 R_Mesh_ResetTextureState();
8652                 if (skyrendermasked)
8653                 {
8654                         R_SetupShader_DepthOrShadow(false, false, false);
8655                         // depth-only (masking)
8656                         GL_ColorMask(0, 0, 0, 0);
8657                         // just to make sure that braindead drivers don't draw
8658                         // anything despite that colormask...
8659                         GL_BlendFunc(GL_ZERO, GL_ONE);
8660                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8661                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8662                 }
8663                 else
8664                 {
8665                         R_SetupShader_Generic_NoTexture(false, false);
8666                         // fog sky
8667                         GL_BlendFunc(GL_ONE, GL_ZERO);
8668                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8669                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8670                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8671                 }
8672                 RSurf_DrawBatch();
8673                 if (skyrendermasked)
8674                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8675         }
8676         R_Mesh_ResetTextureState();
8677         GL_Color(1, 1, 1, 1);
8678 }
8679
8680 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8681 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8682 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8683 {
8684         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8685                 return;
8686         if (prepass)
8687         {
8688                 // render screenspace normalmap to texture
8689                 GL_DepthMask(true);
8690                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false, false);
8691                 RSurf_DrawBatch();
8692                 return;
8693         }
8694
8695         // bind lightmap texture
8696
8697         // water/refraction/reflection/camera surfaces have to be handled specially
8698         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8699         {
8700                 int start, end, startplaneindex;
8701                 for (start = 0;start < texturenumsurfaces;start = end)
8702                 {
8703                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8704                         if(startplaneindex < 0)
8705                         {
8706                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8707                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8708                                 end = start + 1;
8709                                 continue;
8710                         }
8711                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8712                                 ;
8713                         // now that we have a batch using the same planeindex, render it
8714                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8715                         {
8716                                 // render water or distortion background
8717                                 GL_DepthMask(true);
8718                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8719                                 RSurf_DrawBatch();
8720                                 // blend surface on top
8721                                 GL_DepthMask(false);
8722                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false, false);
8723                                 RSurf_DrawBatch();
8724                         }
8725                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8726                         {
8727                                 // render surface with reflection texture as input
8728                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8729                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8730                                 RSurf_DrawBatch();
8731                         }
8732                 }
8733                 return;
8734         }
8735
8736         // render surface batch normally
8737         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8738         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0 || ui, ui);
8739         RSurf_DrawBatch();
8740 }
8741
8742 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth)
8743 {
8744         int vi;
8745         int j;
8746         int texturesurfaceindex;
8747         int k;
8748         const msurface_t *surface;
8749         float surfacecolor4f[4];
8750
8751 //      R_Mesh_ResetTextureState();
8752         R_SetupShader_Generic_NoTexture(false, false);
8753
8754         GL_BlendFunc(GL_ONE, GL_ZERO);
8755         GL_DepthMask(writedepth);
8756
8757         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8758         vi = 0;
8759         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8760         {
8761                 surface = texturesurfacelist[texturesurfaceindex];
8762                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8763                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8764                 for (j = 0;j < surface->num_vertices;j++)
8765                 {
8766                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8767                         vi++;
8768                 }
8769         }
8770         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8771         RSurf_DrawBatch();
8772 }
8773
8774 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8775 {
8776         CHECKGLERROR
8777         RSurf_SetupDepthAndCulling();
8778         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8779         {
8780                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8781                 return;
8782         }
8783         switch (vid.renderpath)
8784         {
8785         case RENDERPATH_GL32:
8786         case RENDERPATH_GLES2:
8787                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8788                 break;
8789         }
8790         CHECKGLERROR
8791 }
8792
8793 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8794 {
8795         int i, j;
8796         int texturenumsurfaces, endsurface;
8797         texture_t *texture;
8798         const msurface_t *surface;
8799         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8800
8801         RSurf_ActiveModelEntity(ent, true, true, false);
8802
8803         if (r_transparentdepthmasking.integer)
8804         {
8805                 qbool setup = false;
8806                 for (i = 0;i < numsurfaces;i = j)
8807                 {
8808                         j = i + 1;
8809                         surface = rsurface.modelsurfaces + surfacelist[i];
8810                         texture = surface->texture;
8811                         rsurface.texture = R_GetCurrentTexture(texture);
8812                         rsurface.lightmaptexture = NULL;
8813                         rsurface.deluxemaptexture = NULL;
8814                         rsurface.uselightmaptexture = false;
8815                         // scan ahead until we find a different texture
8816                         endsurface = min(i + 1024, numsurfaces);
8817                         texturenumsurfaces = 0;
8818                         texturesurfacelist[texturenumsurfaces++] = surface;
8819                         for (;j < endsurface;j++)
8820                         {
8821                                 surface = rsurface.modelsurfaces + surfacelist[j];
8822                                 if (texture != surface->texture)
8823                                         break;
8824                                 texturesurfacelist[texturenumsurfaces++] = surface;
8825                         }
8826                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8827                                 continue;
8828                         // render the range of surfaces as depth
8829                         if (!setup)
8830                         {
8831                                 setup = true;
8832                                 GL_ColorMask(0,0,0,0);
8833                                 GL_Color(1,1,1,1);
8834                                 GL_DepthTest(true);
8835                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8836                                 GL_DepthMask(true);
8837 //                              R_Mesh_ResetTextureState();
8838                         }
8839                         RSurf_SetupDepthAndCulling();
8840                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8841                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8842                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8843                         RSurf_DrawBatch();
8844                 }
8845                 if (setup)
8846                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8847         }
8848
8849         for (i = 0;i < numsurfaces;i = j)
8850         {
8851                 j = i + 1;
8852                 surface = rsurface.modelsurfaces + surfacelist[i];
8853                 texture = surface->texture;
8854                 rsurface.texture = R_GetCurrentTexture(texture);
8855                 // scan ahead until we find a different texture
8856                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8857                 texturenumsurfaces = 0;
8858                 texturesurfacelist[texturenumsurfaces++] = surface;
8859                         rsurface.lightmaptexture = surface->lightmaptexture;
8860                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8861                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8862                         for (;j < endsurface;j++)
8863                         {
8864                                 surface = rsurface.modelsurfaces + surfacelist[j];
8865                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8866                                         break;
8867                                 texturesurfacelist[texturenumsurfaces++] = surface;
8868                         }
8869                 // render the range of surfaces
8870                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false, false);
8871         }
8872         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8873 }
8874
8875 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8876 {
8877         // transparent surfaces get pushed off into the transparent queue
8878         int surfacelistindex;
8879         const msurface_t *surface;
8880         vec3_t tempcenter, center;
8881         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
8882         {
8883                 surface = texturesurfacelist[surfacelistindex];
8884                 if (r_transparent_sortsurfacesbynearest.integer)
8885                 {
8886                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
8887                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
8888                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
8889                 }
8890                 else
8891                 {
8892                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
8893                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
8894                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
8895                 }
8896                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
8897                 if (rsurface.entity->transparent_offset) // transparent offset
8898                 {
8899                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
8900                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
8901                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
8902                 }
8903                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
8904         }
8905 }
8906
8907 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8908 {
8909         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
8910                 return;
8911         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
8912                 return;
8913         RSurf_SetupDepthAndCulling();
8914         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8915         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8916         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8917         RSurf_DrawBatch();
8918 }
8919
8920 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8921 {
8922         CHECKGLERROR
8923         if (ui)
8924                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8925         else if (depthonly)
8926                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
8927         else if (prepass)
8928         {
8929                 if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8930                         return;
8931                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8932                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8933                 else
8934                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8935         }
8936         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
8937                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
8938         else if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8939                 return;
8940         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
8941         {
8942                 // in the deferred case, transparent surfaces were queued during prepass
8943                 if (!r_shadow_usingdeferredprepass)
8944                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8945         }
8946         else
8947         {
8948                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
8949                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass, ui);
8950         }
8951         CHECKGLERROR
8952 }
8953
8954 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8955 {
8956         int i, j;
8957         texture_t *texture;
8958         R_FrameData_SetMark();
8959         // break the surface list down into batches by texture and use of lightmapping
8960         for (i = 0;i < numsurfaces;i = j)
8961         {
8962                 j = i + 1;
8963                 // texture is the base texture pointer, rsurface.texture is the
8964                 // current frame/skin the texture is directing us to use (for example
8965                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
8966                 // use skin 1 instead)
8967                 texture = surfacelist[i]->texture;
8968                 rsurface.texture = R_GetCurrentTexture(texture);
8969                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
8970                 {
8971                         // if this texture is not the kind we want, skip ahead to the next one
8972                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8973                                 ;
8974                         continue;
8975                 }
8976                 if(depthonly || prepass)
8977                 {
8978                         rsurface.lightmaptexture = NULL;
8979                         rsurface.deluxemaptexture = NULL;
8980                         rsurface.uselightmaptexture = false;
8981                         // simply scan ahead until we find a different texture or lightmap state
8982                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8983                                 ;
8984                 }
8985                 else
8986                 {
8987                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
8988                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
8989                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
8990                         // simply scan ahead until we find a different texture or lightmap state
8991                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
8992                                 ;
8993                 }
8994                 // render the range of surfaces
8995                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass, ui);
8996         }
8997         R_FrameData_ReturnToMark();
8998 }
8999
9000 float locboxvertex3f[6*4*3] =
9001 {
9002         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9003         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9004         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9005         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9006         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9007         1,0,0, 0,0,0, 0,1,0, 1,1,0
9008 };
9009
9010 unsigned short locboxelements[6*2*3] =
9011 {
9012          0, 1, 2, 0, 2, 3,
9013          4, 5, 6, 4, 6, 7,
9014          8, 9,10, 8,10,11,
9015         12,13,14, 12,14,15,
9016         16,17,18, 16,18,19,
9017         20,21,22, 20,22,23
9018 };
9019
9020 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9021 {
9022         int i, j;
9023         cl_locnode_t *loc = (cl_locnode_t *)ent;
9024         vec3_t mins, size;
9025         float vertex3f[6*4*3];
9026         CHECKGLERROR
9027         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9028         GL_DepthMask(false);
9029         GL_DepthRange(0, 1);
9030         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9031         GL_DepthTest(true);
9032         GL_CullFace(GL_NONE);
9033         R_EntityMatrix(&identitymatrix);
9034
9035 //      R_Mesh_ResetTextureState();
9036
9037         i = surfacelist[0];
9038         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9039                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9040                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9041                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9042
9043         if (VectorCompare(loc->mins, loc->maxs))
9044         {
9045                 VectorSet(size, 2, 2, 2);
9046                 VectorMA(loc->mins, -0.5f, size, mins);
9047         }
9048         else
9049         {
9050                 VectorCopy(loc->mins, mins);
9051                 VectorSubtract(loc->maxs, loc->mins, size);
9052         }
9053
9054         for (i = 0;i < 6*4*3;)
9055                 for (j = 0;j < 3;j++, i++)
9056                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9057
9058         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9059         R_SetupShader_Generic_NoTexture(false, false);
9060         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9061 }
9062
9063 void R_DrawLocs(void)
9064 {
9065         int index;
9066         cl_locnode_t *loc, *nearestloc;
9067         vec3_t center;
9068         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9069         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9070         {
9071                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9072                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9073         }
9074 }
9075
9076 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9077 {
9078         if (decalsystem->decals)
9079                 Mem_Free(decalsystem->decals);
9080         memset(decalsystem, 0, sizeof(*decalsystem));
9081 }
9082
9083 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9084 {
9085         tridecal_t *decal;
9086         tridecal_t *decals;
9087         int i;
9088
9089         // expand or initialize the system
9090         if (decalsystem->maxdecals <= decalsystem->numdecals)
9091         {
9092                 decalsystem_t old = *decalsystem;
9093                 qbool useshortelements;
9094                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9095                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9096                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9097                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9098                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9099                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9100                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9101                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9102                 if (decalsystem->numdecals)
9103                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9104                 if (old.decals)
9105                         Mem_Free(old.decals);
9106                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9107                         decalsystem->element3i[i] = i;
9108                 if (useshortelements)
9109                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9110                                 decalsystem->element3s[i] = i;
9111         }
9112
9113         // grab a decal and search for another free slot for the next one
9114         decals = decalsystem->decals;
9115         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9116         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9117                 ;
9118         decalsystem->freedecal = i;
9119         if (decalsystem->numdecals <= i)
9120                 decalsystem->numdecals = i + 1;
9121
9122         // initialize the decal
9123         decal->lived = 0;
9124         decal->triangleindex = triangleindex;
9125         decal->surfaceindex = surfaceindex;
9126         decal->decalsequence = decalsequence;
9127         decal->color4f[0][0] = c0[0];
9128         decal->color4f[0][1] = c0[1];
9129         decal->color4f[0][2] = c0[2];
9130         decal->color4f[0][3] = 1;
9131         decal->color4f[1][0] = c1[0];
9132         decal->color4f[1][1] = c1[1];
9133         decal->color4f[1][2] = c1[2];
9134         decal->color4f[1][3] = 1;
9135         decal->color4f[2][0] = c2[0];
9136         decal->color4f[2][1] = c2[1];
9137         decal->color4f[2][2] = c2[2];
9138         decal->color4f[2][3] = 1;
9139         decal->vertex3f[0][0] = v0[0];
9140         decal->vertex3f[0][1] = v0[1];
9141         decal->vertex3f[0][2] = v0[2];
9142         decal->vertex3f[1][0] = v1[0];
9143         decal->vertex3f[1][1] = v1[1];
9144         decal->vertex3f[1][2] = v1[2];
9145         decal->vertex3f[2][0] = v2[0];
9146         decal->vertex3f[2][1] = v2[1];
9147         decal->vertex3f[2][2] = v2[2];
9148         decal->texcoord2f[0][0] = t0[0];
9149         decal->texcoord2f[0][1] = t0[1];
9150         decal->texcoord2f[1][0] = t1[0];
9151         decal->texcoord2f[1][1] = t1[1];
9152         decal->texcoord2f[2][0] = t2[0];
9153         decal->texcoord2f[2][1] = t2[1];
9154         TriangleNormal(v0, v1, v2, decal->plane);
9155         VectorNormalize(decal->plane);
9156         decal->plane[3] = DotProduct(v0, decal->plane);
9157 }
9158
9159 extern cvar_t cl_decals_bias;
9160 extern cvar_t cl_decals_models;
9161 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9162 // baseparms, parms, temps
9163 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qbool dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9164 {
9165         int cornerindex;
9166         int index;
9167         float v[9][3];
9168         const float *vertex3f;
9169         const float *normal3f;
9170         int numpoints;
9171         float points[2][9][3];
9172         float temp[3];
9173         float tc[9][2];
9174         float f;
9175         float c[9][4];
9176         const int *e;
9177
9178         e = rsurface.modelelement3i + 3*triangleindex;
9179
9180         vertex3f = rsurface.modelvertex3f;
9181         normal3f = rsurface.modelnormal3f;
9182
9183         if (normal3f)
9184         {
9185                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9186                 {
9187                         index = 3*e[cornerindex];
9188                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9189                 }
9190         }
9191         else
9192         {
9193                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9194                 {
9195                         index = 3*e[cornerindex];
9196                         VectorCopy(vertex3f + index, v[cornerindex]);
9197                 }
9198         }
9199
9200         // cull backfaces
9201         //TriangleNormal(v[0], v[1], v[2], normal);
9202         //if (DotProduct(normal, localnormal) < 0.0f)
9203         //      continue;
9204         // clip by each of the box planes formed from the projection matrix
9205         // if anything survives, we emit the decal
9206         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9207         if (numpoints < 3)
9208                 return;
9209         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9210         if (numpoints < 3)
9211                 return;
9212         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9213         if (numpoints < 3)
9214                 return;
9215         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9216         if (numpoints < 3)
9217                 return;
9218         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9219         if (numpoints < 3)
9220                 return;
9221         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9222         if (numpoints < 3)
9223                 return;
9224         // some part of the triangle survived, so we have to accept it...
9225         if (dynamic)
9226         {
9227                 // dynamic always uses the original triangle
9228                 numpoints = 3;
9229                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9230                 {
9231                         index = 3*e[cornerindex];
9232                         VectorCopy(vertex3f + index, v[cornerindex]);
9233                 }
9234         }
9235         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9236         {
9237                 // convert vertex positions to texcoords
9238                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9239                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9240                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9241                 // calculate distance fade from the projection origin
9242                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9243                 f = bound(0.0f, f, 1.0f);
9244                 c[cornerindex][0] = r * f;
9245                 c[cornerindex][1] = g * f;
9246                 c[cornerindex][2] = b * f;
9247                 c[cornerindex][3] = 1.0f;
9248                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9249         }
9250         if (dynamic)
9251                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9252         else
9253                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9254                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9255 }
9256 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9257 {
9258         matrix4x4_t projection;
9259         decalsystem_t *decalsystem;
9260         qbool dynamic;
9261         model_t *model;
9262         const msurface_t *surface;
9263         const msurface_t *surfaces;
9264         const texture_t *texture;
9265         int numtriangles;
9266         int surfaceindex;
9267         int triangleindex;
9268         float localorigin[3];
9269         float localnormal[3];
9270         float localmins[3];
9271         float localmaxs[3];
9272         float localsize;
9273         //float normal[3];
9274         float planes[6][4];
9275         float angles[3];
9276         bih_t *bih;
9277         int bih_triangles_count;
9278         int bih_triangles[256];
9279         int bih_surfaces[256];
9280
9281         decalsystem = &ent->decalsystem;
9282         model = ent->model;
9283         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9284         {
9285                 R_DecalSystem_Reset(&ent->decalsystem);
9286                 return;
9287         }
9288
9289         if (!model->brush.data_leafs && !cl_decals_models.integer)
9290         {
9291                 if (decalsystem->model)
9292                         R_DecalSystem_Reset(decalsystem);
9293                 return;
9294         }
9295
9296         if (decalsystem->model != model)
9297                 R_DecalSystem_Reset(decalsystem);
9298         decalsystem->model = model;
9299
9300         RSurf_ActiveModelEntity(ent, true, false, false);
9301
9302         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9303         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9304         VectorNormalize(localnormal);
9305         localsize = worldsize*rsurface.inversematrixscale;
9306         localmins[0] = localorigin[0] - localsize;
9307         localmins[1] = localorigin[1] - localsize;
9308         localmins[2] = localorigin[2] - localsize;
9309         localmaxs[0] = localorigin[0] + localsize;
9310         localmaxs[1] = localorigin[1] + localsize;
9311         localmaxs[2] = localorigin[2] + localsize;
9312
9313         //VectorCopy(localnormal, planes[4]);
9314         //VectorVectors(planes[4], planes[2], planes[0]);
9315         AnglesFromVectors(angles, localnormal, NULL, false);
9316         AngleVectors(angles, planes[0], planes[2], planes[4]);
9317         VectorNegate(planes[0], planes[1]);
9318         VectorNegate(planes[2], planes[3]);
9319         VectorNegate(planes[4], planes[5]);
9320         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9321         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9322         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9323         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9324         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9325         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9326
9327 #if 1
9328 // works
9329 {
9330         matrix4x4_t forwardprojection;
9331         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9332         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9333 }
9334 #else
9335 // broken
9336 {
9337         float projectionvector[4][3];
9338         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9339         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9340         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9341         projectionvector[0][0] = planes[0][0] * ilocalsize;
9342         projectionvector[0][1] = planes[1][0] * ilocalsize;
9343         projectionvector[0][2] = planes[2][0] * ilocalsize;
9344         projectionvector[1][0] = planes[0][1] * ilocalsize;
9345         projectionvector[1][1] = planes[1][1] * ilocalsize;
9346         projectionvector[1][2] = planes[2][1] * ilocalsize;
9347         projectionvector[2][0] = planes[0][2] * ilocalsize;
9348         projectionvector[2][1] = planes[1][2] * ilocalsize;
9349         projectionvector[2][2] = planes[2][2] * ilocalsize;
9350         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9351         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9352         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9353         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9354 }
9355 #endif
9356
9357         dynamic = model->surfmesh.isanimated;
9358         surfaces = model->data_surfaces;
9359
9360         bih = NULL;
9361         bih_triangles_count = -1;
9362         if(!dynamic)
9363         {
9364                 if(model->render_bih.numleafs)
9365                         bih = &model->render_bih;
9366                 else if(model->collision_bih.numleafs)
9367                         bih = &model->collision_bih;
9368         }
9369         if(bih)
9370                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9371         if(bih_triangles_count == 0)
9372                 return;
9373         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9374                 return;
9375         if(bih_triangles_count > 0)
9376         {
9377                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9378                 {
9379                         surfaceindex = bih_surfaces[triangleindex];
9380                         surface = surfaces + surfaceindex;
9381                         texture = surface->texture;
9382                         if (!texture)
9383                                 continue;
9384                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9385                                 continue;
9386                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9387                                 continue;
9388                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9389                 }
9390         }
9391         else
9392         {
9393                 for (surfaceindex = model->submodelsurfaces_start;surfaceindex < model->submodelsurfaces_end;surfaceindex++)
9394                 {
9395                         surface = surfaces + surfaceindex;
9396                         // check cull box first because it rejects more than any other check
9397                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9398                                 continue;
9399                         // skip transparent surfaces
9400                         texture = surface->texture;
9401                         if (!texture)
9402                                 continue;
9403                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9404                                 continue;
9405                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9406                                 continue;
9407                         numtriangles = surface->num_triangles;
9408                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9409                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9410                 }
9411         }
9412 }
9413
9414 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9415 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9416 {
9417         int renderentityindex;
9418         float worldmins[3];
9419         float worldmaxs[3];
9420         entity_render_t *ent;
9421
9422         worldmins[0] = worldorigin[0] - worldsize;
9423         worldmins[1] = worldorigin[1] - worldsize;
9424         worldmins[2] = worldorigin[2] - worldsize;
9425         worldmaxs[0] = worldorigin[0] + worldsize;
9426         worldmaxs[1] = worldorigin[1] + worldsize;
9427         worldmaxs[2] = worldorigin[2] + worldsize;
9428
9429         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9430
9431         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9432         {
9433                 ent = r_refdef.scene.entities[renderentityindex];
9434                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9435                         continue;
9436
9437                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9438         }
9439 }
9440
9441 typedef struct r_decalsystem_splatqueue_s
9442 {
9443         vec3_t worldorigin;
9444         vec3_t worldnormal;
9445         float color[4];
9446         float tcrange[4];
9447         float worldsize;
9448         unsigned int decalsequence;
9449 }
9450 r_decalsystem_splatqueue_t;
9451
9452 int r_decalsystem_numqueued = 0;
9453 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9454
9455 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9456 {
9457         r_decalsystem_splatqueue_t *queue;
9458
9459         if (r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9460                 return;
9461
9462         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9463         VectorCopy(worldorigin, queue->worldorigin);
9464         VectorCopy(worldnormal, queue->worldnormal);
9465         Vector4Set(queue->color, r, g, b, a);
9466         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9467         queue->worldsize = worldsize;
9468         queue->decalsequence = cl.decalsequence++;
9469 }
9470
9471 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9472 {
9473         int i;
9474         r_decalsystem_splatqueue_t *queue;
9475
9476         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9477                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9478         r_decalsystem_numqueued = 0;
9479 }
9480
9481 extern cvar_t cl_decals_max;
9482 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9483 {
9484         int i;
9485         decalsystem_t *decalsystem = &ent->decalsystem;
9486         int numdecals;
9487         unsigned int killsequence;
9488         tridecal_t *decal;
9489         float frametime;
9490         float lifetime;
9491
9492         if (!decalsystem->numdecals)
9493                 return;
9494
9495         if (r_showsurfaces.integer)
9496                 return;
9497
9498         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9499         {
9500                 R_DecalSystem_Reset(decalsystem);
9501                 return;
9502         }
9503
9504         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9505         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9506
9507         if (decalsystem->lastupdatetime)
9508                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9509         else
9510                 frametime = 0;
9511         decalsystem->lastupdatetime = r_refdef.scene.time;
9512         numdecals = decalsystem->numdecals;
9513
9514         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9515         {
9516                 if (decal->color4f[0][3])
9517                 {
9518                         decal->lived += frametime;
9519                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9520                         {
9521                                 memset(decal, 0, sizeof(*decal));
9522                                 if (decalsystem->freedecal > i)
9523                                         decalsystem->freedecal = i;
9524                         }
9525                 }
9526         }
9527         decal = decalsystem->decals;
9528         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9529                 numdecals--;
9530
9531         // collapse the array by shuffling the tail decals into the gaps
9532         for (;;)
9533         {
9534                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9535                         decalsystem->freedecal++;
9536                 if (decalsystem->freedecal == numdecals)
9537                         break;
9538                 decal[decalsystem->freedecal] = decal[--numdecals];
9539         }
9540
9541         decalsystem->numdecals = numdecals;
9542
9543         if (numdecals <= 0)
9544         {
9545                 // if there are no decals left, reset decalsystem
9546                 R_DecalSystem_Reset(decalsystem);
9547         }
9548 }
9549
9550 extern skinframe_t *decalskinframe;
9551 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9552 {
9553         int i;
9554         decalsystem_t *decalsystem = &ent->decalsystem;
9555         int numdecals;
9556         tridecal_t *decal;
9557         float faderate;
9558         float alpha;
9559         float *v3f;
9560         float *c4f;
9561         float *t2f;
9562         const int *e;
9563         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9564         int numtris = 0;
9565
9566         numdecals = decalsystem->numdecals;
9567         if (!numdecals)
9568                 return;
9569
9570         if (r_showsurfaces.integer)
9571                 return;
9572
9573         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9574         {
9575                 R_DecalSystem_Reset(decalsystem);
9576                 return;
9577         }
9578
9579         // if the model is static it doesn't matter what value we give for
9580         // wantnormals and wanttangents, so this logic uses only rules applicable
9581         // to a model, knowing that they are meaningless otherwise
9582         RSurf_ActiveModelEntity(ent, false, false, false);
9583
9584         decalsystem->lastupdatetime = r_refdef.scene.time;
9585
9586         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9587
9588         // update vertex positions for animated models
9589         v3f = decalsystem->vertex3f;
9590         c4f = decalsystem->color4f;
9591         t2f = decalsystem->texcoord2f;
9592         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9593         {
9594                 if (!decal->color4f[0][3])
9595                         continue;
9596
9597                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9598                         continue;
9599
9600                 // skip backfaces
9601                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9602                         continue;
9603
9604                 // update color values for fading decals
9605                 if (decal->lived >= cl_decals_time.value)
9606                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9607                 else
9608                         alpha = 1.0f;
9609
9610                 c4f[ 0] = decal->color4f[0][0] * alpha;
9611                 c4f[ 1] = decal->color4f[0][1] * alpha;
9612                 c4f[ 2] = decal->color4f[0][2] * alpha;
9613                 c4f[ 3] = 1;
9614                 c4f[ 4] = decal->color4f[1][0] * alpha;
9615                 c4f[ 5] = decal->color4f[1][1] * alpha;
9616                 c4f[ 6] = decal->color4f[1][2] * alpha;
9617                 c4f[ 7] = 1;
9618                 c4f[ 8] = decal->color4f[2][0] * alpha;
9619                 c4f[ 9] = decal->color4f[2][1] * alpha;
9620                 c4f[10] = decal->color4f[2][2] * alpha;
9621                 c4f[11] = 1;
9622
9623                 t2f[0] = decal->texcoord2f[0][0];
9624                 t2f[1] = decal->texcoord2f[0][1];
9625                 t2f[2] = decal->texcoord2f[1][0];
9626                 t2f[3] = decal->texcoord2f[1][1];
9627                 t2f[4] = decal->texcoord2f[2][0];
9628                 t2f[5] = decal->texcoord2f[2][1];
9629
9630                 // update vertex positions for animated models
9631                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9632                 {
9633                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9634                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9635                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9636                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9637                 }
9638                 else
9639                 {
9640                         VectorCopy(decal->vertex3f[0], v3f);
9641                         VectorCopy(decal->vertex3f[1], v3f + 3);
9642                         VectorCopy(decal->vertex3f[2], v3f + 6);
9643                 }
9644
9645                 if (r_refdef.fogenabled)
9646                 {
9647                         alpha = RSurf_FogVertex(v3f);
9648                         VectorScale(c4f, alpha, c4f);
9649                         alpha = RSurf_FogVertex(v3f + 3);
9650                         VectorScale(c4f + 4, alpha, c4f + 4);
9651                         alpha = RSurf_FogVertex(v3f + 6);
9652                         VectorScale(c4f + 8, alpha, c4f + 8);
9653                 }
9654
9655                 v3f += 9;
9656                 c4f += 12;
9657                 t2f += 6;
9658                 numtris++;
9659         }
9660
9661         if (numtris > 0)
9662         {
9663                 r_refdef.stats[r_stat_drawndecals] += numtris;
9664
9665                 // now render the decals all at once
9666                 // (this assumes they all use one particle font texture!)
9667                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9668 //              R_Mesh_ResetTextureState();
9669                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9670                 GL_DepthMask(false);
9671                 GL_DepthRange(0, 1);
9672                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9673                 GL_DepthTest(true);
9674                 GL_CullFace(GL_NONE);
9675                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9676                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9677                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9678         }
9679 }
9680
9681 static void R_DrawModelDecals(void)
9682 {
9683         int i, numdecals;
9684
9685         // fade faster when there are too many decals
9686         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9687         for (i = 0;i < r_refdef.scene.numentities;i++)
9688                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9689
9690         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9691         for (i = 0;i < r_refdef.scene.numentities;i++)
9692                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9693                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9694
9695         R_DecalSystem_ApplySplatEntitiesQueue();
9696
9697         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9698         for (i = 0;i < r_refdef.scene.numentities;i++)
9699                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9700
9701         r_refdef.stats[r_stat_totaldecals] += numdecals;
9702
9703         if (r_showsurfaces.integer || !r_drawdecals.integer)
9704                 return;
9705
9706         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9707
9708         for (i = 0;i < r_refdef.scene.numentities;i++)
9709         {
9710                 if (!r_refdef.viewcache.entityvisible[i])
9711                         continue;
9712                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9713                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9714         }
9715 }
9716
9717 static void R_DrawDebugModel(void)
9718 {
9719         entity_render_t *ent = rsurface.entity;
9720         int j, flagsmask;
9721         const msurface_t *surface;
9722         model_t *model = ent->model;
9723
9724         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9725                 return;
9726
9727         if (r_showoverdraw.value > 0)
9728         {
9729                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9730                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9731                 R_SetupShader_Generic_NoTexture(false, false);
9732                 GL_DepthTest(false);
9733                 GL_DepthMask(false);
9734                 GL_DepthRange(0, 1);
9735                 GL_BlendFunc(GL_ONE, GL_ONE);
9736                 for (j = model->submodelsurfaces_start;j < model->submodelsurfaces_end;j++)
9737                 {
9738                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9739                                 continue;
9740                         surface = model->data_surfaces + j;
9741                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9742                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9743                         {
9744                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9745                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9746                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9747                                         GL_Color(c, 0, 0, 1.0f);
9748                                 else if (ent == r_refdef.scene.worldentity)
9749                                         GL_Color(c, c, c, 1.0f);
9750                                 else
9751                                         GL_Color(0, c, 0, 1.0f);
9752                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9753                                 RSurf_DrawBatch();
9754                         }
9755                 }
9756                 rsurface.texture = NULL;
9757         }
9758
9759         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9760
9761 //      R_Mesh_ResetTextureState();
9762         R_SetupShader_Generic_NoTexture(false, false);
9763         GL_DepthRange(0, 1);
9764         GL_DepthTest(!r_showdisabledepthtest.integer);
9765         GL_DepthMask(false);
9766         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9767
9768         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9769         {
9770                 int triangleindex;
9771                 int bihleafindex;
9772                 qbool cullbox = false;
9773                 const q3mbrush_t *brush;
9774                 const bih_t *bih = &model->collision_bih;
9775                 const bih_leaf_t *bihleaf;
9776                 float vertex3f[3][3];
9777                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9778                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9779                 {
9780                         if (cullbox && R_CullFrustum(bihleaf->mins, bihleaf->maxs))
9781                                 continue;
9782                         switch (bihleaf->type)
9783                         {
9784                         case BIH_BRUSH:
9785                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9786                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9787                                 {
9788                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9789                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9790                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9791                                 }
9792                                 break;
9793                         case BIH_COLLISIONTRIANGLE:
9794                                 triangleindex = bihleaf->itemindex;
9795                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9796                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9797                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9798                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9799                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9800                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9801                                 break;
9802                         case BIH_RENDERTRIANGLE:
9803                                 triangleindex = bihleaf->itemindex;
9804                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9805                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9806                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9807                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9808                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9809                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9810                                 break;
9811                         }
9812                 }
9813         }
9814
9815         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9816
9817 #ifndef USE_GLES2
9818         if (r_showtris.value > 0 && qglPolygonMode)
9819         {
9820                 if (r_showdisabledepthtest.integer)
9821                 {
9822                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9823                         GL_DepthMask(false);
9824                 }
9825                 else
9826                 {
9827                         GL_BlendFunc(GL_ONE, GL_ZERO);
9828                         GL_DepthMask(true);
9829                 }
9830                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9831                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9832                 {
9833                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9834                                 continue;
9835                         surface = model->data_surfaces + j;
9836                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9837                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9838                         {
9839                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9840                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9841                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9842                                 else if (ent == r_refdef.scene.worldentity)
9843                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9844                                 else
9845                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9846                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9847                                 RSurf_DrawBatch();
9848                         }
9849                 }
9850                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9851                 rsurface.texture = NULL;
9852         }
9853
9854 # if 0
9855         // FIXME!  implement r_shownormals with just triangles
9856         if (r_shownormals.value != 0 && qglBegin)
9857         {
9858                 int l, k;
9859                 vec3_t v;
9860                 if (r_showdisabledepthtest.integer)
9861                 {
9862                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9863                         GL_DepthMask(false);
9864                 }
9865                 else
9866                 {
9867                         GL_BlendFunc(GL_ONE, GL_ZERO);
9868                         GL_DepthMask(true);
9869                 }
9870                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9871                 {
9872                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9873                                 continue;
9874                         surface = model->data_surfaces + j;
9875                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9876                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9877                         {
9878                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9879                                 qglBegin(GL_LINES);
9880                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
9881                                 {
9882                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9883                                         {
9884                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9885                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9886                                                 qglVertex3f(v[0], v[1], v[2]);
9887                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9888                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9889                                                 qglVertex3f(v[0], v[1], v[2]);
9890                                         }
9891                                 }
9892                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
9893                                 {
9894                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9895                                         {
9896                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9897                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
9898                                                 qglVertex3f(v[0], v[1], v[2]);
9899                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
9900                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9901                                                 qglVertex3f(v[0], v[1], v[2]);
9902                                         }
9903                                 }
9904                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
9905                                 {
9906                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9907                                         {
9908                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9909                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
9910                                                 qglVertex3f(v[0], v[1], v[2]);
9911                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
9912                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9913                                                 qglVertex3f(v[0], v[1], v[2]);
9914                                         }
9915                                 }
9916                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
9917                                 {
9918                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9919                                         {
9920                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9921                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9922                                                 qglVertex3f(v[0], v[1], v[2]);
9923                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9924                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9925                                                 qglVertex3f(v[0], v[1], v[2]);
9926                                         }
9927                                 }
9928                                 qglEnd();
9929                                 CHECKGLERROR
9930                         }
9931                 }
9932                 rsurface.texture = NULL;
9933         }
9934 # endif
9935 #endif
9936 }
9937
9938 int r_maxsurfacelist = 0;
9939 const msurface_t **r_surfacelist = NULL;
9940 void R_DrawModelSurfaces(entity_render_t *ent, qbool skysurfaces, qbool writedepth, qbool depthonly, qbool debug, qbool prepass, qbool ui)
9941 {
9942         int i, j, flagsmask;
9943         model_t *model = ent->model;
9944         msurface_t *surfaces;
9945         unsigned char *update;
9946         int numsurfacelist = 0;
9947         if (model == NULL)
9948                 return;
9949
9950         if (r_maxsurfacelist < model->num_surfaces)
9951         {
9952                 r_maxsurfacelist = model->num_surfaces;
9953                 if (r_surfacelist)
9954                         Mem_Free((msurface_t **)r_surfacelist);
9955                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
9956         }
9957
9958         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
9959                 RSurf_ActiveModelEntity(ent, false, false, false);
9960         else if (prepass)
9961                 RSurf_ActiveModelEntity(ent, true, true, true);
9962         else if (depthonly)
9963                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
9964         else
9965                 RSurf_ActiveModelEntity(ent, true, true, false);
9966
9967         surfaces = model->data_surfaces;
9968         update = model->brushq1.lightmapupdateflags;
9969
9970         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
9971
9972         if (debug)
9973         {
9974                 R_DrawDebugModel();
9975                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
9976                 return;
9977         }
9978
9979         // check if this is an empty model
9980         if (model->submodelsurfaces_start >= model->submodelsurfaces_end)
9981                 return;
9982
9983         rsurface.lightmaptexture = NULL;
9984         rsurface.deluxemaptexture = NULL;
9985         rsurface.uselightmaptexture = false;
9986         rsurface.texture = NULL;
9987         rsurface.rtlight = NULL;
9988         numsurfacelist = 0;
9989
9990         // add visible surfaces to draw list
9991         if (ent == r_refdef.scene.worldentity)
9992         {
9993                 // for the world entity, check surfacevisible
9994                 for (i = model->submodelsurfaces_start;i < model->submodelsurfaces_end;i++)
9995                 {
9996                         j = model->modelsurfaces_sorted[i];
9997                         if (r_refdef.viewcache.world_surfacevisible[j])
9998                                 r_surfacelist[numsurfacelist++] = surfaces + j;
9999                 }
10000
10001                 // don't do anything if there were no surfaces added (none of the world entity is visible)
10002                 if (!numsurfacelist)
10003                 {
10004                         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10005                         return;
10006                 }
10007         }
10008         else if (ui)
10009         {
10010                 // for ui we have to preserve the order of surfaces (not using modelsurfaces_sorted)
10011                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10012                         r_surfacelist[numsurfacelist++] = surfaces + i;
10013         }
10014         else
10015         {
10016                 // add all surfaces
10017                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10018                         r_surfacelist[numsurfacelist++] = surfaces + model->modelsurfaces_sorted[i];
10019         }
10020
10021         /*
10022          * Mark lightmaps as dirty if their lightstyle's value changed. We do this by
10023          * using style chains because most styles do not change on most frames, and most
10024          * surfaces do not have styles on them. Mods like Arcane Dimensions (e.g. ad_necrokeep)
10025          * break this rule and animate most surfaces.
10026          */
10027         if (update && !skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0 && r_q1bsp_lightmap_updates_enabled.integer)
10028         {
10029                 model_brush_lightstyleinfo_t *style;
10030
10031                 // For each lightstyle, check if its value changed and mark the lightmaps as dirty if so
10032                 for (i = 0, style = model->brushq1.data_lightstyleinfo; i < model->brushq1.num_lightstyles; i++, style++)
10033                 {
10034                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10035                         {
10036                                 int* list = style->surfacelist;
10037                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10038                                 // Value changed - mark the surfaces belonging to this style chain as dirty
10039                                 for (j = 0; j < style->numsurfaces; j++)
10040                                         update[list[j]] = true;
10041                         }
10042                 }
10043                 // Now check if update flags are set on any surfaces that are visible
10044                 if (r_q1bsp_lightmap_updates_hidden_surfaces.integer)
10045                 {
10046                         /* 
10047                          * We can do less frequent texture uploads (approximately 10hz for animated
10048                          * lightstyles) by rebuilding lightmaps on surfaces that are not currently visible.
10049                          * For optimal efficiency, this includes the submodels of the worldmodel, so we
10050                          * use model->num_surfaces, not nummodelsurfaces.
10051                          */
10052                         for (i = 0; i < model->num_surfaces;i++)
10053                                 if (update[i])
10054                                         R_BuildLightMap(ent, surfaces + i, r_q1bsp_lightmap_updates_combine.integer);
10055                 }
10056                 else
10057                 {
10058                         for (i = 0; i < numsurfacelist; i++)
10059                                 if (update[r_surfacelist[i] - surfaces])
10060                                         R_BuildLightMap(ent, (msurface_t *)r_surfacelist[i], r_q1bsp_lightmap_updates_combine.integer);
10061                 }
10062         }
10063
10064         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass, ui);
10065
10066         // add to stats if desired
10067         if (r_speeds.integer && !skysurfaces && !depthonly)
10068         {
10069                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10070                 for (j = 0;j < numsurfacelist;j++)
10071                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10072         }
10073
10074         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10075 }
10076
10077 void R_DebugLine(vec3_t start, vec3_t end)
10078 {
10079         model_t *mod = CL_Mesh_UI();
10080         msurface_t *surf;
10081         int e0, e1, e2, e3;
10082         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10083         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10084         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10085         vec4_t w[2], s[2];
10086
10087         // transform to screen coords first
10088         Vector4Set(w[0], start[0], start[1], start[2], 1);
10089         Vector4Set(w[1], end[0], end[1], end[2], 1);
10090         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10091         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10092         x1 = s[0][0] * vid_conwidth.value / vid.width;
10093         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10094         x2 = s[1][0] * vid_conwidth.value / vid.width;
10095         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10096         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10097
10098         // add the line to the UI mesh for drawing later
10099
10100         // width is measured in real pixels
10101         if (fabs(x2 - x1) > fabs(y2 - y1))
10102         {
10103                 offsetx = 0;
10104                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10105         }
10106         else
10107         {
10108                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10109                 offsety = 0;
10110         }
10111         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_WALL | MATERIALFLAG_VERTEXCOLOR | MATERIALFLAG_ALPHAGEN_VERTEX | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW), true);
10112         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10113         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10114         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10115         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10116         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10117         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10118
10119 }
10120
10121
10122 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10123 {
10124         static texture_t texture;
10125
10126         // fake enough texture and surface state to render this geometry
10127
10128         texture.update_lastrenderframe = -1; // regenerate this texture
10129         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10130         texture.basealpha = 1.0f;
10131         texture.currentskinframe = skinframe;
10132         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10133         texture.offsetmapping = OFFSETMAPPING_OFF;
10134         texture.offsetscale = 1;
10135         texture.specularscalemod = 1;
10136         texture.specularpowermod = 1;
10137         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10138
10139         R_DrawCustomSurface_Texture(&texture, texmatrix, materialflags, firstvertex, numvertices, firsttriangle, numtriangles, writedepth, prepass, ui);
10140 }
10141
10142 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10143 {
10144         static msurface_t surface;
10145         const msurface_t *surfacelist = &surface;
10146
10147         // fake enough texture and surface state to render this geometry
10148         surface.texture = texture;
10149         surface.num_triangles = numtriangles;
10150         surface.num_firsttriangle = firsttriangle;
10151         surface.num_vertices = numvertices;
10152         surface.num_firstvertex = firstvertex;
10153
10154         // now render it
10155         rsurface.texture = R_GetCurrentTexture(surface.texture);
10156         rsurface.lightmaptexture = NULL;
10157         rsurface.deluxemaptexture = NULL;
10158         rsurface.uselightmaptexture = false;
10159         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass, ui);
10160 }