]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
support TYPE_FIELD in stores; storeP to do a different kind of type checking
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdlib.h>
24 #include <string.h>
25 #include "gmqcc.h"
26 #include "ir.h"
27
28 /***********************************************************************
29  *IR Builder
30  */
31
32 ir_builder* ir_builder_new(const char *modulename)
33 {
34     ir_builder* self;
35
36     self = (ir_builder*)mem_a(sizeof(*self));
37     MEM_VECTOR_INIT(self, functions);
38     MEM_VECTOR_INIT(self, globals);
39     self->name = NULL;
40     if (!ir_builder_set_name(self, modulename)) {
41         mem_d(self);
42         return NULL;
43     }
44
45     /* globals which always exist */
46
47     /* for now we give it a vector size */
48     ir_builder_create_global(self, "OFS_RETURN", TYPE_VARIANT);
49
50     return self;
51 }
52
53 MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals)
54 MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions)
55
56 void ir_builder_delete(ir_builder* self)
57 {
58     size_t i;
59     mem_d((void*)self->name);
60     for (i = 0; i != self->functions_count; ++i) {
61         ir_function_delete(self->functions[i]);
62     }
63     MEM_VECTOR_CLEAR(self, functions);
64     for (i = 0; i != self->globals_count; ++i) {
65         ir_value_delete(self->globals[i]);
66     }
67     MEM_VECTOR_CLEAR(self, globals);
68     mem_d(self);
69 }
70
71 bool ir_builder_set_name(ir_builder *self, const char *name)
72 {
73     if (self->name)
74         mem_d((void*)self->name);
75     self->name = util_strdup(name);
76     return !!self->name;
77 }
78
79 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
80 {
81     size_t i;
82     for (i = 0; i < self->functions_count; ++i) {
83         if (!strcmp(name, self->functions[i]->name))
84             return self->functions[i];
85     }
86     return NULL;
87 }
88
89 ir_function* ir_builder_create_function(ir_builder *self, const char *name)
90 {
91     ir_function *fn = ir_builder_get_function(self, name);
92     if (fn) {
93         return NULL;
94     }
95
96     fn = ir_function_new(self);
97     if (!ir_function_set_name(fn, name) ||
98         !ir_builder_functions_add(self, fn) )
99     {
100         ir_function_delete(fn);
101         return NULL;
102     }
103     return fn;
104 }
105
106 ir_value* ir_builder_get_global(ir_builder *self, const char *name)
107 {
108     size_t i;
109     for (i = 0; i < self->globals_count; ++i) {
110         if (!strcmp(self->globals[i]->name, name))
111             return self->globals[i];
112     }
113     return NULL;
114 }
115
116 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
117 {
118     ir_value *ve = ir_builder_get_global(self, name);
119     if (ve) {
120         return NULL;
121     }
122
123     ve = ir_value_var(name, store_global, vtype);
124     if (!ir_builder_globals_add(self, ve)) {
125         ir_value_delete(ve);
126         return NULL;
127     }
128     return ve;
129 }
130
131 /***********************************************************************
132  *IR Function
133  */
134
135 bool ir_function_naive_phi(ir_function*);
136 void ir_function_enumerate(ir_function*);
137 bool ir_function_calculate_liferanges(ir_function*);
138
139 ir_function* ir_function_new(ir_builder* owner)
140 {
141     ir_function *self;
142     self = (ir_function*)mem_a(sizeof(*self));
143     self->name = NULL;
144     if (!ir_function_set_name(self, "<@unnamed>")) {
145         mem_d(self);
146         return NULL;
147     }
148     self->owner = owner;
149     self->context.file = "<@no context>";
150     self->context.line = 0;
151     self->retype = TYPE_VOID;
152     MEM_VECTOR_INIT(self, params);
153     MEM_VECTOR_INIT(self, blocks);
154     MEM_VECTOR_INIT(self, values);
155     MEM_VECTOR_INIT(self, locals);
156
157     self->run_id = 0;
158     return self;
159 }
160 MEM_VEC_FUNCTIONS(ir_function, ir_value*, values)
161 MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks)
162 MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals)
163
164 bool ir_function_set_name(ir_function *self, const char *name)
165 {
166     if (self->name)
167         mem_d((void*)self->name);
168     self->name = util_strdup(name);
169     return !!self->name;
170 }
171
172 void ir_function_delete(ir_function *self)
173 {
174     size_t i;
175     mem_d((void*)self->name);
176
177     for (i = 0; i != self->blocks_count; ++i)
178         ir_block_delete(self->blocks[i]);
179     MEM_VECTOR_CLEAR(self, blocks);
180
181     MEM_VECTOR_CLEAR(self, params);
182
183     for (i = 0; i != self->values_count; ++i)
184         ir_value_delete(self->values[i]);
185     MEM_VECTOR_CLEAR(self, values);
186
187     for (i = 0; i != self->locals_count; ++i)
188         ir_value_delete(self->locals[i]);
189     MEM_VECTOR_CLEAR(self, locals);
190
191     mem_d(self);
192 }
193
194 bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v)
195 {
196     return ir_function_values_add(self, v);
197 }
198
199 ir_block* ir_function_create_block(ir_function *self, const char *label)
200 {
201     ir_block* bn = ir_block_new(self, label);
202     memcpy(&bn->context, &self->context, sizeof(self->context));
203     if (!ir_function_blocks_add(self, bn)) {
204         ir_block_delete(bn);
205         return NULL;
206     }
207     return bn;
208 }
209
210 bool ir_function_finalize(ir_function *self)
211 {
212     if (!ir_function_naive_phi(self))
213         return false;
214
215     ir_function_enumerate(self);
216
217     if (!ir_function_calculate_liferanges(self))
218         return false;
219     return true;
220 }
221
222 ir_value* ir_function_get_local(ir_function *self, const char *name)
223 {
224     size_t i;
225     for (i = 0; i < self->locals_count; ++i) {
226         if (!strcmp(self->locals[i]->name, name))
227             return self->locals[i];
228     }
229     return NULL;
230 }
231
232 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype)
233 {
234     ir_value *ve = ir_function_get_local(self, name);
235     if (ve) {
236         return NULL;
237     }
238
239     ve = ir_value_var(name, store_local, vtype);
240     if (!ir_function_locals_add(self, ve)) {
241         ir_value_delete(ve);
242         return NULL;
243     }
244     return ve;
245 }
246
247 /***********************************************************************
248  *IR Block
249  */
250
251 ir_block* ir_block_new(ir_function* owner, const char *name)
252 {
253     ir_block *self;
254     self = (ir_block*)mem_a(sizeof(*self));
255     self->label = NULL;
256     if (!ir_block_set_label(self, name)) {
257         mem_d(self);
258         return NULL;
259     }
260     self->owner = owner;
261     self->context.file = "<@no context>";
262     self->context.line = 0;
263     self->final = false;
264     MEM_VECTOR_INIT(self, instr);
265     MEM_VECTOR_INIT(self, entries);
266     MEM_VECTOR_INIT(self, exits);
267
268     self->eid = 0;
269     self->is_return = false;
270     self->run_id = 0;
271     MEM_VECTOR_INIT(self, living);
272     return self;
273 }
274 MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr)
275 MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries)
276 MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits)
277 MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living)
278
279 void ir_block_delete(ir_block* self)
280 {
281     size_t i;
282     mem_d(self->label);
283     for (i = 0; i != self->instr_count; ++i)
284         ir_instr_delete(self->instr[i]);
285     MEM_VECTOR_CLEAR(self, instr);
286     MEM_VECTOR_CLEAR(self, entries);
287     MEM_VECTOR_CLEAR(self, exits);
288     MEM_VECTOR_CLEAR(self, living);
289     mem_d(self);
290 }
291
292 bool ir_block_set_label(ir_block *self, const char *name)
293 {
294     if (self->label)
295         mem_d((void*)self->label);
296     self->label = util_strdup(name);
297     return !!self->label;
298 }
299
300 /***********************************************************************
301  *IR Instructions
302  */
303
304 ir_instr* ir_instr_new(ir_block* owner, int op)
305 {
306     ir_instr *self;
307     self = (ir_instr*)mem_a(sizeof(*self));
308     self->owner = owner;
309     self->context.file = "<@no context>";
310     self->context.line = 0;
311     self->opcode = op;
312     self->_ops[0] = NULL;
313     self->_ops[1] = NULL;
314     self->_ops[2] = NULL;
315     self->bops[0] = NULL;
316     self->bops[1] = NULL;
317     MEM_VECTOR_INIT(self, phi);
318
319     self->eid = 0;
320     return self;
321 }
322 MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi)
323
324 void ir_instr_delete(ir_instr *self)
325 {
326     size_t i;
327     /* The following calls can only delete from
328      * vectors, we still want to delete this instruction
329      * so ignore the return value. Since with the warn_unused_result attribute
330      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
331      * I have to improvise here and use if(foo());
332      */
333     for (i = 0; i < self->phi_count; ++i) {
334         size_t idx;
335         if (ir_value_writes_find(self->phi[i].value, self, &idx))
336             if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPRESS_EMPTY_BODY;
337         if (ir_value_reads_find(self->phi[i].value, self, &idx))
338             if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPRESS_EMPTY_BODY;
339     }
340     MEM_VECTOR_CLEAR(self, phi);
341     if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPRESS_EMPTY_BODY;
342     if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPRESS_EMPTY_BODY;
343     if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPRESS_EMPTY_BODY;
344     mem_d(self);
345 }
346
347 bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
348 {
349     if (self->_ops[op]) {
350         size_t idx;
351         if (writing && ir_value_writes_find(self->_ops[op], self, &idx))
352         {
353             if (!ir_value_writes_remove(self->_ops[op], idx))
354                 return false;
355         }
356         else if (ir_value_reads_find(self->_ops[op], self, &idx))
357         {
358             if (!ir_value_reads_remove(self->_ops[op], idx))
359                 return false;
360         }
361     }
362     if (v) {
363         if (writing) {
364             if (!ir_value_writes_add(v, self))
365                 return false;
366         } else {
367             if (!ir_value_reads_add(v, self))
368                 return false;
369         }
370     }
371     self->_ops[op] = v;
372     return true;
373 }
374
375 /***********************************************************************
376  *IR Value
377  */
378
379 ir_value* ir_value_var(const char *name, int storetype, int vtype)
380 {
381     ir_value *self;
382     self = (ir_value*)mem_a(sizeof(*self));
383     self->vtype = vtype;
384     self->store = storetype;
385     MEM_VECTOR_INIT(self, reads);
386     MEM_VECTOR_INIT(self, writes);
387     self->isconst = false;
388     self->context.file = "<@no context>";
389     self->context.line = 0;
390     self->name = NULL;
391     ir_value_set_name(self, name);
392
393     MEM_VECTOR_INIT(self, life);
394     return self;
395 }
396 MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life)
397 MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads)
398 MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes)
399
400 ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
401 {
402     ir_value *v = ir_value_var(name, storetype, vtype);
403     if (!v)
404         return NULL;
405     if (!ir_function_collect_value(owner, v))
406     {
407         ir_value_delete(v);
408         return NULL;
409     }
410     return v;
411 }
412
413 void ir_value_delete(ir_value* self)
414 {
415     mem_d((void*)self->name);
416     if (self->isconst)
417     {
418         if (self->vtype == TYPE_STRING)
419             mem_d((void*)self->constval.vstring);
420     }
421     MEM_VECTOR_CLEAR(self, reads);
422     MEM_VECTOR_CLEAR(self, writes);
423     MEM_VECTOR_CLEAR(self, life);
424     mem_d(self);
425 }
426
427 void ir_value_set_name(ir_value *self, const char *name)
428 {
429     if (self->name)
430         mem_d((void*)self->name);
431     self->name = util_strdup(name);
432 }
433
434 bool ir_value_set_float(ir_value *self, float f)
435 {
436     if (self->vtype != TYPE_FLOAT)
437         return false;
438     self->constval.vfloat = f;
439     self->isconst = true;
440     return true;
441 }
442
443 bool ir_value_set_vector(ir_value *self, vector v)
444 {
445     if (self->vtype != TYPE_VECTOR)
446         return false;
447     self->constval.vvec = v;
448     self->isconst = true;
449     return true;
450 }
451
452 bool ir_value_set_string(ir_value *self, const char *str)
453 {
454     if (self->vtype != TYPE_STRING)
455         return false;
456     self->constval.vstring = util_strdup(str);
457     self->isconst = true;
458     return true;
459 }
460
461 #if 0
462 bool ir_value_set_int(ir_value *self, int i)
463 {
464     if (self->vtype != TYPE_INTEGER)
465         return false;
466     self->constval.vint = i;
467     self->isconst = true;
468     return true;
469 }
470 #endif
471
472 bool ir_value_lives(ir_value *self, size_t at)
473 {
474     size_t i;
475     for (i = 0; i < self->life_count; ++i)
476     {
477         ir_life_entry_t *life = &self->life[i];
478         if (life->start <= at && at <= life->end)
479             return true;
480         if (life->start > at) /* since it's ordered */
481             return false;
482     }
483     return false;
484 }
485
486 bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
487 {
488     size_t k;
489     if (!ir_value_life_add(self, e)) /* naive... */
490         return false;
491     for (k = self->life_count-1; k > idx; --k)
492         self->life[k] = self->life[k-1];
493     self->life[idx] = e;
494     return true;
495 }
496
497 bool ir_value_life_merge(ir_value *self, size_t s)
498 {
499     size_t i;
500     ir_life_entry_t *life = NULL;
501     ir_life_entry_t *before = NULL;
502     ir_life_entry_t new_entry;
503
504     /* Find the first range >= s */
505     for (i = 0; i < self->life_count; ++i)
506     {
507         before = life;
508         life = &self->life[i];
509         if (life->start > s)
510             break;
511     }
512     /* nothing found? append */
513     if (i == self->life_count) {
514         ir_life_entry_t e;
515         if (life && life->end+1 == s)
516         {
517             /* previous life range can be merged in */
518             life->end++;
519             return true;
520         }
521         if (life && life->end >= s)
522             return false;
523         e.start = e.end = s;
524         if (!ir_value_life_add(self, e))
525             return false; /* failing */
526         return true;
527     }
528     /* found */
529     if (before)
530     {
531         if (before->end + 1 == s &&
532             life->start - 1 == s)
533         {
534             /* merge */
535             before->end = life->end;
536             if (!ir_value_life_remove(self, i))
537                 return false; /* failing */
538             return true;
539         }
540         if (before->end + 1 == s)
541         {
542             /* extend before */
543             before->end++;
544             return true;
545         }
546         /* already contained */
547         if (before->end >= s)
548             return false;
549     }
550     /* extend */
551     if (life->start - 1 == s)
552     {
553         life->start--;
554         return true;
555     }
556     /* insert a new entry */
557     new_entry.start = new_entry.end = s;
558     return ir_value_life_insert(self, i, new_entry);
559 }
560
561 /***********************************************************************
562  *IR main operations
563  */
564
565 bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what)
566 {
567     if (target->store == store_value) {
568         fprintf(stderr, "cannot store to an SSA value\n");
569         return false;
570     } else {
571         ir_instr *in = ir_instr_new(self, op);
572         if (!in)
573             return false;
574         if (!ir_instr_op(in, 0, target, true) ||
575             !ir_instr_op(in, 1, what, false)  ||
576             !ir_block_instr_add(self, in) )
577         {
578             return false;
579         }
580         return true;
581     }
582 }
583
584 bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what)
585 {
586     int op = 0;
587     int vtype;
588     if (target->vtype == TYPE_VARIANT)
589         vtype = what->vtype;
590     else
591         vtype = target->vtype;
592
593     switch (vtype) {
594         case TYPE_FLOAT:
595 #if 0
596             if (what->vtype == TYPE_INTEGER)
597                 op = INSTR_CONV_ITOF;
598             else
599 #endif
600                 op = INSTR_STORE_F;
601             break;
602         case TYPE_VECTOR:
603             op = INSTR_STORE_V;
604             break;
605         case TYPE_ENTITY:
606             op = INSTR_STORE_ENT;
607             break;
608         case TYPE_STRING:
609             op = INSTR_STORE_S;
610             break;
611         case TYPE_FIELD:
612             op = INSTR_STORE_FLD;
613             break;
614 #if 0
615         case TYPE_INTEGER:
616             if (what->vtype == TYPE_INTEGER)
617                 op = INSTR_CONV_FTOI;
618             else
619                 op = INSTR_STORE_I;
620             break;
621 #endif
622         case TYPE_POINTER:
623 #if 0
624             op = INSTR_STORE_I;
625 #else
626             op = INSTR_STORE_ENT;
627 #endif
628             break;
629         default:
630             /* Unknown type */
631             return false;
632     }
633     return ir_block_create_store_op(self, op, target, what);
634 }
635
636 bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what)
637 {
638     int op = 0;
639     int vtype;
640
641     if (target->vtype != TYPE_POINTER)
642         return false;
643
644     /* storing using pointer - target is a pointer, type must be
645      * inferred from source
646      */
647     vtype = what->vtype;
648
649     switch (vtype) {
650         case TYPE_FLOAT:
651             op = INSTR_STOREP_F;
652             break;
653         case TYPE_VECTOR:
654             op = INSTR_STOREP_V;
655             break;
656         case TYPE_ENTITY:
657             op = INSTR_STOREP_ENT;
658             break;
659         case TYPE_STRING:
660             op = INSTR_STOREP_S;
661             break;
662         case TYPE_FIELD:
663             op = INSTR_STOREP_FLD;
664             break;
665 #if 0
666         case TYPE_INTEGER:
667             op = INSTR_STOREP_I;
668             break;
669 #endif
670         case TYPE_POINTER:
671 #if 0
672             op = INSTR_STOREP_I;
673 #else
674             op = INSTR_STOREP_ENT;
675 #endif
676             break;
677         default:
678             /* Unknown type */
679             return false;
680     }
681     return ir_block_create_store_op(self, op, target, what);
682 }
683
684 bool ir_block_create_return(ir_block *self, ir_value *v)
685 {
686     ir_instr *in;
687     if (self->final) {
688         fprintf(stderr, "block already ended (%s)\n", self->label);
689         return false;
690     }
691     self->final = true;
692     self->is_return = true;
693     in = ir_instr_new(self, INSTR_RETURN);
694     if (!in)
695         return false;
696
697     if (!ir_instr_op(in, 0, v, false) ||
698         !ir_block_instr_add(self, in) )
699     {
700         return false;
701     }
702     return true;
703 }
704
705 bool ir_block_create_if(ir_block *self, ir_value *v,
706                         ir_block *ontrue, ir_block *onfalse)
707 {
708     ir_instr *in;
709     if (self->final) {
710         fprintf(stderr, "block already ended (%s)\n", self->label);
711         return false;
712     }
713     self->final = true;
714     /*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
715     in = ir_instr_new(self, VINSTR_COND);
716     if (!in)
717         return false;
718
719     if (!ir_instr_op(in, 0, v, false)) {
720         ir_instr_delete(in);
721         return false;
722     }
723
724     in->bops[0] = ontrue;
725     in->bops[1] = onfalse;
726
727     if (!ir_block_instr_add(self, in))
728         return false;
729
730     if (!ir_block_exits_add(self, ontrue)    ||
731         !ir_block_exits_add(self, onfalse)   ||
732         !ir_block_entries_add(ontrue, self)  ||
733         !ir_block_entries_add(onfalse, self) )
734     {
735         return false;
736     }
737     return true;
738 }
739
740 bool ir_block_create_jump(ir_block *self, ir_block *to)
741 {
742     ir_instr *in;
743     if (self->final) {
744         fprintf(stderr, "block already ended (%s)\n", self->label);
745         return false;
746     }
747     self->final = true;
748     in = ir_instr_new(self, VINSTR_JUMP);
749     if (!in)
750         return false;
751
752     in->bops[0] = to;
753     if (!ir_block_instr_add(self, in))
754         return false;
755
756     if (!ir_block_exits_add(self, to) ||
757         !ir_block_entries_add(to, self) )
758     {
759         return false;
760     }
761     return true;
762 }
763
764 bool ir_block_create_goto(ir_block *self, ir_block *to)
765 {
766     ir_instr *in;
767     if (self->final) {
768         fprintf(stderr, "block already ended (%s)\n", self->label);
769         return false;
770     }
771     self->final = true;
772     in = ir_instr_new(self, INSTR_GOTO);
773     if (!in)
774         return false;
775
776     in->bops[0] = to;
777     if (!ir_block_instr_add(self, in))
778         return false;
779
780     if (!ir_block_exits_add(self, to) ||
781         !ir_block_entries_add(to, self) )
782     {
783         return false;
784     }
785     return true;
786 }
787
788 ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot)
789 {
790     ir_value *out;
791     ir_instr *in;
792     in = ir_instr_new(self, VINSTR_PHI);
793     if (!in)
794         return NULL;
795     out = ir_value_out(self->owner, label, store_local, ot);
796     if (!out) {
797         ir_instr_delete(in);
798         return NULL;
799     }
800     if (!ir_instr_op(in, 0, out, true)) {
801         ir_instr_delete(in);
802         ir_value_delete(out);
803         return NULL;
804     }
805     if (!ir_block_instr_add(self, in)) {
806         ir_instr_delete(in);
807         ir_value_delete(out);
808         return NULL;
809     }
810     return in;
811 }
812
813 ir_value* ir_phi_value(ir_instr *self)
814 {
815     return self->_ops[0];
816 }
817
818 bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
819 {
820     ir_phi_entry_t pe;
821
822     if (!ir_block_entries_find(self->owner, b, NULL)) {
823         /* Must not be possible to cause this, otherwise the AST
824          * is doing something wrong.
825          */
826         fprintf(stderr, "Invalid entry block for PHI\n");
827         abort();
828     }
829
830     pe.value = v;
831     pe.from = b;
832     if (!ir_value_reads_add(v, self))
833         return false;
834     return ir_instr_phi_add(self, pe);
835 }
836
837 /* binary op related code */
838
839 ir_value* ir_block_create_binop(ir_block *self,
840                                 const char *label, int opcode,
841                                 ir_value *left, ir_value *right)
842 {
843     ir_value *out = NULL;
844     ir_instr *in  = NULL;
845
846     int ot = TYPE_VOID;
847     switch (opcode) {
848         case INSTR_ADD_F:
849         case INSTR_SUB_F:
850         case INSTR_DIV_F:
851         case INSTR_MUL_F:
852         case INSTR_MUL_V:
853         case INSTR_AND:
854         case INSTR_OR:
855 #if 0
856         case INSTR_AND_I:
857         case INSTR_AND_IF:
858         case INSTR_AND_FI:
859         case INSTR_OR_I:
860         case INSTR_OR_IF:
861         case INSTR_OR_FI:
862 #endif
863         case INSTR_BITAND:
864         case INSTR_BITOR:
865 #if 0
866         case INSTR_SUB_S: /* -- offset of string as float */
867         case INSTR_MUL_IF:
868         case INSTR_MUL_FI:
869         case INSTR_DIV_IF:
870         case INSTR_DIV_FI:
871         case INSTR_BITOR_IF:
872         case INSTR_BITOR_FI:
873         case INSTR_BITAND_FI:
874         case INSTR_BITAND_IF:
875         case INSTR_EQ_I:
876         case INSTR_NE_I:
877 #endif
878             ot = TYPE_FLOAT;
879             break;
880 #if 0
881         case INSTR_ADD_I:
882         case INSTR_ADD_IF:
883         case INSTR_ADD_FI:
884         case INSTR_SUB_I:
885         case INSTR_SUB_FI:
886         case INSTR_SUB_IF:
887         case INSTR_MUL_I:
888         case INSTR_DIV_I:
889         case INSTR_BITAND_I:
890         case INSTR_BITOR_I:
891         case INSTR_XOR_I:
892         case INSTR_RSHIFT_I:
893         case INSTR_LSHIFT_I:
894             ot = TYPE_INTEGER;
895             break;
896 #endif
897         case INSTR_ADD_V:
898         case INSTR_SUB_V:
899         case INSTR_MUL_VF:
900         case INSTR_MUL_FV:
901 #if 0
902         case INSTR_DIV_VF:
903         case INSTR_MUL_IV:
904         case INSTR_MUL_VI:
905 #endif
906             ot = TYPE_VECTOR;
907             break;
908 #if 0
909         case INSTR_ADD_SF:
910             ot = TYPE_POINTER;
911             break;
912 #endif
913         default:
914             /* ranges: */
915             /* boolean operations result in floats */
916             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
917                 ot = TYPE_FLOAT;
918             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
919                 ot = TYPE_FLOAT;
920 #if 0
921             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
922                 ot = TYPE_FLOAT;
923 #endif
924             break;
925     };
926     if (ot == TYPE_VOID) {
927         /* The AST or parser were supposed to check this! */
928         return NULL;
929     }
930
931     out = ir_value_out(self->owner, label, store_local, ot);
932     if (!out)
933         return NULL;
934
935     in = ir_instr_new(self, opcode);
936     if (!in) {
937         ir_value_delete(out);
938         return NULL;
939     }
940
941     if (!ir_instr_op(in, 0, out, true) ||
942         !ir_instr_op(in, 1, left, false) ||
943         !ir_instr_op(in, 2, right, false) )
944     {
945         goto on_error;
946     }
947
948     if (!ir_block_instr_add(self, in))
949         goto on_error;
950
951     return out;
952 on_error:
953     ir_value_delete(out);
954     ir_instr_delete(in);
955     return NULL;
956 }
957
958 ir_value* ir_block_create_add(ir_block *self,
959                               const char *label,
960                               ir_value *left, ir_value *right)
961 {
962     int op = 0;
963     int l = left->vtype;
964     int r = right->vtype;
965     if (l == r) {
966         switch (l) {
967             default:
968                 return NULL;
969             case TYPE_FLOAT:
970                 op = INSTR_ADD_F;
971                 break;
972 #if 0
973             case TYPE_INTEGER:
974                 op = INSTR_ADD_I;
975                 break;
976 #endif
977             case TYPE_VECTOR:
978                 op = INSTR_ADD_V;
979                 break;
980         }
981     } else {
982 #if 0
983         if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
984             op = INSTR_ADD_FI;
985         else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
986             op = INSTR_ADD_IF;
987         else
988 #endif
989             return NULL;
990     }
991     return ir_block_create_binop(self, label, op, left, right);
992 }
993
994 ir_value* ir_block_create_sub(ir_block *self,
995                               const char *label,
996                               ir_value *left, ir_value *right)
997 {
998     int op = 0;
999     int l = left->vtype;
1000     int r = right->vtype;
1001     if (l == r) {
1002
1003         switch (l) {
1004             default:
1005                 return NULL;
1006             case TYPE_FLOAT:
1007                 op = INSTR_SUB_F;
1008                 break;
1009 #if 0
1010             case TYPE_INTEGER:
1011                 op = INSTR_SUB_I;
1012                 break;
1013 #endif
1014             case TYPE_VECTOR:
1015                 op = INSTR_SUB_V;
1016                 break;
1017         }
1018     } else {
1019 #if 0
1020         if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
1021             op = INSTR_SUB_FI;
1022         else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
1023             op = INSTR_SUB_IF;
1024         else
1025 #endif
1026             return NULL;
1027     }
1028     return ir_block_create_binop(self, label, op, left, right);
1029 }
1030
1031 ir_value* ir_block_create_mul(ir_block *self,
1032                               const char *label,
1033                               ir_value *left, ir_value *right)
1034 {
1035     int op = 0;
1036     int l = left->vtype;
1037     int r = right->vtype;
1038     if (l == r) {
1039
1040         switch (l) {
1041             default:
1042                 return NULL;
1043             case TYPE_FLOAT:
1044                 op = INSTR_MUL_F;
1045                 break;
1046 #if 0
1047             case TYPE_INTEGER:
1048                 op = INSTR_MUL_I;
1049                 break;
1050 #endif
1051             case TYPE_VECTOR:
1052                 op = INSTR_MUL_V;
1053                 break;
1054         }
1055     } else {
1056         if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
1057             op = INSTR_MUL_VF;
1058         else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) )
1059             op = INSTR_MUL_FV;
1060 #if 0
1061         else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) )
1062             op = INSTR_MUL_VI;
1063         else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) )
1064             op = INSTR_MUL_IV;
1065         else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
1066             op = INSTR_MUL_FI;
1067         else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
1068             op = INSTR_MUL_IF;
1069 #endif
1070         else
1071             return NULL;
1072     }
1073     return ir_block_create_binop(self, label, op, left, right);
1074 }
1075
1076 ir_value* ir_block_create_div(ir_block *self,
1077                               const char *label,
1078                               ir_value *left, ir_value *right)
1079 {
1080     int op = 0;
1081     int l = left->vtype;
1082     int r = right->vtype;
1083     if (l == r) {
1084
1085         switch (l) {
1086             default:
1087                 return NULL;
1088             case TYPE_FLOAT:
1089                 op = INSTR_DIV_F;
1090                 break;
1091 #if 0
1092             case TYPE_INTEGER:
1093                 op = INSTR_DIV_I;
1094                 break;
1095 #endif
1096         }
1097     } else {
1098 #if 0
1099         if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
1100             op = INSTR_DIV_VF;
1101         else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
1102             op = INSTR_DIV_FI;
1103         else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
1104             op = INSTR_DIV_IF;
1105         else
1106 #endif
1107             return NULL;
1108     }
1109     return ir_block_create_binop(self, label, op, left, right);
1110 }
1111
1112 /* PHI resolving breaks the SSA, and must thus be the last
1113  * step before life-range calculation.
1114  */
1115
1116 static bool ir_block_naive_phi(ir_block *self);
1117 bool ir_function_naive_phi(ir_function *self)
1118 {
1119     size_t i;
1120
1121     for (i = 0; i < self->blocks_count; ++i)
1122     {
1123         if (!ir_block_naive_phi(self->blocks[i]))
1124             return false;
1125     }
1126     return true;
1127 }
1128
1129 static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
1130 {
1131     ir_instr *instr;
1132     size_t i;
1133
1134     /* create a store */
1135     if (!ir_block_create_store(block, old, what))
1136         return false;
1137
1138     /* we now move it up */
1139     instr = block->instr[block->instr_count-1];
1140     for (i = block->instr_count; i > iid; --i)
1141         block->instr[i] = block->instr[i-1];
1142     block->instr[i] = instr;
1143
1144     return true;
1145 }
1146
1147 static bool ir_block_naive_phi(ir_block *self)
1148 {
1149     size_t i, p, w;
1150     /* FIXME: optionally, create_phi can add the phis
1151      * to a list so we don't need to loop through blocks
1152      * - anyway: "don't optimize YET"
1153      */
1154     for (i = 0; i < self->instr_count; ++i)
1155     {
1156         ir_instr *instr = self->instr[i];
1157         if (instr->opcode != VINSTR_PHI)
1158             continue;
1159
1160         if (!ir_block_instr_remove(self, i))
1161             return false;
1162         --i; /* NOTE: i+1 below */
1163
1164         for (p = 0; p < instr->phi_count; ++p)
1165         {
1166             ir_value *v = instr->phi[p].value;
1167             for (w = 0; w < v->writes_count; ++w) {
1168                 ir_value *old;
1169
1170                 if (!v->writes[w]->_ops[0])
1171                     continue;
1172
1173                 /* When the write was to a global, we have to emit a mov */
1174                 old = v->writes[w]->_ops[0];
1175
1176                 /* The original instruction now writes to the PHI target local */
1177                 if (v->writes[w]->_ops[0] == v)
1178                     v->writes[w]->_ops[0] = instr->_ops[0];
1179
1180                 if (old->store != store_local)
1181                 {
1182                     /* If it originally wrote to a global we need to store the value
1183                      * there as welli
1184                      */
1185                     if (!ir_naive_phi_emit_store(self, i+1, old, v))
1186                         return false;
1187                     if (i+1 < self->instr_count)
1188                         instr = self->instr[i+1];
1189                     else
1190                         instr = NULL;
1191                     /* In case I forget and access instr later, it'll be NULL
1192                      * when it's a problem, to make sure we crash, rather than accessing
1193                      * invalid data.
1194                      */
1195                 }
1196                 else
1197                 {
1198                     /* If it didn't, we can replace all reads by the phi target now. */
1199                     size_t r;
1200                     for (r = 0; r < old->reads_count; ++r)
1201                     {
1202                         size_t op;
1203                         ir_instr *ri = old->reads[r];
1204                         for (op = 0; op < ri->phi_count; ++op) {
1205                             if (ri->phi[op].value == old)
1206                                 ri->phi[op].value = v;
1207                         }
1208                         for (op = 0; op < 3; ++op) {
1209                             if (ri->_ops[op] == old)
1210                                 ri->_ops[op] = v;
1211                         }
1212                     }
1213                 }
1214             }
1215         }
1216         ir_instr_delete(instr);
1217     }
1218     return true;
1219 }
1220
1221 /***********************************************************************
1222  *IR Temp allocation code
1223  * Propagating value life ranges by walking through the function backwards
1224  * until no more changes are made.
1225  * In theory this should happen once more than once for every nested loop
1226  * level.
1227  * Though this implementation might run an additional time for if nests.
1228  */
1229
1230 typedef struct
1231 {
1232     ir_value* *v;
1233     size_t    v_count;
1234     size_t    v_alloc;
1235 } new_reads_t;
1236 MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v)
1237
1238 /* Enumerate instructions used by value's life-ranges
1239  */
1240 static void ir_block_enumerate(ir_block *self, size_t *_eid)
1241 {
1242     size_t i;
1243     size_t eid = *_eid;
1244     for (i = 0; i < self->instr_count; ++i)
1245     {
1246         self->instr[i]->eid = eid++;
1247     }
1248     *_eid = eid;
1249 }
1250
1251 /* Enumerate blocks and instructions.
1252  * The block-enumeration is unordered!
1253  * We do not really use the block enumreation, however
1254  * the instruction enumeration is important for life-ranges.
1255  */
1256 void ir_function_enumerate(ir_function *self)
1257 {
1258     size_t i;
1259     size_t instruction_id = 0;
1260     for (i = 0; i < self->blocks_count; ++i)
1261     {
1262         self->blocks[i]->eid = i;
1263         self->blocks[i]->run_id = 0;
1264         ir_block_enumerate(self->blocks[i], &instruction_id);
1265     }
1266 }
1267
1268 static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
1269 bool ir_function_calculate_liferanges(ir_function *self)
1270 {
1271     size_t i;
1272     bool changed;
1273
1274     do {
1275         self->run_id++;
1276         changed = false;
1277         for (i = 0; i != self->blocks_count; ++i)
1278         {
1279             if (self->blocks[i]->is_return)
1280             {
1281                 if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
1282                     return false;
1283             }
1284         }
1285     } while (changed);
1286     return true;
1287 }
1288
1289 /* Get information about which operand
1290  * is read from, or written to.
1291  */
1292 static void ir_op_read_write(int op, size_t *read, size_t *write)
1293 {
1294     switch (op)
1295     {
1296     case VINSTR_JUMP:
1297     case INSTR_GOTO:
1298         *write = 0;
1299         *read = 0;
1300         break;
1301     case INSTR_IF:
1302     case INSTR_IFNOT:
1303 #if 0
1304     case INSTR_IF_S:
1305     case INSTR_IFNOT_S:
1306 #endif
1307     case INSTR_RETURN:
1308     case VINSTR_COND:
1309         *write = 0;
1310         *read = 1;
1311         break;
1312     default:
1313         *write = 1;
1314         *read = 6;
1315         break;
1316     };
1317 }
1318
1319 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
1320 {
1321     size_t i;
1322     bool changed = false;
1323     bool tempbool;
1324     for (i = 0; i != self->living_count; ++i)
1325     {
1326         tempbool = ir_value_life_merge(self->living[i], eid);
1327         /* debug
1328         if (tempbool)
1329             fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid);
1330         */
1331         changed = changed || tempbool;
1332     }
1333     return changed;
1334 }
1335
1336 static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
1337 {
1338     size_t i;
1339     /* values which have been read in a previous iteration are now
1340      * in the "living" array even if the previous block doesn't use them.
1341      * So we have to remove whatever does not exist in the previous block.
1342      * They will be re-added on-read, but the liferange merge won't cause
1343      * a change.
1344      */
1345     for (i = 0; i < self->living_count; ++i)
1346     {
1347         if (!ir_block_living_find(prev, self->living[i], NULL)) {
1348             if (!ir_block_living_remove(self, i))
1349                 return false;
1350             --i;
1351         }
1352     }
1353
1354     /* Whatever the previous block still has in its living set
1355      * must now be added to ours as well.
1356      */
1357     for (i = 0; i < prev->living_count; ++i)
1358     {
1359         if (ir_block_living_find(self, prev->living[i], NULL))
1360             continue;
1361         if (!ir_block_living_add(self, prev->living[i]))
1362             return false;
1363         /*
1364         printf("%s got from prev: %s\n", self->label, prev->living[i]->_name);
1365         */
1366     }
1367     return true;
1368 }
1369
1370 static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
1371 {
1372     ir_instr *instr;
1373     ir_value *value;
1374     bool  tempbool;
1375     size_t i, o, p, rd;
1376     /* bitmasks which operands are read from or written to */
1377     size_t read, write;
1378     new_reads_t new_reads;
1379     char dbg_ind[16] = { '#', '0' };
1380     (void)dbg_ind;
1381
1382     MEM_VECTOR_INIT(&new_reads, v);
1383
1384     if (prev)
1385     {
1386         if (!ir_block_life_prop_previous(self, prev, changed))
1387             return false;
1388     }
1389
1390     i = self->instr_count;
1391     while (i)
1392     { --i;
1393         instr = self->instr[i];
1394
1395         /* PHI operands are always read operands */
1396         for (p = 0; p < instr->phi_count; ++p)
1397         {
1398             value = instr->phi[p].value;
1399             /* used this before new_reads - puts the last read into the life range as well
1400             if (!ir_block_living_find(self, value, NULL))
1401                 ir_block_living_add(self, value);
1402             */
1403             /* fprintf(stderr, "read: %s\n", value->_name); */
1404             if (!new_reads_t_v_find(&new_reads, value, NULL))
1405             {
1406                 if (!new_reads_t_v_add(&new_reads, value))
1407                     goto on_error;
1408             }
1409         }
1410
1411         /* See which operands are read and write operands */
1412         ir_op_read_write(instr->opcode, &read, &write);
1413
1414         /* Go through the 3 main operands */
1415         for (o = 0; o < 3; ++o)
1416         {
1417             if (!instr->_ops[o]) /* no such operand */
1418                 continue;
1419
1420             value = instr->_ops[o];
1421
1422             /* We only care about locals */
1423             if (value->store != store_value &&
1424                 value->store != store_local)
1425                 continue;
1426
1427             /* read operands */
1428             if (read & (1<<o))
1429             {
1430                 /* used this before new_reads - puts the last read into the life range as well
1431                 if (!ir_block_living_find(self, value, NULL))
1432                     ir_block_living_add(self, value);
1433                 */
1434                 /* fprintf(stderr, "read: %s\n", value->_name); */
1435                 if (!new_reads_t_v_find(&new_reads, value, NULL))
1436                 {
1437                     if (!new_reads_t_v_add(&new_reads, value))
1438                         goto on_error;
1439                 }
1440             }
1441
1442             /* write operands */
1443             /* When we write to a local, we consider it "dead" for the
1444              * remaining upper part of the function, since in SSA a value
1445              * can only be written once (== created)
1446              */
1447             if (write & (1<<o))
1448             {
1449                 size_t idx, readidx;
1450                 bool in_living = ir_block_living_find(self, value, &idx);
1451                 bool in_reads = new_reads_t_v_find(&new_reads, value, &readidx);
1452                 if (!in_living && !in_reads)
1453                 {
1454                     /* If the value isn't alive it hasn't been read before... */
1455                     /* TODO: See if the warning can be emitted during parsing or AST processing
1456                      * otherwise have warning printed here.
1457                      * IF printing a warning here: include filecontext_t,
1458                      * and make sure it's only printed once
1459                      * since this function is run multiple times.
1460                      */
1461                     /* For now: debug info: */
1462                     fprintf(stderr, "Value only written %s\n", value->name);
1463                     tempbool = ir_value_life_merge(value, instr->eid);
1464                     *changed = *changed || tempbool;
1465                     /*
1466                     ir_instr_dump(instr, dbg_ind, printf);
1467                     abort();
1468                     */
1469                 } else {
1470                     /* since 'living' won't contain it
1471                      * anymore, merge the value, since
1472                      * (A) doesn't.
1473                      */
1474                     tempbool = ir_value_life_merge(value, instr->eid);
1475                     /*
1476                     if (tempbool)
1477                         fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid);
1478                     */
1479                     *changed = *changed || tempbool;
1480                     /* Then remove */
1481                     if (!ir_block_living_remove(self, idx))
1482                         goto on_error;
1483                     if (in_reads)
1484                     {
1485                         if (!new_reads_t_v_remove(&new_reads, readidx))
1486                             goto on_error;
1487                     }
1488                 }
1489             }
1490         }
1491         /* (A) */
1492         tempbool = ir_block_living_add_instr(self, instr->eid);
1493         /*fprintf(stderr, "living added values\n");*/
1494         *changed = *changed || tempbool;
1495
1496         /* new reads: */
1497         for (rd = 0; rd < new_reads.v_count; ++rd)
1498         {
1499             if (!ir_block_living_find(self, new_reads.v[rd], NULL)) {
1500                 if (!ir_block_living_add(self, new_reads.v[rd]))
1501                     goto on_error;
1502             }
1503             if (!i && !self->entries_count) {
1504                 /* fix the top */
1505                 *changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid);
1506             }
1507         }
1508         MEM_VECTOR_CLEAR(&new_reads, v);
1509     }
1510
1511     if (self->run_id == self->owner->run_id)
1512         return true;
1513
1514     self->run_id = self->owner->run_id;
1515
1516     for (i = 0; i < self->entries_count; ++i)
1517     {
1518         ir_block *entry = self->entries[i];
1519         ir_block_life_propagate(entry, self, changed);
1520     }
1521
1522     return true;
1523 on_error:
1524     MEM_VECTOR_CLEAR(&new_reads, v);
1525     return false;
1526 }
1527
1528 /***********************************************************************
1529  *IR DEBUG Dump functions...
1530  */
1531
1532 #define IND_BUFSZ 1024
1533
1534 const char *qc_opname(int op)
1535 {
1536     if (op < 0) return "<INVALID>";
1537     if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
1538         return asm_instr[op].m;
1539     switch (op) {
1540         case VINSTR_PHI:  return "PHI";
1541         case VINSTR_JUMP: return "JUMP";
1542         case VINSTR_COND: return "COND";
1543         default:          return "<UNK>";
1544     }
1545 }
1546
1547 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
1548 {
1549         size_t i;
1550         char indent[IND_BUFSZ];
1551         indent[0] = '\t';
1552         indent[1] = 0;
1553
1554         oprintf("module %s\n", b->name);
1555         for (i = 0; i < b->globals_count; ++i)
1556         {
1557                 oprintf("global ");
1558                 if (b->globals[i]->isconst)
1559                         oprintf("%s = ", b->globals[i]->name);
1560                 ir_value_dump(b->globals[i], oprintf);
1561                 oprintf("\n");
1562         }
1563         for (i = 0; i < b->functions_count; ++i)
1564                 ir_function_dump(b->functions[i], indent, oprintf);
1565         oprintf("endmodule %s\n", b->name);
1566 }
1567
1568 void ir_function_dump(ir_function *f, char *ind,
1569                       int (*oprintf)(const char*, ...))
1570 {
1571         size_t i;
1572         oprintf("%sfunction %s\n", ind, f->name);
1573         strncat(ind, "\t", IND_BUFSZ);
1574         if (f->locals_count)
1575         {
1576                 oprintf("%s%i locals:\n", ind, (int)f->locals_count);
1577                 for (i = 0; i < f->locals_count; ++i) {
1578                         oprintf("%s\t", ind);
1579                         ir_value_dump(f->locals[i], oprintf);
1580                         oprintf("\n");
1581                 }
1582         }
1583         if (f->blocks_count)
1584         {
1585
1586                 oprintf("%slife passes: %i\n", ind, (int)f->blocks[0]->run_id);
1587                 for (i = 0; i < f->blocks_count; ++i)
1588                         ir_block_dump(f->blocks[i], ind, oprintf);
1589
1590         }
1591         ind[strlen(ind)-1] = 0;
1592         oprintf("%sendfunction %s\n", ind, f->name);
1593 }
1594
1595 void ir_block_dump(ir_block* b, char *ind,
1596                    int (*oprintf)(const char*, ...))
1597 {
1598         size_t i;
1599         oprintf("%s:%s\n", ind, b->label);
1600         strncat(ind, "\t", IND_BUFSZ);
1601
1602         for (i = 0; i < b->instr_count; ++i)
1603                 ir_instr_dump(b->instr[i], ind, oprintf);
1604         ind[strlen(ind)-1] = 0;
1605 }
1606
1607 void dump_phi(ir_instr *in, char *ind,
1608               int (*oprintf)(const char*, ...))
1609 {
1610         size_t i;
1611         oprintf("%s <- phi ", in->_ops[0]->name);
1612         for (i = 0; i < in->phi_count; ++i)
1613         {
1614                 oprintf("([%s] : %s) ", in->phi[i].from->label,
1615                                         in->phi[i].value->name);
1616         }
1617         oprintf("\n");
1618 }
1619
1620 void ir_instr_dump(ir_instr *in, char *ind,
1621                        int (*oprintf)(const char*, ...))
1622 {
1623         size_t i;
1624         const char *comma = NULL;
1625
1626         oprintf("%s (%i) ", ind, (int)in->eid);
1627
1628         if (in->opcode == VINSTR_PHI) {
1629                 dump_phi(in, ind, oprintf);
1630                 return;
1631         }
1632
1633         strncat(ind, "\t", IND_BUFSZ);
1634
1635         if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
1636                 ir_value_dump(in->_ops[0], oprintf);
1637                 if (in->_ops[1] || in->_ops[2])
1638                         oprintf(" <- ");
1639         }
1640         oprintf("%s\t", qc_opname(in->opcode));
1641         if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
1642                 ir_value_dump(in->_ops[0], oprintf);
1643                 comma = ",\t";
1644         }
1645         else
1646         {
1647                 for (i = 1; i != 3; ++i) {
1648                         if (in->_ops[i]) {
1649                                 if (comma)
1650                                         oprintf(comma);
1651                                 ir_value_dump(in->_ops[i], oprintf);
1652                                 comma = ",\t";
1653                         }
1654                 }
1655         }
1656         if (in->bops[0]) {
1657                 if (comma)
1658                         oprintf(comma);
1659                 oprintf("[%s]", in->bops[0]->label);
1660                 comma = ",\t";
1661         }
1662         if (in->bops[1])
1663                 oprintf("%s[%s]", comma, in->bops[1]->label);
1664         oprintf("\n");
1665         ind[strlen(ind)-1] = 0;
1666 }
1667
1668 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
1669 {
1670         if (v->isconst) {
1671                 switch (v->vtype) {
1672                         case TYPE_VOID:
1673                                 oprintf("(void)");
1674                                 break;
1675                         case TYPE_FLOAT:
1676                                 oprintf("%g", v->constval.vfloat);
1677                                 break;
1678                         case TYPE_VECTOR:
1679                                 oprintf("'%g %g %g'",
1680                                         v->constval.vvec.x,
1681                                         v->constval.vvec.y,
1682                                         v->constval.vvec.z);
1683                                 break;
1684                         case TYPE_ENTITY:
1685                                 oprintf("(entity)");
1686                                 break;
1687                         case TYPE_STRING:
1688                                 oprintf("\"%s\"", v->constval.vstring);
1689                                 break;
1690 #if 0
1691                         case TYPE_INTEGER:
1692                                 oprintf("%i", v->constval.vint);
1693                                 break;
1694 #endif
1695                         case TYPE_POINTER:
1696                                 oprintf("&%s",
1697                                         v->constval.vpointer->name);
1698                                 break;
1699                 }
1700         } else {
1701                 oprintf("%s", v->name);
1702         }
1703 }
1704
1705 void ir_value_dump_life(ir_value *self, int (*oprintf)(const char*,...))
1706 {
1707         size_t i;
1708         oprintf("Life of %s:\n", self->name);
1709         for (i = 0; i < self->life_count; ++i)
1710         {
1711                 oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
1712         }
1713 }