]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
ec87bd78cd7edde6dfc3ecf2fbba6fa0962bd6f1
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdlib.h>
24 #include <string.h>
25 #include "gmqcc.h"
26 #include "ir.h"
27
28 /***********************************************************************
29  * Type sizes used at multiple points in the IR codegen
30  */
31
32 const char *type_name[TYPE_COUNT] = {
33     "void",
34     "string",
35     "float",
36     "vector",
37     "entity",
38     "field",
39     "function",
40     "pointer",
41     "integer",
42     "variant",
43     "struct",
44     "union",
45     "array"
46 };
47
48 size_t type_sizeof_[TYPE_COUNT] = {
49     1, /* TYPE_VOID     */
50     1, /* TYPE_STRING   */
51     1, /* TYPE_FLOAT    */
52     3, /* TYPE_VECTOR   */
53     1, /* TYPE_ENTITY   */
54     1, /* TYPE_FIELD    */
55     1, /* TYPE_FUNCTION */
56     1, /* TYPE_POINTER  */
57     1, /* TYPE_INTEGER  */
58     3, /* TYPE_VARIANT  */
59     0, /* TYPE_STRUCT   */
60     0, /* TYPE_UNION    */
61     0, /* TYPE_ARRAY    */
62 };
63
64 uint16_t type_store_instr[TYPE_COUNT] = {
65     INSTR_STORE_F, /* should use I when having integer support */
66     INSTR_STORE_S,
67     INSTR_STORE_F,
68     INSTR_STORE_V,
69     INSTR_STORE_ENT,
70     INSTR_STORE_FLD,
71     INSTR_STORE_FNC,
72     INSTR_STORE_ENT, /* should use I */
73 #if 0
74     INSTR_STORE_I, /* integer type */
75 #else
76     INSTR_STORE_F,
77 #endif
78
79     INSTR_STORE_V, /* variant, should never be accessed */
80
81     AINSTR_END, /* struct */
82     AINSTR_END, /* union  */
83     AINSTR_END, /* array  */
84 };
85
86 uint16_t field_store_instr[TYPE_COUNT] = {
87     INSTR_STORE_FLD,
88     INSTR_STORE_FLD,
89     INSTR_STORE_FLD,
90     INSTR_STORE_V,
91     INSTR_STORE_FLD,
92     INSTR_STORE_FLD,
93     INSTR_STORE_FLD,
94     INSTR_STORE_FLD,
95 #if 0
96     INSTR_STORE_FLD, /* integer type */
97 #else
98     INSTR_STORE_FLD,
99 #endif
100
101     INSTR_STORE_V, /* variant, should never be accessed */
102
103     AINSTR_END, /* struct */
104     AINSTR_END, /* union  */
105     AINSTR_END, /* array  */
106 };
107
108 uint16_t type_storep_instr[TYPE_COUNT] = {
109     INSTR_STOREP_F, /* should use I when having integer support */
110     INSTR_STOREP_S,
111     INSTR_STOREP_F,
112     INSTR_STOREP_V,
113     INSTR_STOREP_ENT,
114     INSTR_STOREP_FLD,
115     INSTR_STOREP_FNC,
116     INSTR_STOREP_ENT, /* should use I */
117 #if 0
118     INSTR_STOREP_ENT, /* integer type */
119 #else
120     INSTR_STOREP_F,
121 #endif
122
123     INSTR_STOREP_V, /* variant, should never be accessed */
124
125     AINSTR_END, /* struct */
126     AINSTR_END, /* union  */
127     AINSTR_END, /* array  */
128 };
129
130 uint16_t type_eq_instr[TYPE_COUNT] = {
131     INSTR_EQ_F, /* should use I when having integer support */
132     INSTR_EQ_S,
133     INSTR_EQ_F,
134     INSTR_EQ_V,
135     INSTR_EQ_E,
136     INSTR_EQ_E, /* FLD has no comparison */
137     INSTR_EQ_FNC,
138     INSTR_EQ_E, /* should use I */
139 #if 0
140     INSTR_EQ_I,
141 #else
142     INSTR_EQ_F,
143 #endif
144
145     INSTR_EQ_V, /* variant, should never be accessed */
146
147     AINSTR_END, /* struct */
148     AINSTR_END, /* union  */
149     AINSTR_END, /* array  */
150 };
151
152 uint16_t type_ne_instr[TYPE_COUNT] = {
153     INSTR_NE_F, /* should use I when having integer support */
154     INSTR_NE_S,
155     INSTR_NE_F,
156     INSTR_NE_V,
157     INSTR_NE_E,
158     INSTR_NE_E, /* FLD has no comparison */
159     INSTR_NE_FNC,
160     INSTR_NE_E, /* should use I */
161 #if 0
162     INSTR_NE_I,
163 #else
164     INSTR_NE_F,
165 #endif
166
167     INSTR_NE_V, /* variant, should never be accessed */
168
169     AINSTR_END, /* struct */
170     AINSTR_END, /* union  */
171     AINSTR_END, /* array  */
172 };
173
174 uint16_t type_not_instr[TYPE_COUNT] = {
175     INSTR_NOT_F, /* should use I when having integer support */
176     INSTR_NOT_S,
177     INSTR_NOT_F,
178     INSTR_NOT_V,
179     INSTR_NOT_ENT,
180     INSTR_NOT_ENT,
181     INSTR_NOT_FNC,
182     INSTR_NOT_ENT, /* should use I */
183 #if 0
184     INSTR_NOT_I, /* integer type */
185 #else
186     INSTR_NOT_F,
187 #endif
188
189     INSTR_NOT_V, /* variant, should never be accessed */
190
191     AINSTR_END, /* struct */
192     AINSTR_END, /* union  */
193     AINSTR_END, /* array  */
194 };
195
196 /* protos */
197 static ir_value* ir_gen_extparam_proto(ir_builder *ir);
198 static void      ir_gen_extparam      (ir_builder *ir);
199
200 /* error functions */
201
202 static void irerror(lex_ctx ctx, const char *msg, ...)
203 {
204     va_list ap;
205     va_start(ap, msg);
206     con_cvprintmsg((void*)&ctx, LVL_ERROR, "internal error", msg, ap);
207     va_end(ap);
208 }
209
210 static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...)
211 {
212     bool    r;
213     va_list ap;
214     va_start(ap, fmt);
215     r = vcompile_warning(ctx, warntype, fmt, ap);
216     va_end(ap);
217     return r;
218 }
219
220 /***********************************************************************
221  * Vector utility functions
222  */
223
224 bool GMQCC_WARN vec_ir_value_find(ir_value **vec, const ir_value *what, size_t *idx)
225 {
226     size_t i;
227     size_t len = vec_size(vec);
228     for (i = 0; i < len; ++i) {
229         if (vec[i] == what) {
230             if (idx) *idx = i;
231             return true;
232         }
233     }
234     return false;
235 }
236
237 bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
238 {
239     size_t i;
240     size_t len = vec_size(vec);
241     for (i = 0; i < len; ++i) {
242         if (vec[i] == what) {
243             if (idx) *idx = i;
244             return true;
245         }
246     }
247     return false;
248 }
249
250 bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
251 {
252     size_t i;
253     size_t len = vec_size(vec);
254     for (i = 0; i < len; ++i) {
255         if (vec[i] == what) {
256             if (idx) *idx = i;
257             return true;
258         }
259     }
260     return false;
261 }
262
263 /***********************************************************************
264  * IR Builder
265  */
266
267 static void ir_block_delete_quick(ir_block* self);
268 static void ir_instr_delete_quick(ir_instr *self);
269 static void ir_function_delete_quick(ir_function *self);
270
271 ir_builder* ir_builder_new(const char *modulename)
272 {
273     ir_builder* self;
274
275     self = (ir_builder*)mem_a(sizeof(*self));
276     if (!self)
277         return NULL;
278
279     self->functions   = NULL;
280     self->globals     = NULL;
281     self->fields      = NULL;
282     self->filenames   = NULL;
283     self->filestrings = NULL;
284     self->htglobals   = util_htnew(IR_HT_SIZE);
285     self->htfields    = util_htnew(IR_HT_SIZE);
286     self->htfunctions = util_htnew(IR_HT_SIZE);
287
288     self->extparams       = NULL;
289     self->extparam_protos = NULL;
290
291     self->max_locals  = 0;
292
293     self->str_immediate = 0;
294     self->name = NULL;
295     if (!ir_builder_set_name(self, modulename)) {
296         mem_d(self);
297         return NULL;
298     }
299
300     return self;
301 }
302
303 void ir_builder_delete(ir_builder* self)
304 {
305     size_t i;
306     util_htdel(self->htglobals);
307     util_htdel(self->htfields);
308     util_htdel(self->htfunctions);
309     mem_d((void*)self->name);
310     for (i = 0; i != vec_size(self->functions); ++i) {
311         ir_function_delete_quick(self->functions[i]);
312     }
313     vec_free(self->functions);
314     for (i = 0; i != vec_size(self->extparams); ++i) {
315         ir_value_delete(self->extparams[i]);
316     }
317     vec_free(self->extparams);
318     for (i = 0; i != vec_size(self->globals); ++i) {
319         ir_value_delete(self->globals[i]);
320     }
321     vec_free(self->globals);
322     for (i = 0; i != vec_size(self->fields); ++i) {
323         ir_value_delete(self->fields[i]);
324     }
325     vec_free(self->fields);
326     vec_free(self->filenames);
327     vec_free(self->filestrings);
328     mem_d(self);
329 }
330
331 bool ir_builder_set_name(ir_builder *self, const char *name)
332 {
333     if (self->name)
334         mem_d((void*)self->name);
335     self->name = util_strdup(name);
336     return !!self->name;
337 }
338
339 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
340 {
341     return (ir_function*)util_htget(self->htfunctions, name);
342 }
343
344 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
345 {
346     ir_function *fn = ir_builder_get_function(self, name);
347     if (fn) {
348         return NULL;
349     }
350
351     fn = ir_function_new(self, outtype);
352     if (!ir_function_set_name(fn, name))
353     {
354         ir_function_delete(fn);
355         return NULL;
356     }
357     vec_push(self->functions, fn);
358     util_htset(self->htfunctions, name, fn);
359
360     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
361     if (!fn->value) {
362         ir_function_delete(fn);
363         return NULL;
364     }
365
366     fn->value->hasvalue = true;
367     fn->value->outtype = outtype;
368     fn->value->constval.vfunc = fn;
369     fn->value->context = fn->context;
370
371     return fn;
372 }
373
374 ir_value* ir_builder_get_global(ir_builder *self, const char *name)
375 {
376     return (ir_value*)util_htget(self->htglobals, name);
377 }
378
379 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
380 {
381     ir_value *ve;
382
383     if (name && name[0] != '#')
384     {
385         ve = ir_builder_get_global(self, name);
386         if (ve) {
387             return NULL;
388         }
389     }
390
391     ve = ir_value_var(name, store_global, vtype);
392     vec_push(self->globals, ve);
393     util_htset(self->htglobals, name, ve);
394     return ve;
395 }
396
397 ir_value* ir_builder_get_field(ir_builder *self, const char *name)
398 {
399     return (ir_value*)util_htget(self->htfields, name);
400 }
401
402
403 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
404 {
405     ir_value *ve = ir_builder_get_field(self, name);
406     if (ve) {
407         return NULL;
408     }
409
410     ve = ir_value_var(name, store_global, TYPE_FIELD);
411     ve->fieldtype = vtype;
412     vec_push(self->fields, ve);
413     util_htset(self->htfields, name, ve);
414     return ve;
415 }
416
417 /***********************************************************************
418  *IR Function
419  */
420
421 bool ir_function_naive_phi(ir_function*);
422 void ir_function_enumerate(ir_function*);
423 bool ir_function_calculate_liferanges(ir_function*);
424 bool ir_function_allocate_locals(ir_function*);
425
426 ir_function* ir_function_new(ir_builder* owner, int outtype)
427 {
428     ir_function *self;
429     self = (ir_function*)mem_a(sizeof(*self));
430
431     if (!self)
432         return NULL;
433
434     memset(self, 0, sizeof(*self));
435
436     self->name = NULL;
437     if (!ir_function_set_name(self, "<@unnamed>")) {
438         mem_d(self);
439         return NULL;
440     }
441     self->flags = 0;
442
443     self->owner = owner;
444     self->context.file = "<@no context>";
445     self->context.line = 0;
446     self->outtype = outtype;
447     self->value = NULL;
448     self->builtin = 0;
449
450     self->params = NULL;
451     self->blocks = NULL;
452     self->values = NULL;
453     self->locals = NULL;
454
455     self->code_function_def = -1;
456     self->allocated_locals = 0;
457
458     self->run_id = 0;
459     return self;
460 }
461
462 bool ir_function_set_name(ir_function *self, const char *name)
463 {
464     if (self->name)
465         mem_d((void*)self->name);
466     self->name = util_strdup(name);
467     return !!self->name;
468 }
469
470 static void ir_function_delete_quick(ir_function *self)
471 {
472     size_t i;
473     mem_d((void*)self->name);
474
475     for (i = 0; i != vec_size(self->blocks); ++i)
476         ir_block_delete_quick(self->blocks[i]);
477     vec_free(self->blocks);
478
479     vec_free(self->params);
480
481     for (i = 0; i != vec_size(self->values); ++i)
482         ir_value_delete(self->values[i]);
483     vec_free(self->values);
484
485     for (i = 0; i != vec_size(self->locals); ++i)
486         ir_value_delete(self->locals[i]);
487     vec_free(self->locals);
488
489     /* self->value is deleted by the builder */
490
491     mem_d(self);
492 }
493
494 void ir_function_delete(ir_function *self)
495 {
496     size_t i;
497     mem_d((void*)self->name);
498
499     for (i = 0; i != vec_size(self->blocks); ++i)
500         ir_block_delete(self->blocks[i]);
501     vec_free(self->blocks);
502
503     vec_free(self->params);
504
505     for (i = 0; i != vec_size(self->values); ++i)
506         ir_value_delete(self->values[i]);
507     vec_free(self->values);
508
509     for (i = 0; i != vec_size(self->locals); ++i)
510         ir_value_delete(self->locals[i]);
511     vec_free(self->locals);
512
513     /* self->value is deleted by the builder */
514
515     mem_d(self);
516 }
517
518 void ir_function_collect_value(ir_function *self, ir_value *v)
519 {
520     vec_push(self->values, v);
521 }
522
523 ir_block* ir_function_create_block(lex_ctx ctx, ir_function *self, const char *label)
524 {
525     ir_block* bn = ir_block_new(self, label);
526     bn->context = ctx;
527     vec_push(self->blocks, bn);
528     return bn;
529 }
530
531 static bool instr_is_operation(uint16_t op)
532 {
533     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
534              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
535              (op == INSTR_ADDRESS) ||
536              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
537              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
538              (op >= INSTR_CALL0  && op <= INSTR_CALL8) );
539 }
540
541 bool ir_function_pass_peephole(ir_function *self)
542 {
543     size_t b;
544
545     for (b = 0; b < vec_size(self->blocks); ++b) {
546         size_t    i;
547         ir_block *block = self->blocks[b];
548
549         for (i = 0; i < vec_size(block->instr); ++i) {
550             ir_instr *inst;
551             inst = block->instr[i];
552
553             if (i >= 1 &&
554                 (inst->opcode >= INSTR_STORE_F &&
555                  inst->opcode <= INSTR_STORE_FNC))
556             {
557                 ir_instr *store;
558                 ir_instr *oper;
559                 ir_value *value;
560
561                 store = inst;
562
563                 oper  = block->instr[i-1];
564                 if (!instr_is_operation(oper->opcode))
565                     continue;
566
567                 value = oper->_ops[0];
568
569                 /* only do it for SSA values */
570                 if (value->store != store_value)
571                     continue;
572
573                 /* don't optimize out the temp if it's used later again */
574                 if (vec_size(value->reads) != 1)
575                     continue;
576
577                 /* The very next store must use this value */
578                 if (value->reads[0] != store)
579                     continue;
580
581                 /* And of course the store must _read_ from it, so it's in
582                  * OP 1 */
583                 if (store->_ops[1] != value)
584                     continue;
585
586                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
587                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
588
589                 vec_remove(block->instr, i, 1);
590                 ir_instr_delete(store);
591             }
592             else if (inst->opcode == VINSTR_COND)
593             {
594                 /* COND on a value resulting from a NOT could
595                  * remove the NOT and swap its operands
596                  */
597                 while (true) {
598                     ir_block *tmp;
599                     size_t    inotid;
600                     ir_instr *inot;
601                     ir_value *value;
602                     value = inst->_ops[0];
603
604                     if (value->store != store_value ||
605                         vec_size(value->reads) != 1 ||
606                         value->reads[0] != inst)
607                     {
608                         break;
609                     }
610
611                     inot = value->writes[0];
612                     if (inot->_ops[0] != value ||
613                         inot->opcode < INSTR_NOT_F ||
614                         inot->opcode > INSTR_NOT_FNC ||
615                         inot->opcode == INSTR_NOT_V || /* can't do these */
616                         inot->opcode == INSTR_NOT_S)
617                     {
618                         break;
619                     }
620
621                     /* count */
622                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
623                     /* change operand */
624                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
625                     /* remove NOT */
626                     tmp = inot->owner;
627                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
628                         if (tmp->instr[inotid] == inot)
629                             break;
630                     }
631                     if (inotid >= vec_size(tmp->instr)) {
632                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
633                         return false;
634                     }
635                     vec_remove(tmp->instr, inotid, 1);
636                     ir_instr_delete(inot);
637                     /* swap ontrue/onfalse */
638                     tmp = inst->bops[0];
639                     inst->bops[0] = inst->bops[1];
640                     inst->bops[1] = tmp;
641                 }
642                 continue;
643             }
644         }
645     }
646
647     return true;
648 }
649
650 bool ir_function_pass_tailrecursion(ir_function *self)
651 {
652     size_t b, p;
653
654     for (b = 0; b < vec_size(self->blocks); ++b) {
655         ir_value *funcval;
656         ir_instr *ret, *call, *store = NULL;
657         ir_block *block = self->blocks[b];
658
659         if (!block->final || vec_size(block->instr) < 2)
660             continue;
661
662         ret = block->instr[vec_size(block->instr)-1];
663         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
664             continue;
665
666         call = block->instr[vec_size(block->instr)-2];
667         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
668             /* account for the unoptimized
669              * CALL
670              * STORE %return, %tmp
671              * RETURN %tmp
672              * version
673              */
674             if (vec_size(block->instr) < 3)
675                 continue;
676
677             store = call;
678             call = block->instr[vec_size(block->instr)-3];
679         }
680
681         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
682             continue;
683
684         if (store) {
685             /* optimize out the STORE */
686             if (ret->_ops[0]   &&
687                 ret->_ops[0]   == store->_ops[0] &&
688                 store->_ops[1] == call->_ops[0])
689             {
690                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
691                 call->_ops[0] = store->_ops[0];
692                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
693                 ir_instr_delete(store);
694             }
695             else
696                 continue;
697         }
698
699         if (!call->_ops[0])
700             continue;
701
702         funcval = call->_ops[1];
703         if (!funcval)
704             continue;
705         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
706             continue;
707
708         /* now we have a CALL and a RET, check if it's a tailcall */
709         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
710             continue;
711
712         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
713         vec_shrinkby(block->instr, 2);
714
715         block->final = false; /* open it back up */
716
717         /* emite parameter-stores */
718         for (p = 0; p < vec_size(call->params); ++p) {
719             /* assert(call->params_count <= self->locals_count); */
720             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
721                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
722                 return false;
723             }
724         }
725         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
726             irerror(call->context, "failed to create tailcall jump");
727             return false;
728         }
729
730         ir_instr_delete(call);
731         ir_instr_delete(ret);
732     }
733
734     return true;
735 }
736
737 bool ir_function_finalize(ir_function *self)
738 {
739     size_t i;
740
741     if (self->builtin)
742         return true;
743
744     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
745         if (!ir_function_pass_peephole(self)) {
746             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
747             return false;
748         }
749     }
750
751     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
752         if (!ir_function_pass_tailrecursion(self)) {
753             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
754             return false;
755         }
756     }
757
758     if (!ir_function_naive_phi(self))
759         return false;
760
761     for (i = 0; i < vec_size(self->locals); ++i) {
762         ir_value *v = self->locals[i];
763         if (v->vtype == TYPE_VECTOR ||
764             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
765         {
766             ir_value_vector_member(v, 0);
767             ir_value_vector_member(v, 1);
768             ir_value_vector_member(v, 2);
769         }
770     }
771     for (i = 0; i < vec_size(self->values); ++i) {
772         ir_value *v = self->values[i];
773         if (v->vtype == TYPE_VECTOR ||
774             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
775         {
776             ir_value_vector_member(v, 0);
777             ir_value_vector_member(v, 1);
778             ir_value_vector_member(v, 2);
779         }
780     }
781
782     ir_function_enumerate(self);
783
784     if (!ir_function_calculate_liferanges(self))
785         return false;
786     if (!ir_function_allocate_locals(self))
787         return false;
788     return true;
789 }
790
791 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
792 {
793     ir_value *ve;
794
795     if (param &&
796         vec_size(self->locals) &&
797         self->locals[vec_size(self->locals)-1]->store != store_param) {
798         irerror(self->context, "cannot add parameters after adding locals");
799         return NULL;
800     }
801
802     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
803     vec_push(self->locals, ve);
804     return ve;
805 }
806
807 /***********************************************************************
808  *IR Block
809  */
810
811 ir_block* ir_block_new(ir_function* owner, const char *name)
812 {
813     ir_block *self;
814     self = (ir_block*)mem_a(sizeof(*self));
815     if (!self)
816         return NULL;
817
818     memset(self, 0, sizeof(*self));
819
820     self->label = NULL;
821     if (name && !ir_block_set_label(self, name)) {
822         mem_d(self);
823         return NULL;
824     }
825     self->owner = owner;
826     self->context.file = "<@no context>";
827     self->context.line = 0;
828     self->final = false;
829
830     self->instr   = NULL;
831     self->entries = NULL;
832     self->exits   = NULL;
833
834     self->eid = 0;
835     self->is_return = false;
836     self->run_id = 0;
837
838     self->living = NULL;
839
840     self->generated = false;
841
842     return self;
843 }
844
845 static void ir_block_delete_quick(ir_block* self)
846 {
847     size_t i;
848     if (self->label) mem_d(self->label);
849     for (i = 0; i != vec_size(self->instr); ++i)
850         ir_instr_delete_quick(self->instr[i]);
851     vec_free(self->instr);
852     vec_free(self->entries);
853     vec_free(self->exits);
854     vec_free(self->living);
855     mem_d(self);
856 }
857
858 void ir_block_delete(ir_block* self)
859 {
860     size_t i;
861     if (self->label) mem_d(self->label);
862     for (i = 0; i != vec_size(self->instr); ++i)
863         ir_instr_delete(self->instr[i]);
864     vec_free(self->instr);
865     vec_free(self->entries);
866     vec_free(self->exits);
867     vec_free(self->living);
868     mem_d(self);
869 }
870
871 bool ir_block_set_label(ir_block *self, const char *name)
872 {
873     if (self->label)
874         mem_d((void*)self->label);
875     self->label = util_strdup(name);
876     return !!self->label;
877 }
878
879 /***********************************************************************
880  *IR Instructions
881  */
882
883 ir_instr* ir_instr_new(lex_ctx ctx, ir_block* owner, int op)
884 {
885     ir_instr *self;
886     self = (ir_instr*)mem_a(sizeof(*self));
887     if (!self)
888         return NULL;
889
890     self->owner = owner;
891     self->context = ctx;
892     self->opcode = op;
893     self->_ops[0] = NULL;
894     self->_ops[1] = NULL;
895     self->_ops[2] = NULL;
896     self->bops[0] = NULL;
897     self->bops[1] = NULL;
898
899     self->phi    = NULL;
900     self->params = NULL;
901
902     self->eid = 0;
903
904     self->likely = true;
905     return self;
906 }
907
908 static void ir_instr_delete_quick(ir_instr *self)
909 {
910     vec_free(self->phi);
911     vec_free(self->params);
912     mem_d(self);
913 }
914
915 void ir_instr_delete(ir_instr *self)
916 {
917     size_t i;
918     /* The following calls can only delete from
919      * vectors, we still want to delete this instruction
920      * so ignore the return value. Since with the warn_unused_result attribute
921      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
922      * I have to improvise here and use if(foo());
923      */
924     for (i = 0; i < vec_size(self->phi); ++i) {
925         size_t idx;
926         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
927             vec_remove(self->phi[i].value->writes, idx, 1);
928         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
929             vec_remove(self->phi[i].value->reads, idx, 1);
930     }
931     vec_free(self->phi);
932     for (i = 0; i < vec_size(self->params); ++i) {
933         size_t idx;
934         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
935             vec_remove(self->params[i]->writes, idx, 1);
936         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
937             vec_remove(self->params[i]->reads, idx, 1);
938     }
939     vec_free(self->params);
940     (void)!ir_instr_op(self, 0, NULL, false);
941     (void)!ir_instr_op(self, 1, NULL, false);
942     (void)!ir_instr_op(self, 2, NULL, false);
943     mem_d(self);
944 }
945
946 bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
947 {
948     if (self->_ops[op]) {
949         size_t idx;
950         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
951             vec_remove(self->_ops[op]->writes, idx, 1);
952         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
953             vec_remove(self->_ops[op]->reads, idx, 1);
954     }
955     if (v) {
956         if (writing)
957             vec_push(v->writes, self);
958         else
959             vec_push(v->reads, self);
960     }
961     self->_ops[op] = v;
962     return true;
963 }
964
965 /***********************************************************************
966  *IR Value
967  */
968
969 void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
970 {
971     self->code.globaladdr = gaddr;
972     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
973     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
974     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
975 }
976
977 int32_t ir_value_code_addr(const ir_value *self)
978 {
979     if (self->store == store_return)
980         return OFS_RETURN + self->code.addroffset;
981     return self->code.globaladdr + self->code.addroffset;
982 }
983
984 ir_value* ir_value_var(const char *name, int storetype, int vtype)
985 {
986     ir_value *self;
987     self = (ir_value*)mem_a(sizeof(*self));
988     self->vtype = vtype;
989     self->fieldtype = TYPE_VOID;
990     self->outtype = TYPE_VOID;
991     self->store = storetype;
992
993     self->reads  = NULL;
994     self->writes = NULL;
995
996     self->cvq          = CV_NONE;
997     self->hasvalue     = false;
998     self->context.file = "<@no context>";
999     self->context.line = 0;
1000     self->name = NULL;
1001     if (name && !ir_value_set_name(self, name)) {
1002         irerror(self->context, "out of memory");
1003         mem_d(self);
1004         return NULL;
1005     }
1006
1007     memset(&self->constval, 0, sizeof(self->constval));
1008     memset(&self->code,     0, sizeof(self->code));
1009
1010     self->members[0] = NULL;
1011     self->members[1] = NULL;
1012     self->members[2] = NULL;
1013     self->memberof = NULL;
1014
1015     self->unique_life = false;
1016     self->locked      = false;
1017     self->callparam   = false;
1018
1019     self->life = NULL;
1020     return self;
1021 }
1022
1023 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
1024 {
1025     char     *name;
1026     size_t    len;
1027     ir_value *m;
1028     if (member >= 3)
1029         return NULL;
1030
1031     if (self->members[member])
1032         return self->members[member];
1033
1034     if (self->name) {
1035         len = strlen(self->name);
1036         name = (char*)mem_a(len + 3);
1037         memcpy(name, self->name, len);
1038         name[len+0] = '_';
1039         name[len+1] = 'x' + member;
1040         name[len+2] = '\0';
1041     }
1042     else
1043         name = NULL;
1044
1045     if (self->vtype == TYPE_VECTOR)
1046     {
1047         m = ir_value_var(name, self->store, TYPE_FLOAT);
1048         if (name)
1049             mem_d(name);
1050         if (!m)
1051             return NULL;
1052         m->context = self->context;
1053
1054         self->members[member] = m;
1055         m->code.addroffset = member;
1056     }
1057     else if (self->vtype == TYPE_FIELD)
1058     {
1059         if (self->fieldtype != TYPE_VECTOR)
1060             return NULL;
1061         m = ir_value_var(name, self->store, TYPE_FIELD);
1062         if (name)
1063             mem_d(name);
1064         if (!m)
1065             return NULL;
1066         m->fieldtype = TYPE_FLOAT;
1067         m->context = self->context;
1068
1069         self->members[member] = m;
1070         m->code.addroffset = member;
1071     }
1072     else
1073     {
1074         irerror(self->context, "invalid member access on %s", self->name);
1075         return NULL;
1076     }
1077
1078     m->memberof = self;
1079     return m;
1080 }
1081
1082 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1083 {
1084     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1085         return type_sizeof_[TYPE_VECTOR];
1086     return type_sizeof_[self->vtype];
1087 }
1088
1089 ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1090 {
1091     ir_value *v = ir_value_var(name, storetype, vtype);
1092     if (!v)
1093         return NULL;
1094     ir_function_collect_value(owner, v);
1095     return v;
1096 }
1097
1098 void ir_value_delete(ir_value* self)
1099 {
1100     size_t i;
1101     if (self->name)
1102         mem_d((void*)self->name);
1103     if (self->hasvalue)
1104     {
1105         if (self->vtype == TYPE_STRING)
1106             mem_d((void*)self->constval.vstring);
1107     }
1108     for (i = 0; i < 3; ++i) {
1109         if (self->members[i])
1110             ir_value_delete(self->members[i]);
1111     }
1112     vec_free(self->reads);
1113     vec_free(self->writes);
1114     vec_free(self->life);
1115     mem_d(self);
1116 }
1117
1118 bool ir_value_set_name(ir_value *self, const char *name)
1119 {
1120     if (self->name)
1121         mem_d((void*)self->name);
1122     self->name = util_strdup(name);
1123     return !!self->name;
1124 }
1125
1126 bool ir_value_set_float(ir_value *self, float f)
1127 {
1128     if (self->vtype != TYPE_FLOAT)
1129         return false;
1130     self->constval.vfloat = f;
1131     self->hasvalue = true;
1132     return true;
1133 }
1134
1135 bool ir_value_set_func(ir_value *self, int f)
1136 {
1137     if (self->vtype != TYPE_FUNCTION)
1138         return false;
1139     self->constval.vint = f;
1140     self->hasvalue = true;
1141     return true;
1142 }
1143
1144 bool ir_value_set_vector(ir_value *self, vector v)
1145 {
1146     if (self->vtype != TYPE_VECTOR)
1147         return false;
1148     self->constval.vvec = v;
1149     self->hasvalue = true;
1150     return true;
1151 }
1152
1153 bool ir_value_set_field(ir_value *self, ir_value *fld)
1154 {
1155     if (self->vtype != TYPE_FIELD)
1156         return false;
1157     self->constval.vpointer = fld;
1158     self->hasvalue = true;
1159     return true;
1160 }
1161
1162 static char *ir_strdup(const char *str)
1163 {
1164     if (str && !*str) {
1165         /* actually dup empty strings */
1166         char *out = (char*)mem_a(1);
1167         *out = 0;
1168         return out;
1169     }
1170     return util_strdup(str);
1171 }
1172
1173 bool ir_value_set_string(ir_value *self, const char *str)
1174 {
1175     if (self->vtype != TYPE_STRING)
1176         return false;
1177     self->constval.vstring = ir_strdup(str);
1178     self->hasvalue = true;
1179     return true;
1180 }
1181
1182 #if 0
1183 bool ir_value_set_int(ir_value *self, int i)
1184 {
1185     if (self->vtype != TYPE_INTEGER)
1186         return false;
1187     self->constval.vint = i;
1188     self->hasvalue = true;
1189     return true;
1190 }
1191 #endif
1192
1193 bool ir_value_lives(ir_value *self, size_t at)
1194 {
1195     size_t i;
1196     for (i = 0; i < vec_size(self->life); ++i)
1197     {
1198         ir_life_entry_t *life = &self->life[i];
1199         if (life->start <= at && at <= life->end)
1200             return true;
1201         if (life->start > at) /* since it's ordered */
1202             return false;
1203     }
1204     return false;
1205 }
1206
1207 bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1208 {
1209     size_t k;
1210     vec_push(self->life, e);
1211     for (k = vec_size(self->life)-1; k > idx; --k)
1212         self->life[k] = self->life[k-1];
1213     self->life[idx] = e;
1214     return true;
1215 }
1216
1217 bool ir_value_life_merge(ir_value *self, size_t s)
1218 {
1219     size_t i;
1220     ir_life_entry_t *life = NULL;
1221     ir_life_entry_t *before = NULL;
1222     ir_life_entry_t new_entry;
1223
1224     /* Find the first range >= s */
1225     for (i = 0; i < vec_size(self->life); ++i)
1226     {
1227         before = life;
1228         life = &self->life[i];
1229         if (life->start > s)
1230             break;
1231     }
1232     /* nothing found? append */
1233     if (i == vec_size(self->life)) {
1234         ir_life_entry_t e;
1235         if (life && life->end+1 == s)
1236         {
1237             /* previous life range can be merged in */
1238             life->end++;
1239             return true;
1240         }
1241         if (life && life->end >= s)
1242             return false;
1243         e.start = e.end = s;
1244         vec_push(self->life, e);
1245         return true;
1246     }
1247     /* found */
1248     if (before)
1249     {
1250         if (before->end + 1 == s &&
1251             life->start - 1 == s)
1252         {
1253             /* merge */
1254             before->end = life->end;
1255             vec_remove(self->life, i, 1);
1256             return true;
1257         }
1258         if (before->end + 1 == s)
1259         {
1260             /* extend before */
1261             before->end++;
1262             return true;
1263         }
1264         /* already contained */
1265         if (before->end >= s)
1266             return false;
1267     }
1268     /* extend */
1269     if (life->start - 1 == s)
1270     {
1271         life->start--;
1272         return true;
1273     }
1274     /* insert a new entry */
1275     new_entry.start = new_entry.end = s;
1276     return ir_value_life_insert(self, i, new_entry);
1277 }
1278
1279 bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1280 {
1281     size_t i, myi;
1282
1283     if (!vec_size(other->life))
1284         return true;
1285
1286     if (!vec_size(self->life)) {
1287         size_t count = vec_size(other->life);
1288         ir_life_entry_t *life = vec_add(self->life, count);
1289         memcpy(life, other->life, count * sizeof(*life));
1290         return true;
1291     }
1292
1293     myi = 0;
1294     for (i = 0; i < vec_size(other->life); ++i)
1295     {
1296         const ir_life_entry_t *life = &other->life[i];
1297         while (true)
1298         {
1299             ir_life_entry_t *entry = &self->life[myi];
1300
1301             if (life->end+1 < entry->start)
1302             {
1303                 /* adding an interval before entry */
1304                 if (!ir_value_life_insert(self, myi, *life))
1305                     return false;
1306                 ++myi;
1307                 break;
1308             }
1309
1310             if (life->start <  entry->start &&
1311                 life->end+1 >= entry->start)
1312             {
1313                 /* starts earlier and overlaps */
1314                 entry->start = life->start;
1315             }
1316
1317             if (life->end   >  entry->end &&
1318                 life->start <= entry->end+1)
1319             {
1320                 /* ends later and overlaps */
1321                 entry->end = life->end;
1322             }
1323
1324             /* see if our change combines it with the next ranges */
1325             while (myi+1 < vec_size(self->life) &&
1326                    entry->end+1 >= self->life[1+myi].start)
1327             {
1328                 /* overlaps with (myi+1) */
1329                 if (entry->end < self->life[1+myi].end)
1330                     entry->end = self->life[1+myi].end;
1331                 vec_remove(self->life, myi+1, 1);
1332                 entry = &self->life[myi];
1333             }
1334
1335             /* see if we're after the entry */
1336             if (life->start > entry->end)
1337             {
1338                 ++myi;
1339                 /* append if we're at the end */
1340                 if (myi >= vec_size(self->life)) {
1341                     vec_push(self->life, *life);
1342                     break;
1343                 }
1344                 /* otherweise check the next range */
1345                 continue;
1346             }
1347             break;
1348         }
1349     }
1350     return true;
1351 }
1352
1353 bool ir_values_overlap(const ir_value *a, const ir_value *b)
1354 {
1355     /* For any life entry in A see if it overlaps with
1356      * any life entry in B.
1357      * Note that the life entries are orderes, so we can make a
1358      * more efficient algorithm there than naively translating the
1359      * statement above.
1360      */
1361
1362     ir_life_entry_t *la, *lb, *enda, *endb;
1363
1364     /* first of all, if either has no life range, they cannot clash */
1365     if (!vec_size(a->life) || !vec_size(b->life))
1366         return false;
1367
1368     la = a->life;
1369     lb = b->life;
1370     enda = la + vec_size(a->life);
1371     endb = lb + vec_size(b->life);
1372     while (true)
1373     {
1374         /* check if the entries overlap, for that,
1375          * both must start before the other one ends.
1376          */
1377         if (la->start < lb->end &&
1378             lb->start < la->end)
1379         {
1380             return true;
1381         }
1382
1383         /* entries are ordered
1384          * one entry is earlier than the other
1385          * that earlier entry will be moved forward
1386          */
1387         if (la->start < lb->start)
1388         {
1389             /* order: A B, move A forward
1390              * check if we hit the end with A
1391              */
1392             if (++la == enda)
1393                 break;
1394         }
1395         else /* if (lb->start < la->start)  actually <= */
1396         {
1397             /* order: B A, move B forward
1398              * check if we hit the end with B
1399              */
1400             if (++lb == endb)
1401                 break;
1402         }
1403     }
1404     return false;
1405 }
1406
1407 /***********************************************************************
1408  *IR main operations
1409  */
1410
1411 static bool ir_check_unreachable(ir_block *self)
1412 {
1413     /* The IR should never have to deal with unreachable code */
1414     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1415         return true;
1416     irerror(self->context, "unreachable statement (%s)", self->label);
1417     return false;
1418 }
1419
1420 bool ir_block_create_store_op(ir_block *self, lex_ctx ctx, int op, ir_value *target, ir_value *what)
1421 {
1422     ir_instr *in;
1423     if (!ir_check_unreachable(self))
1424         return false;
1425
1426     if (target->store == store_value &&
1427         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1428     {
1429         irerror(self->context, "cannot store to an SSA value");
1430         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1431         irerror(self->context, "instruction: %s", asm_instr[op].m);
1432         return false;
1433     }
1434
1435     in = ir_instr_new(ctx, self, op);
1436     if (!in)
1437         return false;
1438
1439     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1440         !ir_instr_op(in, 1, what, false))
1441     {
1442         ir_instr_delete(in);
1443         return false;
1444     }
1445     vec_push(self->instr, in);
1446     return true;
1447 }
1448
1449 bool ir_block_create_store(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1450 {
1451     int op = 0;
1452     int vtype;
1453     if (target->vtype == TYPE_VARIANT)
1454         vtype = what->vtype;
1455     else
1456         vtype = target->vtype;
1457
1458 #if 0
1459     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1460         op = INSTR_CONV_ITOF;
1461     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1462         op = INSTR_CONV_FTOI;
1463 #endif
1464         op = type_store_instr[vtype];
1465
1466     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1467         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1468             op = INSTR_STORE_V;
1469     }
1470
1471     return ir_block_create_store_op(self, ctx, op, target, what);
1472 }
1473
1474 bool ir_block_create_storep(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1475 {
1476     int op = 0;
1477     int vtype;
1478
1479     if (target->vtype != TYPE_POINTER)
1480         return false;
1481
1482     /* storing using pointer - target is a pointer, type must be
1483      * inferred from source
1484      */
1485     vtype = what->vtype;
1486
1487     op = type_storep_instr[vtype];
1488     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1489         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1490             op = INSTR_STOREP_V;
1491     }
1492
1493     return ir_block_create_store_op(self, ctx, op, target, what);
1494 }
1495
1496 bool ir_block_create_return(ir_block *self, lex_ctx ctx, ir_value *v)
1497 {
1498     ir_instr *in;
1499     if (!ir_check_unreachable(self))
1500         return false;
1501     self->final = true;
1502     self->is_return = true;
1503     in = ir_instr_new(ctx, self, INSTR_RETURN);
1504     if (!in)
1505         return false;
1506
1507     if (v && !ir_instr_op(in, 0, v, false)) {
1508         ir_instr_delete(in);
1509         return false;
1510     }
1511
1512     vec_push(self->instr, in);
1513     return true;
1514 }
1515
1516 bool ir_block_create_if(ir_block *self, lex_ctx ctx, ir_value *v,
1517                         ir_block *ontrue, ir_block *onfalse)
1518 {
1519     ir_instr *in;
1520     if (!ir_check_unreachable(self))
1521         return false;
1522     self->final = true;
1523     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1524     in = ir_instr_new(ctx, self, VINSTR_COND);
1525     if (!in)
1526         return false;
1527
1528     if (!ir_instr_op(in, 0, v, false)) {
1529         ir_instr_delete(in);
1530         return false;
1531     }
1532
1533     in->bops[0] = ontrue;
1534     in->bops[1] = onfalse;
1535
1536     vec_push(self->instr, in);
1537
1538     vec_push(self->exits, ontrue);
1539     vec_push(self->exits, onfalse);
1540     vec_push(ontrue->entries,  self);
1541     vec_push(onfalse->entries, self);
1542     return true;
1543 }
1544
1545 bool ir_block_create_jump(ir_block *self, lex_ctx ctx, ir_block *to)
1546 {
1547     ir_instr *in;
1548     if (!ir_check_unreachable(self))
1549         return false;
1550     self->final = true;
1551     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1552     if (!in)
1553         return false;
1554
1555     in->bops[0] = to;
1556     vec_push(self->instr, in);
1557
1558     vec_push(self->exits, to);
1559     vec_push(to->entries, self);
1560     return true;
1561 }
1562
1563 bool ir_block_create_goto(ir_block *self, lex_ctx ctx, ir_block *to)
1564 {
1565     self->owner->flags |= IR_FLAG_HAS_GOTO;
1566     return ir_block_create_jump(self, ctx, to);
1567 }
1568
1569 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx ctx, const char *label, int ot)
1570 {
1571     ir_value *out;
1572     ir_instr *in;
1573     if (!ir_check_unreachable(self))
1574         return NULL;
1575     in = ir_instr_new(ctx, self, VINSTR_PHI);
1576     if (!in)
1577         return NULL;
1578     out = ir_value_out(self->owner, label, store_value, ot);
1579     if (!out) {
1580         ir_instr_delete(in);
1581         return NULL;
1582     }
1583     if (!ir_instr_op(in, 0, out, true)) {
1584         ir_instr_delete(in);
1585         ir_value_delete(out);
1586         return NULL;
1587     }
1588     vec_push(self->instr, in);
1589     return in;
1590 }
1591
1592 ir_value* ir_phi_value(ir_instr *self)
1593 {
1594     return self->_ops[0];
1595 }
1596
1597 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1598 {
1599     ir_phi_entry_t pe;
1600
1601     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1602         /* Must not be possible to cause this, otherwise the AST
1603          * is doing something wrong.
1604          */
1605         irerror(self->context, "Invalid entry block for PHI");
1606         abort();
1607     }
1608
1609     pe.value = v;
1610     pe.from = b;
1611     vec_push(v->reads, self);
1612     vec_push(self->phi, pe);
1613 }
1614
1615 /* call related code */
1616 ir_instr* ir_block_create_call(ir_block *self, lex_ctx ctx, const char *label, ir_value *func, bool noreturn)
1617 {
1618     ir_value *out;
1619     ir_instr *in;
1620     if (!ir_check_unreachable(self))
1621         return NULL;
1622     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1623     if (!in)
1624         return NULL;
1625     if (noreturn) {
1626         self->final = true;
1627         self->is_return = true;
1628     }
1629     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1630     if (!out) {
1631         ir_instr_delete(in);
1632         return NULL;
1633     }
1634     if (!ir_instr_op(in, 0, out, true) ||
1635         !ir_instr_op(in, 1, func, false))
1636     {
1637         ir_instr_delete(in);
1638         ir_value_delete(out);
1639         return NULL;
1640     }
1641     vec_push(self->instr, in);
1642     /*
1643     if (noreturn) {
1644         if (!ir_block_create_return(self, ctx, NULL)) {
1645             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1646             ir_instr_delete(in);
1647             return NULL;
1648         }
1649     }
1650     */
1651     return in;
1652 }
1653
1654 ir_value* ir_call_value(ir_instr *self)
1655 {
1656     return self->_ops[0];
1657 }
1658
1659 void ir_call_param(ir_instr* self, ir_value *v)
1660 {
1661     vec_push(self->params, v);
1662     vec_push(v->reads, self);
1663 }
1664
1665 /* binary op related code */
1666
1667 ir_value* ir_block_create_binop(ir_block *self, lex_ctx ctx,
1668                                 const char *label, int opcode,
1669                                 ir_value *left, ir_value *right)
1670 {
1671     int ot = TYPE_VOID;
1672     switch (opcode) {
1673         case INSTR_ADD_F:
1674         case INSTR_SUB_F:
1675         case INSTR_DIV_F:
1676         case INSTR_MUL_F:
1677         case INSTR_MUL_V:
1678         case INSTR_AND:
1679         case INSTR_OR:
1680 #if 0
1681         case INSTR_AND_I:
1682         case INSTR_AND_IF:
1683         case INSTR_AND_FI:
1684         case INSTR_OR_I:
1685         case INSTR_OR_IF:
1686         case INSTR_OR_FI:
1687 #endif
1688         case INSTR_BITAND:
1689         case INSTR_BITOR:
1690 #if 0
1691         case INSTR_SUB_S: /* -- offset of string as float */
1692         case INSTR_MUL_IF:
1693         case INSTR_MUL_FI:
1694         case INSTR_DIV_IF:
1695         case INSTR_DIV_FI:
1696         case INSTR_BITOR_IF:
1697         case INSTR_BITOR_FI:
1698         case INSTR_BITAND_FI:
1699         case INSTR_BITAND_IF:
1700         case INSTR_EQ_I:
1701         case INSTR_NE_I:
1702 #endif
1703             ot = TYPE_FLOAT;
1704             break;
1705 #if 0
1706         case INSTR_ADD_I:
1707         case INSTR_ADD_IF:
1708         case INSTR_ADD_FI:
1709         case INSTR_SUB_I:
1710         case INSTR_SUB_FI:
1711         case INSTR_SUB_IF:
1712         case INSTR_MUL_I:
1713         case INSTR_DIV_I:
1714         case INSTR_BITAND_I:
1715         case INSTR_BITOR_I:
1716         case INSTR_XOR_I:
1717         case INSTR_RSHIFT_I:
1718         case INSTR_LSHIFT_I:
1719             ot = TYPE_INTEGER;
1720             break;
1721 #endif
1722         case INSTR_ADD_V:
1723         case INSTR_SUB_V:
1724         case INSTR_MUL_VF:
1725         case INSTR_MUL_FV:
1726 #if 0
1727         case INSTR_DIV_VF:
1728         case INSTR_MUL_IV:
1729         case INSTR_MUL_VI:
1730 #endif
1731             ot = TYPE_VECTOR;
1732             break;
1733 #if 0
1734         case INSTR_ADD_SF:
1735             ot = TYPE_POINTER;
1736             break;
1737 #endif
1738         default:
1739             /* ranges: */
1740             /* boolean operations result in floats */
1741             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1742                 ot = TYPE_FLOAT;
1743             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1744                 ot = TYPE_FLOAT;
1745 #if 0
1746             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1747                 ot = TYPE_FLOAT;
1748 #endif
1749             break;
1750     };
1751     if (ot == TYPE_VOID) {
1752         /* The AST or parser were supposed to check this! */
1753         return NULL;
1754     }
1755
1756     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1757 }
1758
1759 ir_value* ir_block_create_unary(ir_block *self, lex_ctx ctx,
1760                                 const char *label, int opcode,
1761                                 ir_value *operand)
1762 {
1763     int ot = TYPE_FLOAT;
1764     switch (opcode) {
1765         case INSTR_NOT_F:
1766         case INSTR_NOT_V:
1767         case INSTR_NOT_S:
1768         case INSTR_NOT_ENT:
1769         case INSTR_NOT_FNC:
1770 #if 0
1771         case INSTR_NOT_I:
1772 #endif
1773             ot = TYPE_FLOAT;
1774             break;
1775         /* QC doesn't have other unary operations. We expect extensions to fill
1776          * the above list, otherwise we assume out-type = in-type, eg for an
1777          * unary minus
1778          */
1779         default:
1780             ot = operand->vtype;
1781             break;
1782     };
1783     if (ot == TYPE_VOID) {
1784         /* The AST or parser were supposed to check this! */
1785         return NULL;
1786     }
1787
1788     /* let's use the general instruction creator and pass NULL for OPB */
1789     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1790 }
1791
1792 ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx ctx, const char *label,
1793                                         int op, ir_value *a, ir_value *b, int outype)
1794 {
1795     ir_instr *instr;
1796     ir_value *out;
1797
1798     out = ir_value_out(self->owner, label, store_value, outype);
1799     if (!out)
1800         return NULL;
1801
1802     instr = ir_instr_new(ctx, self, op);
1803     if (!instr) {
1804         ir_value_delete(out);
1805         return NULL;
1806     }
1807
1808     if (!ir_instr_op(instr, 0, out, true) ||
1809         !ir_instr_op(instr, 1, a, false) ||
1810         !ir_instr_op(instr, 2, b, false) )
1811     {
1812         goto on_error;
1813     }
1814
1815     vec_push(self->instr, instr);
1816
1817     return out;
1818 on_error:
1819     ir_instr_delete(instr);
1820     ir_value_delete(out);
1821     return NULL;
1822 }
1823
1824 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field)
1825 {
1826     ir_value *v;
1827
1828     /* Support for various pointer types todo if so desired */
1829     if (ent->vtype != TYPE_ENTITY)
1830         return NULL;
1831
1832     if (field->vtype != TYPE_FIELD)
1833         return NULL;
1834
1835     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1836     v->fieldtype = field->fieldtype;
1837     return v;
1838 }
1839
1840 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1841 {
1842     int op;
1843     if (ent->vtype != TYPE_ENTITY)
1844         return NULL;
1845
1846     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1847     if (field->vtype != TYPE_FIELD)
1848         return NULL;
1849
1850     switch (outype)
1851     {
1852         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1853         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1854         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1855         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1856         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1857         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1858 #if 0
1859         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1860         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1861 #endif
1862         default:
1863             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1864             return NULL;
1865     }
1866
1867     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1868 }
1869
1870 /* PHI resolving breaks the SSA, and must thus be the last
1871  * step before life-range calculation.
1872  */
1873
1874 static bool ir_block_naive_phi(ir_block *self);
1875 bool ir_function_naive_phi(ir_function *self)
1876 {
1877     size_t i;
1878
1879     for (i = 0; i < vec_size(self->blocks); ++i)
1880     {
1881         if (!ir_block_naive_phi(self->blocks[i]))
1882             return false;
1883     }
1884     return true;
1885 }
1886
1887 #if 0
1888 static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
1889 {
1890     ir_instr *instr;
1891     size_t i;
1892
1893     /* create a store */
1894     if (!ir_block_create_store(block, old, what))
1895         return false;
1896
1897     /* we now move it up */
1898     instr = vec_last(block->instr);
1899     for (i = vec_size(block->instr)-1; i > iid; --i)
1900         block->instr[i] = block->instr[i-1];
1901     block->instr[i] = instr;
1902
1903     return true;
1904 }
1905 #endif
1906
1907 static bool ir_block_naive_phi(ir_block *self)
1908 {
1909     size_t i, p; /*, w;*/
1910     /* FIXME: optionally, create_phi can add the phis
1911      * to a list so we don't need to loop through blocks
1912      * - anyway: "don't optimize YET"
1913      */
1914     for (i = 0; i < vec_size(self->instr); ++i)
1915     {
1916         ir_instr *instr = self->instr[i];
1917         if (instr->opcode != VINSTR_PHI)
1918             continue;
1919
1920         vec_remove(self->instr, i, 1);
1921         --i; /* NOTE: i+1 below */
1922
1923         for (p = 0; p < vec_size(instr->phi); ++p)
1924         {
1925             ir_value *v = instr->phi[p].value;
1926             ir_block *b = instr->phi[p].from;
1927
1928             if (v->store == store_value &&
1929                 vec_size(v->reads) == 1 &&
1930                 vec_size(v->writes) == 1)
1931             {
1932                 /* replace the value */
1933                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
1934                     return false;
1935             }
1936             else
1937             {
1938                 /* force a move instruction */
1939                 ir_instr *prevjump = vec_last(b->instr);
1940                 vec_pop(b->instr);
1941                 b->final = false;
1942                 instr->_ops[0]->store = store_global;
1943                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
1944                     return false;
1945                 instr->_ops[0]->store = store_value;
1946                 vec_push(b->instr, prevjump);
1947                 b->final = true;
1948             }
1949
1950 #if 0
1951             ir_value *v = instr->phi[p].value;
1952             for (w = 0; w < vec_size(v->writes); ++w) {
1953                 ir_value *old;
1954
1955                 if (!v->writes[w]->_ops[0])
1956                     continue;
1957
1958                 /* When the write was to a global, we have to emit a mov */
1959                 old = v->writes[w]->_ops[0];
1960
1961                 /* The original instruction now writes to the PHI target local */
1962                 if (v->writes[w]->_ops[0] == v)
1963                     v->writes[w]->_ops[0] = instr->_ops[0];
1964
1965                 if (old->store != store_value && old->store != store_local && old->store != store_param)
1966                 {
1967                     /* If it originally wrote to a global we need to store the value
1968                      * there as welli
1969                      */
1970                     if (!ir_naive_phi_emit_store(self, i+1, old, v))
1971                         return false;
1972                     if (i+1 < vec_size(self->instr))
1973                         instr = self->instr[i+1];
1974                     else
1975                         instr = NULL;
1976                     /* In case I forget and access instr later, it'll be NULL
1977                      * when it's a problem, to make sure we crash, rather than accessing
1978                      * invalid data.
1979                      */
1980                 }
1981                 else
1982                 {
1983                     /* If it didn't, we can replace all reads by the phi target now. */
1984                     size_t r;
1985                     for (r = 0; r < vec_size(old->reads); ++r)
1986                     {
1987                         size_t op;
1988                         ir_instr *ri = old->reads[r];
1989                         for (op = 0; op < vec_size(ri->phi); ++op) {
1990                             if (ri->phi[op].value == old)
1991                                 ri->phi[op].value = v;
1992                         }
1993                         for (op = 0; op < 3; ++op) {
1994                             if (ri->_ops[op] == old)
1995                                 ri->_ops[op] = v;
1996                         }
1997                     }
1998                 }
1999             }
2000 #endif
2001         }
2002         ir_instr_delete(instr);
2003     }
2004     return true;
2005 }
2006
2007 /***********************************************************************
2008  *IR Temp allocation code
2009  * Propagating value life ranges by walking through the function backwards
2010  * until no more changes are made.
2011  * In theory this should happen once more than once for every nested loop
2012  * level.
2013  * Though this implementation might run an additional time for if nests.
2014  */
2015
2016 /* Enumerate instructions used by value's life-ranges
2017  */
2018 static void ir_block_enumerate(ir_block *self, size_t *_eid)
2019 {
2020     size_t i;
2021     size_t eid = *_eid;
2022     for (i = 0; i < vec_size(self->instr); ++i)
2023     {
2024         self->instr[i]->eid = eid++;
2025     }
2026     *_eid = eid;
2027 }
2028
2029 /* Enumerate blocks and instructions.
2030  * The block-enumeration is unordered!
2031  * We do not really use the block enumreation, however
2032  * the instruction enumeration is important for life-ranges.
2033  */
2034 void ir_function_enumerate(ir_function *self)
2035 {
2036     size_t i;
2037     size_t instruction_id = 1;
2038     for (i = 0; i < vec_size(self->blocks); ++i)
2039     {
2040         self->blocks[i]->eid = i;
2041         self->blocks[i]->run_id = 0;
2042         ir_block_enumerate(self->blocks[i], &instruction_id);
2043     }
2044 }
2045
2046 static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
2047 bool ir_function_calculate_liferanges(ir_function *self)
2048 {
2049     size_t i, s;
2050     bool changed;
2051
2052     /* parameters live at 0 */
2053     for (i = 0; i < vec_size(self->params); ++i)
2054         ir_value_life_merge(self->locals[i], 0);
2055
2056     do {
2057         self->run_id++;
2058         changed = false;
2059         for (i = 0; i != vec_size(self->blocks); ++i)
2060         {
2061             if (self->blocks[i]->is_return)
2062             {
2063                 vec_free(self->blocks[i]->living);
2064                 if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
2065                     return false;
2066             }
2067         }
2068     } while (changed);
2069     if (vec_size(self->blocks)) {
2070         ir_block *block = self->blocks[0];
2071         for (i = 0; i < vec_size(block->living); ++i) {
2072             ir_value *v = block->living[i];
2073             if (v->store != store_local)
2074                 continue;
2075             if (v->vtype == TYPE_VECTOR)
2076                 continue;
2077             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2078             /* find the instruction reading from it */
2079             for (s = 0; s < vec_size(v->reads); ++s) {
2080                 if (v->reads[s]->eid == v->life[0].end)
2081                     break;
2082             }
2083             if (s < vec_size(v->reads)) {
2084                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2085                               "variable `%s` may be used uninitialized in this function\n"
2086                               " -> %s:%i",
2087                               v->name,
2088                               v->reads[s]->context.file, v->reads[s]->context.line)
2089                    )
2090                 {
2091                     return false;
2092                 }
2093                 continue;
2094             }
2095             if (v->memberof) {
2096                 ir_value *vec = v->memberof;
2097                 for (s = 0; s < vec_size(vec->reads); ++s) {
2098                     if (vec->reads[s]->eid == v->life[0].end)
2099                         break;
2100                 }
2101                 if (s < vec_size(vec->reads)) {
2102                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2103                                   "variable `%s` may be used uninitialized in this function\n"
2104                                   " -> %s:%i",
2105                                   v->name,
2106                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2107                        )
2108                     {
2109                         return false;
2110                     }
2111                     continue;
2112                 }
2113             }
2114             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2115                           "variable `%s` may be used uninitialized in this function", v->name))
2116             {
2117                 return false;
2118             }
2119         }
2120     }
2121     return true;
2122 }
2123
2124 /* Local-value allocator
2125  * After finishing creating the liferange of all values used in a function
2126  * we can allocate their global-positions.
2127  * This is the counterpart to register-allocation in register machines.
2128  */
2129 typedef struct {
2130     ir_value **locals;
2131     size_t    *sizes;
2132     size_t    *positions;
2133     bool      *unique;
2134 } function_allocator;
2135
2136 static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var)
2137 {
2138     ir_value *slot;
2139     size_t vsize = ir_value_sizeof(var);
2140
2141     slot = ir_value_var("reg", store_global, var->vtype);
2142     if (!slot)
2143         return false;
2144
2145     if (!ir_value_life_merge_into(slot, var))
2146         goto localerror;
2147
2148     vec_push(alloc->locals, slot);
2149     vec_push(alloc->sizes, vsize);
2150     vec_push(alloc->unique, var->unique_life);
2151
2152     return true;
2153
2154 localerror:
2155     ir_value_delete(slot);
2156     return false;
2157 }
2158
2159 bool ir_function_allocate_locals(ir_function *self)
2160 {
2161     size_t i, a;
2162     bool   retval = true;
2163     size_t pos;
2164
2165     ir_value *slot;
2166     ir_value *v;
2167
2168     function_allocator alloc;
2169
2170     if (!vec_size(self->locals) && !vec_size(self->values))
2171         return true;
2172
2173     alloc.locals    = NULL;
2174     alloc.sizes     = NULL;
2175     alloc.positions = NULL;
2176     alloc.unique    = NULL;
2177
2178     for (i = 0; i < vec_size(self->locals); ++i)
2179     {
2180         if (!OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS))
2181             self->locals[i]->unique_life = true;
2182         if (!function_allocator_alloc(&alloc, self->locals[i]))
2183             goto error;
2184     }
2185
2186     /* Allocate a slot for any value that still exists */
2187     for (i = 0; i < vec_size(self->values); ++i)
2188     {
2189         v = self->values[i];
2190
2191         if (!vec_size(v->life))
2192             continue;
2193
2194         /* CALL optimization:
2195          * If the value is a parameter-temp: 1 write, 1 read from a CALL
2196          * and it's not "locked", write it to the OFS_PARM directly.
2197          */
2198         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES)) {
2199             if (!v->locked && vec_size(v->reads) == 1 && vec_size(v->writes) == 1 &&
2200                 (v->reads[0]->opcode == VINSTR_NRCALL ||
2201                  (v->reads[0]->opcode >= INSTR_CALL0 && v->reads[0]->opcode <= INSTR_CALL8)
2202                 )
2203                )
2204             {
2205                 size_t    param;
2206                 ir_instr *call = v->reads[0];
2207                 if (!vec_ir_value_find(call->params, v, &param)) {
2208                     irerror(call->context, "internal error: unlocked parameter %s not found", v->name);
2209                     goto error;
2210                 }
2211
2212                 v->callparam = true;
2213                 if (param < 8)
2214                     ir_value_code_setaddr(v, OFS_PARM0 + 3*param);
2215                 else {
2216                     ir_value *ep;
2217                     param -= 8;
2218                     if (vec_size(self->owner->extparam_protos) <= param)
2219                         ep = ir_gen_extparam_proto(self->owner);
2220                     else
2221                         ep = self->owner->extparam_protos[param];
2222                     ir_instr_op(v->writes[0], 0, ep, true);
2223                     call->params[param+8] = ep;
2224                 }
2225                 continue;
2226             }
2227         }
2228
2229         for (a = 0; a < vec_size(alloc.locals); ++a)
2230         {
2231             /* if it's reserved for a unique liferange: skip */
2232             if (alloc.unique[a])
2233                 continue;
2234
2235             slot = alloc.locals[a];
2236
2237             /* never resize parameters
2238              * will be required later when overlapping temps + locals
2239              */
2240             if (a < vec_size(self->params) &&
2241                 alloc.sizes[a] < ir_value_sizeof(v))
2242             {
2243                 continue;
2244             }
2245
2246             if (ir_values_overlap(v, slot))
2247                 continue;
2248
2249             if (!ir_value_life_merge_into(slot, v))
2250                 goto error;
2251
2252             /* adjust size for this slot */
2253             if (alloc.sizes[a] < ir_value_sizeof(v))
2254                 alloc.sizes[a] = ir_value_sizeof(v);
2255
2256             self->values[i]->code.local = a;
2257             break;
2258         }
2259         if (a >= vec_size(alloc.locals)) {
2260             self->values[i]->code.local = vec_size(alloc.locals);
2261             if (!function_allocator_alloc(&alloc, v))
2262                 goto error;
2263         }
2264     }
2265
2266     if (!alloc.sizes) {
2267         goto cleanup;
2268     }
2269
2270     /* Adjust slot positions based on sizes */
2271     vec_push(alloc.positions, 0);
2272
2273     if (vec_size(alloc.sizes))
2274         pos = alloc.positions[0] + alloc.sizes[0];
2275     else
2276         pos = 0;
2277     for (i = 1; i < vec_size(alloc.sizes); ++i)
2278     {
2279         pos = alloc.positions[i-1] + alloc.sizes[i-1];
2280         vec_push(alloc.positions, pos);
2281     }
2282
2283     self->allocated_locals = pos + vec_last(alloc.sizes);
2284
2285     /* Locals need to know their new position */
2286     for (i = 0; i < vec_size(self->locals); ++i) {
2287         self->locals[i]->code.local = alloc.positions[i];
2288     }
2289     /* Take over the actual slot positions on values */
2290     for (i = 0; i < vec_size(self->values); ++i) {
2291         self->values[i]->code.local = alloc.positions[self->values[i]->code.local];
2292     }
2293
2294     goto cleanup;
2295
2296 error:
2297     retval = false;
2298 cleanup:
2299     for (i = 0; i < vec_size(alloc.locals); ++i)
2300         ir_value_delete(alloc.locals[i]);
2301     vec_free(alloc.unique);
2302     vec_free(alloc.locals);
2303     vec_free(alloc.sizes);
2304     vec_free(alloc.positions);
2305     return retval;
2306 }
2307
2308 /* Get information about which operand
2309  * is read from, or written to.
2310  */
2311 static void ir_op_read_write(int op, size_t *read, size_t *write)
2312 {
2313     switch (op)
2314     {
2315     case VINSTR_JUMP:
2316     case INSTR_GOTO:
2317         *write = 0;
2318         *read = 0;
2319         break;
2320     case INSTR_IF:
2321     case INSTR_IFNOT:
2322 #if 0
2323     case INSTR_IF_S:
2324     case INSTR_IFNOT_S:
2325 #endif
2326     case INSTR_RETURN:
2327     case VINSTR_COND:
2328         *write = 0;
2329         *read = 1;
2330         break;
2331     case INSTR_STOREP_F:
2332     case INSTR_STOREP_V:
2333     case INSTR_STOREP_S:
2334     case INSTR_STOREP_ENT:
2335     case INSTR_STOREP_FLD:
2336     case INSTR_STOREP_FNC:
2337         *write = 0;
2338         *read  = 7;
2339         break;
2340     default:
2341         *write = 1;
2342         *read = 6;
2343         break;
2344     };
2345 }
2346
2347 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2348 {
2349     size_t i;
2350     bool changed = false;
2351     bool tempbool;
2352     for (i = 0; i != vec_size(self->living); ++i)
2353     {
2354         tempbool = ir_value_life_merge(self->living[i], eid);
2355         changed = changed || tempbool;
2356     }
2357     return changed;
2358 }
2359
2360 static bool ir_block_living_lock(ir_block *self)
2361 {
2362     size_t i;
2363     bool changed = false;
2364     for (i = 0; i != vec_size(self->living); ++i)
2365     {
2366         if (!self->living[i]->locked)
2367             changed = true;
2368         self->living[i]->locked = true;
2369     }
2370     return changed;
2371 }
2372
2373 static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
2374 {
2375     size_t i;
2376
2377     (void)changed;
2378
2379     /* values which have been read in a previous iteration are now
2380      * in the "living" array even if the previous block doesn't use them.
2381      * So we have to remove whatever does not exist in the previous block.
2382      * They will be re-added on-read, but the liferange merge won't cause
2383      * a change.
2384     for (i = 0; i < vec_size(self->living); ++i)
2385     {
2386         if (!vec_ir_value_find(prev->living, self->living[i], NULL)) {
2387             vec_remove(self->living, i, 1);
2388             --i;
2389         }
2390     }
2391      */
2392
2393     /* Whatever the previous block still has in its living set
2394      * must now be added to ours as well.
2395      */
2396     for (i = 0; i < vec_size(prev->living); ++i)
2397     {
2398         if (vec_ir_value_find(self->living, prev->living[i], NULL))
2399             continue;
2400         vec_push(self->living, prev->living[i]);
2401         /*
2402         irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name);
2403         */
2404     }
2405     return true;
2406 }
2407
2408 static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
2409 {
2410     ir_instr *instr;
2411     ir_value *value;
2412     bool  tempbool;
2413     size_t i, o, p, mem;
2414     /* bitmasks which operands are read from or written to */
2415     size_t read, write;
2416     char dbg_ind[16] = { '#', '0' };
2417     (void)dbg_ind;
2418
2419     if (prev)
2420     {
2421         if (!ir_block_life_prop_previous(self, prev, changed))
2422             return false;
2423     }
2424
2425     i = vec_size(self->instr);
2426     while (i)
2427     { --i;
2428         instr = self->instr[i];
2429
2430         /* See which operands are read and write operands */
2431         ir_op_read_write(instr->opcode, &read, &write);
2432
2433         if (instr->opcode == INSTR_MUL_VF)
2434         {
2435             /* the float source will get an additional lifetime */
2436             tempbool = ir_value_life_merge(instr->_ops[2], instr->eid+1);
2437             *changed = *changed || tempbool;
2438         }
2439         else if (instr->opcode == INSTR_MUL_FV)
2440         {
2441             /* the float source will get an additional lifetime */
2442             tempbool = ir_value_life_merge(instr->_ops[1], instr->eid+1);
2443             *changed = *changed || tempbool;
2444         }
2445
2446         /* Go through the 3 main operands
2447          * writes first, then reads
2448          */
2449         for (o = 0; o < 3; ++o)
2450         {
2451             if (!instr->_ops[o]) /* no such operand */
2452                 continue;
2453
2454             value = instr->_ops[o];
2455
2456             /* We only care about locals */
2457             /* we also calculate parameter liferanges so that locals
2458              * can take up parameter slots */
2459             if (value->store != store_value &&
2460                 value->store != store_local &&
2461                 value->store != store_param)
2462                 continue;
2463
2464             /* write operands */
2465             /* When we write to a local, we consider it "dead" for the
2466              * remaining upper part of the function, since in SSA a value
2467              * can only be written once (== created)
2468              */
2469             if (write & (1<<o))
2470             {
2471                 size_t idx;
2472                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2473                 if (!in_living)
2474                 {
2475                     /* If the value isn't alive it hasn't been read before... */
2476                     /* TODO: See if the warning can be emitted during parsing or AST processing
2477                      * otherwise have warning printed here.
2478                      * IF printing a warning here: include filecontext_t,
2479                      * and make sure it's only printed once
2480                      * since this function is run multiple times.
2481                      */
2482                     /* con_err( "Value only written %s\n", value->name); */
2483                     tempbool = ir_value_life_merge(value, instr->eid);
2484                     *changed = *changed || tempbool;
2485                 } else {
2486                     /* since 'living' won't contain it
2487                      * anymore, merge the value, since
2488                      * (A) doesn't.
2489                      */
2490                     tempbool = ir_value_life_merge(value, instr->eid);
2491                     *changed = *changed || tempbool;
2492                     /* Then remove */
2493                     vec_remove(self->living, idx, 1);
2494                 }
2495                 /* Removing a vector removes all members */
2496                 for (mem = 0; mem < 3; ++mem) {
2497                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2498                         tempbool = ir_value_life_merge(value->members[mem], instr->eid);
2499                         *changed = *changed || tempbool;
2500                         vec_remove(self->living, idx, 1);
2501                     }
2502                 }
2503                 /* Removing the last member removes the vector */
2504                 if (value->memberof) {
2505                     value = value->memberof;
2506                     for (mem = 0; mem < 3; ++mem) {
2507                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2508                             break;
2509                     }
2510                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2511                         tempbool = ir_value_life_merge(value, instr->eid);
2512                         *changed = *changed || tempbool;
2513                         vec_remove(self->living, idx, 1);
2514                     }
2515                 }
2516             }
2517         }
2518
2519         for (o = 0; o < 3; ++o)
2520         {
2521             if (!instr->_ops[o]) /* no such operand */
2522                 continue;
2523
2524             value = instr->_ops[o];
2525
2526             /* We only care about locals */
2527             /* we also calculate parameter liferanges so that locals
2528              * can take up parameter slots */
2529             if (value->store != store_value &&
2530                 value->store != store_local &&
2531                 value->store != store_param)
2532                 continue;
2533
2534             /* read operands */
2535             if (read & (1<<o))
2536             {
2537                 if (!vec_ir_value_find(self->living, value, NULL))
2538                     vec_push(self->living, value);
2539                 /* reading adds the full vector */
2540                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2541                     vec_push(self->living, value->memberof);
2542                 for (mem = 0; mem < 3; ++mem) {
2543                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2544                         vec_push(self->living, value->members[mem]);
2545                 }
2546             }
2547         }
2548         /* PHI operands are always read operands */
2549         for (p = 0; p < vec_size(instr->phi); ++p)
2550         {
2551             value = instr->phi[p].value;
2552             if (!vec_ir_value_find(self->living, value, NULL))
2553                 vec_push(self->living, value);
2554             /* reading adds the full vector */
2555             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2556                 vec_push(self->living, value->memberof);
2557             for (mem = 0; mem < 3; ++mem) {
2558                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2559                     vec_push(self->living, value->members[mem]);
2560             }
2561         }
2562
2563         /* on a call, all these values must be "locked" */
2564         if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
2565             if (ir_block_living_lock(self))
2566                 *changed = true;
2567         }
2568         /* call params are read operands too */
2569         for (p = 0; p < vec_size(instr->params); ++p)
2570         {
2571             value = instr->params[p];
2572             if (!vec_ir_value_find(self->living, value, NULL))
2573                 vec_push(self->living, value);
2574             /* reading adds the full vector */
2575             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2576                 vec_push(self->living, value->memberof);
2577             for (mem = 0; mem < 3; ++mem) {
2578                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2579                     vec_push(self->living, value->members[mem]);
2580             }
2581         }
2582
2583         /* (A) */
2584         tempbool = ir_block_living_add_instr(self, instr->eid);
2585         /*con_err( "living added values\n");*/
2586         *changed = *changed || tempbool;
2587
2588     }
2589
2590     if (self->run_id == self->owner->run_id)
2591         return true;
2592
2593     self->run_id = self->owner->run_id;
2594
2595     for (i = 0; i < vec_size(self->entries); ++i)
2596     {
2597         ir_block *entry = self->entries[i];
2598         ir_block_life_propagate(entry, self, changed);
2599     }
2600
2601     return true;
2602 }
2603
2604 /***********************************************************************
2605  *IR Code-Generation
2606  *
2607  * Since the IR has the convention of putting 'write' operands
2608  * at the beginning, we have to rotate the operands of instructions
2609  * properly in order to generate valid QCVM code.
2610  *
2611  * Having destinations at a fixed position is more convenient. In QC
2612  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2613  * read from from OPA,  and store to OPB rather than OPC.   Which is
2614  * partially the reason why the implementation of these instructions
2615  * in darkplaces has been delayed for so long.
2616  *
2617  * Breaking conventions is annoying...
2618  */
2619 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal, bool defs_only);
2620
2621 static bool gen_global_field(ir_value *global)
2622 {
2623     if (global->hasvalue)
2624     {
2625         ir_value *fld = global->constval.vpointer;
2626         if (!fld) {
2627             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2628             return false;
2629         }
2630
2631         /* copy the field's value */
2632         ir_value_code_setaddr(global, vec_size(code_globals));
2633         vec_push(code_globals, fld->code.fieldaddr);
2634         if (global->fieldtype == TYPE_VECTOR) {
2635             vec_push(code_globals, fld->code.fieldaddr+1);
2636             vec_push(code_globals, fld->code.fieldaddr+2);
2637         }
2638     }
2639     else
2640     {
2641         ir_value_code_setaddr(global, vec_size(code_globals));
2642         vec_push(code_globals, 0);
2643         if (global->fieldtype == TYPE_VECTOR) {
2644             vec_push(code_globals, 0);
2645             vec_push(code_globals, 0);
2646         }
2647     }
2648     if (global->code.globaladdr < 0)
2649         return false;
2650     return true;
2651 }
2652
2653 static bool gen_global_pointer(ir_value *global)
2654 {
2655     if (global->hasvalue)
2656     {
2657         ir_value *target = global->constval.vpointer;
2658         if (!target) {
2659             irerror(global->context, "Invalid pointer constant: %s", global->name);
2660             /* NULL pointers are pointing to the NULL constant, which also
2661              * sits at address 0, but still has an ir_value for itself.
2662              */
2663             return false;
2664         }
2665
2666         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2667          * void() foo; <- proto
2668          * void() *fooptr = &foo;
2669          * void() foo = { code }
2670          */
2671         if (!target->code.globaladdr) {
2672             /* FIXME: Check for the constant nullptr ir_value!
2673              * because then code.globaladdr being 0 is valid.
2674              */
2675             irerror(global->context, "FIXME: Relocation support");
2676             return false;
2677         }
2678
2679         ir_value_code_setaddr(global, vec_size(code_globals));
2680         vec_push(code_globals, target->code.globaladdr);
2681     }
2682     else
2683     {
2684         ir_value_code_setaddr(global, vec_size(code_globals));
2685         vec_push(code_globals, 0);
2686     }
2687     if (global->code.globaladdr < 0)
2688         return false;
2689     return true;
2690 }
2691
2692 static bool gen_blocks_recursive(ir_function *func, ir_block *block)
2693 {
2694     prog_section_statement stmt;
2695     ir_instr *instr;
2696     ir_block *target;
2697     ir_block *ontrue;
2698     ir_block *onfalse;
2699     size_t    stidx;
2700     size_t    i;
2701
2702 tailcall:
2703     block->generated = true;
2704     block->code_start = vec_size(code_statements);
2705     for (i = 0; i < vec_size(block->instr); ++i)
2706     {
2707         instr = block->instr[i];
2708
2709         if (instr->opcode == VINSTR_PHI) {
2710             irerror(block->context, "cannot generate virtual instruction (phi)");
2711             return false;
2712         }
2713
2714         if (instr->opcode == VINSTR_JUMP) {
2715             target = instr->bops[0];
2716             /* for uncoditional jumps, if the target hasn't been generated
2717              * yet, we generate them right here.
2718              */
2719             if (!target->generated) {
2720                 block = target;
2721                 goto tailcall;
2722             }
2723
2724             /* otherwise we generate a jump instruction */
2725             stmt.opcode = INSTR_GOTO;
2726             stmt.o1.s1 = (target->code_start) - vec_size(code_statements);
2727             stmt.o2.s1 = 0;
2728             stmt.o3.s1 = 0;
2729             if (stmt.o1.s1 != 1)
2730                 code_push_statement(&stmt, instr->context.line);
2731
2732             /* no further instructions can be in this block */
2733             return true;
2734         }
2735
2736         if (instr->opcode == VINSTR_COND) {
2737             ontrue  = instr->bops[0];
2738             onfalse = instr->bops[1];
2739             /* TODO: have the AST signal which block should
2740              * come first: eg. optimize IFs without ELSE...
2741              */
2742
2743             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
2744             stmt.o2.u1 = 0;
2745             stmt.o3.s1 = 0;
2746
2747             if (ontrue->generated) {
2748                 stmt.opcode = INSTR_IF;
2749                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code_statements);
2750                 if (stmt.o2.s1 != 1)
2751                     code_push_statement(&stmt, instr->context.line);
2752             }
2753             if (onfalse->generated) {
2754                 stmt.opcode = INSTR_IFNOT;
2755                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code_statements);
2756                 if (stmt.o2.s1 != 1)
2757                     code_push_statement(&stmt, instr->context.line);
2758             }
2759             if (!ontrue->generated) {
2760                 if (onfalse->generated) {
2761                     block = ontrue;
2762                     goto tailcall;
2763                 }
2764             }
2765             if (!onfalse->generated) {
2766                 if (ontrue->generated) {
2767                     block = onfalse;
2768                     goto tailcall;
2769                 }
2770             }
2771             /* neither ontrue nor onfalse exist */
2772             stmt.opcode = INSTR_IFNOT;
2773             if (!instr->likely) {
2774                 /* Honor the likelyhood hint */
2775                 ir_block *tmp = onfalse;
2776                 stmt.opcode = INSTR_IF;
2777                 onfalse = ontrue;
2778                 ontrue = tmp;
2779             }
2780             stidx = vec_size(code_statements);
2781             code_push_statement(&stmt, instr->context.line);
2782             /* on false we jump, so add ontrue-path */
2783             if (!gen_blocks_recursive(func, ontrue))
2784                 return false;
2785             /* fixup the jump address */
2786             code_statements[stidx].o2.s1 = vec_size(code_statements) - stidx;
2787             /* generate onfalse path */
2788             if (onfalse->generated) {
2789                 /* fixup the jump address */
2790                 code_statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
2791                 if (code_statements[stidx].o2.s1 == 1) {
2792                     code_statements[stidx] = code_statements[stidx+1];
2793                     if (code_statements[stidx].o1.s1 < 0)
2794                         code_statements[stidx].o1.s1++;
2795                     code_pop_statement();
2796                 }
2797                 stmt.opcode = vec_last(code_statements).opcode;
2798                 if (stmt.opcode == INSTR_GOTO ||
2799                     stmt.opcode == INSTR_IF ||
2800                     stmt.opcode == INSTR_IFNOT ||
2801                     stmt.opcode == INSTR_RETURN ||
2802                     stmt.opcode == INSTR_DONE)
2803                 {
2804                     /* no use jumping from here */
2805                     return true;
2806                 }
2807                 /* may have been generated in the previous recursive call */
2808                 stmt.opcode = INSTR_GOTO;
2809                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code_statements);
2810                 stmt.o2.s1 = 0;
2811                 stmt.o3.s1 = 0;
2812                 if (stmt.o1.s1 != 1)
2813                     code_push_statement(&stmt, instr->context.line);
2814                 return true;
2815             }
2816             else if (code_statements[stidx].o2.s1 == 1) {
2817                 code_statements[stidx] = code_statements[stidx+1];
2818                 if (code_statements[stidx].o1.s1 < 0)
2819                     code_statements[stidx].o1.s1++;
2820                 code_pop_statement();
2821             }
2822             /* if not, generate now */
2823             block = onfalse;
2824             goto tailcall;
2825         }
2826
2827         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
2828            || instr->opcode == VINSTR_NRCALL)
2829         {
2830             size_t p, first;
2831             ir_value *retvalue;
2832
2833             first = vec_size(instr->params);
2834             if (first > 8)
2835                 first = 8;
2836             for (p = 0; p < first; ++p)
2837             {
2838                 ir_value *param = instr->params[p];
2839                 if (param->callparam)
2840                     continue;
2841
2842                 stmt.opcode = INSTR_STORE_F;
2843                 stmt.o3.u1 = 0;
2844
2845                 if (param->vtype == TYPE_FIELD)
2846                     stmt.opcode = field_store_instr[param->fieldtype];
2847                 else
2848                     stmt.opcode = type_store_instr[param->vtype];
2849                 stmt.o1.u1 = ir_value_code_addr(param);
2850                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
2851                 code_push_statement(&stmt, instr->context.line);
2852             }
2853             /* Now handle extparams */
2854             first = vec_size(instr->params);
2855             for (; p < first; ++p)
2856             {
2857                 ir_builder *ir = func->owner;
2858                 ir_value *param = instr->params[p];
2859                 ir_value *targetparam;
2860
2861                 if (param->callparam)
2862                     continue;
2863
2864                 if (p-8 >= vec_size(ir->extparams))
2865                     ir_gen_extparam(ir);
2866
2867                 targetparam = ir->extparams[p-8];
2868
2869                 stmt.opcode = INSTR_STORE_F;
2870                 stmt.o3.u1 = 0;
2871
2872                 if (param->vtype == TYPE_FIELD)
2873                     stmt.opcode = field_store_instr[param->fieldtype];
2874                 else
2875                     stmt.opcode = type_store_instr[param->vtype];
2876                 stmt.o1.u1 = ir_value_code_addr(param);
2877                 stmt.o2.u1 = ir_value_code_addr(targetparam);
2878                 code_push_statement(&stmt, instr->context.line);
2879             }
2880
2881             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
2882             if (stmt.opcode > INSTR_CALL8)
2883                 stmt.opcode = INSTR_CALL8;
2884             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2885             stmt.o2.u1 = 0;
2886             stmt.o3.u1 = 0;
2887             code_push_statement(&stmt, instr->context.line);
2888
2889             retvalue = instr->_ops[0];
2890             if (retvalue && retvalue->store != store_return &&
2891                 (retvalue->store == store_global || vec_size(retvalue->life)))
2892             {
2893                 /* not to be kept in OFS_RETURN */
2894                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
2895                     stmt.opcode = field_store_instr[retvalue->fieldtype];
2896                 else
2897                     stmt.opcode = type_store_instr[retvalue->vtype];
2898                 stmt.o1.u1 = OFS_RETURN;
2899                 stmt.o2.u1 = ir_value_code_addr(retvalue);
2900                 stmt.o3.u1 = 0;
2901                 code_push_statement(&stmt, instr->context.line);
2902             }
2903             continue;
2904         }
2905
2906         if (instr->opcode == INSTR_STATE) {
2907             irerror(block->context, "TODO: state instruction");
2908             return false;
2909         }
2910
2911         stmt.opcode = instr->opcode;
2912         stmt.o1.u1 = 0;
2913         stmt.o2.u1 = 0;
2914         stmt.o3.u1 = 0;
2915
2916         /* This is the general order of operands */
2917         if (instr->_ops[0])
2918             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
2919
2920         if (instr->_ops[1])
2921             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2922
2923         if (instr->_ops[2])
2924             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
2925
2926         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
2927         {
2928             stmt.o1.u1 = stmt.o3.u1;
2929             stmt.o3.u1 = 0;
2930         }
2931         else if ((stmt.opcode >= INSTR_STORE_F &&
2932                   stmt.opcode <= INSTR_STORE_FNC) ||
2933                  (stmt.opcode >= INSTR_STOREP_F &&
2934                   stmt.opcode <= INSTR_STOREP_FNC))
2935         {
2936             /* 2-operand instructions with A -> B */
2937             stmt.o2.u1 = stmt.o3.u1;
2938             stmt.o3.u1 = 0;
2939
2940             /* tiny optimization, don't output
2941              * STORE a, a
2942              */
2943             if (stmt.o2.u1 == stmt.o1.u1 &&
2944                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
2945             {
2946                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
2947                 continue;
2948             }
2949         }
2950
2951         code_push_statement(&stmt, instr->context.line);
2952     }
2953     return true;
2954 }
2955
2956 static bool gen_function_code(ir_function *self)
2957 {
2958     ir_block *block;
2959     prog_section_statement stmt, *retst;
2960
2961     /* Starting from entry point, we generate blocks "as they come"
2962      * for now. Dead blocks will not be translated obviously.
2963      */
2964     if (!vec_size(self->blocks)) {
2965         irerror(self->context, "Function '%s' declared without body.", self->name);
2966         return false;
2967     }
2968
2969     block = self->blocks[0];
2970     if (block->generated)
2971         return true;
2972
2973     if (!gen_blocks_recursive(self, block)) {
2974         irerror(self->context, "failed to generate blocks for '%s'", self->name);
2975         return false;
2976     }
2977
2978     /* code_write and qcvm -disasm need to know that the function ends here */
2979     retst = &vec_last(code_statements);
2980     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
2981         self->outtype == TYPE_VOID &&
2982         retst->opcode == INSTR_RETURN &&
2983         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
2984     {
2985         retst->opcode = INSTR_DONE;
2986         ++opts_optimizationcount[OPTIM_VOID_RETURN];
2987     } else {
2988         stmt.opcode = INSTR_DONE;
2989         stmt.o1.u1 = 0;
2990         stmt.o2.u1 = 0;
2991         stmt.o3.u1 = 0;
2992         code_push_statement(&stmt, vec_last(code_linenums));
2993     }
2994     return true;
2995 }
2996
2997 static qcint ir_builder_filestring(ir_builder *ir, const char *filename)
2998 {
2999     /* NOTE: filename pointers are copied, we never strdup them,
3000      * thus we can use pointer-comparison to find the string.
3001      */
3002     size_t i;
3003     qcint  str;
3004
3005     for (i = 0; i < vec_size(ir->filenames); ++i) {
3006         if (ir->filenames[i] == filename)
3007             return ir->filestrings[i];
3008     }
3009
3010     str = code_genstring(filename);
3011     vec_push(ir->filenames, filename);
3012     vec_push(ir->filestrings, str);
3013     return str;
3014 }
3015
3016 static bool gen_global_function(ir_builder *ir, ir_value *global)
3017 {
3018     prog_section_function fun;
3019     ir_function          *irfun;
3020
3021     size_t i;
3022
3023     if (!global->hasvalue || (!global->constval.vfunc))
3024     {
3025         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
3026         return false;
3027     }
3028
3029     irfun = global->constval.vfunc;
3030
3031     fun.name    = global->code.name;
3032     fun.file    = ir_builder_filestring(ir, global->context.file);
3033     fun.profile = 0; /* always 0 */
3034     fun.nargs   = vec_size(irfun->params);
3035     if (fun.nargs > 8)
3036         fun.nargs = 8;
3037
3038     for (i = 0;i < 8; ++i) {
3039         if ((int32_t)i >= fun.nargs)
3040             fun.argsize[i] = 0;
3041         else
3042             fun.argsize[i] = type_sizeof_[irfun->params[i]];
3043     }
3044
3045     fun.firstlocal = 0;
3046     fun.locals     = irfun->allocated_locals;
3047
3048     if (irfun->builtin)
3049         fun.entry = irfun->builtin+1;
3050     else {
3051         irfun->code_function_def = vec_size(code_functions);
3052         fun.entry = vec_size(code_statements);
3053     }
3054
3055     vec_push(code_functions, fun);
3056     return true;
3057 }
3058
3059 static ir_value* ir_gen_extparam_proto(ir_builder *ir)
3060 {
3061     ir_value *global;
3062     char      name[128];
3063
3064     snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparam_protos)+8));
3065     global = ir_value_var(name, store_global, TYPE_VECTOR);
3066
3067     vec_push(ir->extparam_protos, global);
3068     return global;
3069 }
3070
3071 static void ir_gen_extparam(ir_builder *ir)
3072 {
3073     prog_section_def def;
3074     ir_value        *global;
3075
3076     if (vec_size(ir->extparam_protos) < vec_size(ir->extparams)+1)
3077         global = ir_gen_extparam_proto(ir);
3078     else
3079         global = ir->extparam_protos[vec_size(ir->extparams)];
3080
3081     def.name = code_genstring(global->name);
3082     def.type = TYPE_VECTOR;
3083     def.offset = vec_size(code_globals);
3084
3085     vec_push(code_defs, def);
3086     ir_value_code_setaddr(global, def.offset);
3087     vec_push(code_globals, 0);
3088     vec_push(code_globals, 0);
3089     vec_push(code_globals, 0);
3090
3091     vec_push(ir->extparams, global);
3092 }
3093
3094 static bool gen_function_extparam_copy(ir_function *self)
3095 {
3096     size_t i, ext, numparams;
3097
3098     ir_builder *ir = self->owner;
3099     ir_value   *ep;
3100     prog_section_statement stmt;
3101
3102     numparams = vec_size(self->params);
3103     if (!numparams)
3104         return true;
3105
3106     stmt.opcode = INSTR_STORE_F;
3107     stmt.o3.s1 = 0;
3108     for (i = 8; i < numparams; ++i) {
3109         ext = i - 8;
3110         if (ext >= vec_size(ir->extparams))
3111             ir_gen_extparam(ir);
3112
3113         ep = ir->extparams[ext];
3114
3115         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3116         if (self->locals[i]->vtype == TYPE_FIELD &&
3117             self->locals[i]->fieldtype == TYPE_VECTOR)
3118         {
3119             stmt.opcode = INSTR_STORE_V;
3120         }
3121         stmt.o1.u1 = ir_value_code_addr(ep);
3122         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3123         code_push_statement(&stmt, self->context.line);
3124     }
3125
3126     return true;
3127 }
3128
3129 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3130 {
3131     prog_section_function *def;
3132     ir_function           *irfun;
3133     size_t                 i;
3134     uint32_t               firstlocal;
3135
3136     irfun = global->constval.vfunc;
3137     def   = code_functions + irfun->code_function_def;
3138
3139     if (opts.g || !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS) || (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3140         firstlocal = def->firstlocal = vec_size(code_globals);
3141     else {
3142         firstlocal = def->firstlocal = ir->first_common_local;
3143         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3144     }
3145
3146     for (i = vec_size(code_globals); i < firstlocal + irfun->allocated_locals; ++i)
3147         vec_push(code_globals, 0);
3148     for (i = 0; i < vec_size(irfun->locals); ++i) {
3149         ir_value_code_setaddr(irfun->locals[i], firstlocal + irfun->locals[i]->code.local);
3150         if (!ir_builder_gen_global(ir, irfun->locals[i], true, true)) {
3151             irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3152             return false;
3153         }
3154     }
3155     for (i = 0; i < vec_size(irfun->values); ++i)
3156     {
3157         ir_value *v = irfun->values[i];
3158         if (v->callparam)
3159             continue;
3160         ir_value_code_setaddr(v, firstlocal + v->code.local);
3161     }
3162     return true;
3163 }
3164
3165 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3166 {
3167     prog_section_function *fundef;
3168     ir_function           *irfun;
3169
3170     (void)ir;
3171
3172     irfun = global->constval.vfunc;
3173     if (!irfun) {
3174         if (global->cvq == CV_NONE) {
3175             irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3176                       "function `%s` has no body and in QC implicitly becomes a function-pointer", global->name);
3177         }
3178         /* this was a function pointer, don't generate code for those */
3179         return true;
3180     }
3181
3182     if (irfun->builtin)
3183         return true;
3184
3185     if (irfun->code_function_def < 0) {
3186         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3187         return false;
3188     }
3189     fundef = &code_functions[irfun->code_function_def];
3190
3191     fundef->entry = vec_size(code_statements);
3192     if (!gen_function_locals(ir, global)) {
3193         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3194         return false;
3195     }
3196     if (!gen_function_extparam_copy(irfun)) {
3197         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3198         return false;
3199     }
3200     if (!gen_function_code(irfun)) {
3201         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3202         return false;
3203     }
3204     return true;
3205 }
3206
3207 static void gen_vector_defs(prog_section_def def, const char *name)
3208 {
3209     char  *component;
3210     size_t len, i;
3211
3212     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3213         return;
3214
3215     def.type = TYPE_FLOAT;
3216
3217     len = strlen(name);
3218
3219     component = (char*)mem_a(len+3);
3220     memcpy(component, name, len);
3221     len += 2;
3222     component[len-0] = 0;
3223     component[len-2] = '_';
3224
3225     component[len-1] = 'x';
3226
3227     for (i = 0; i < 3; ++i) {
3228         def.name = code_genstring(component);
3229         vec_push(code_defs, def);
3230         def.offset++;
3231         component[len-1]++;
3232     }
3233 }
3234
3235 static void gen_vector_fields(prog_section_field fld, const char *name)
3236 {
3237     char  *component;
3238     size_t len, i;
3239
3240     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3241         return;
3242
3243     fld.type = TYPE_FLOAT;
3244
3245     len = strlen(name);
3246
3247     component = (char*)mem_a(len+3);
3248     memcpy(component, name, len);
3249     len += 2;
3250     component[len-0] = 0;
3251     component[len-2] = '_';
3252
3253     component[len-1] = 'x';
3254
3255     for (i = 0; i < 3; ++i) {
3256         fld.name = code_genstring(component);
3257         vec_push(code_fields, fld);
3258         fld.offset++;
3259         component[len-1]++;
3260     }
3261 }
3262
3263 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal, bool defs_only)
3264 {
3265     size_t           i;
3266     int32_t         *iptr;
3267     prog_section_def def;
3268     bool             pushdef = false;
3269
3270     if (opts.g || !islocal)
3271     {
3272         pushdef = true;
3273         def.type   = global->vtype;
3274         def.offset = vec_size(code_globals);
3275
3276         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3277             (global->name[0] == '#' || global->cvq == CV_CONST))
3278         {
3279             pushdef = false;
3280         }
3281
3282         if (pushdef && global->name) {
3283             if (global->name[0] == '#') {
3284                 if (!self->str_immediate)
3285                     self->str_immediate = code_genstring("IMMEDIATE");
3286                 def.name = global->code.name = self->str_immediate;
3287             }
3288             else
3289                 def.name = global->code.name = code_genstring(global->name);
3290         }
3291         else
3292             def.name   = 0;
3293         if (defs_only) {
3294             def.offset = ir_value_code_addr(global);
3295             vec_push(code_defs, def);
3296             if (global->vtype == TYPE_VECTOR)
3297                 gen_vector_defs(def, global->name);
3298             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3299                 gen_vector_defs(def, global->name);
3300             return true;
3301         }
3302     }
3303     if (defs_only)
3304         return true;
3305
3306     switch (global->vtype)
3307     {
3308     case TYPE_VOID:
3309         if (!strcmp(global->name, "end_sys_globals")) {
3310             /* TODO: remember this point... all the defs before this one
3311              * should be checksummed and added to progdefs.h when we generate it.
3312              */
3313         }
3314         else if (!strcmp(global->name, "end_sys_fields")) {
3315             /* TODO: same as above but for entity-fields rather than globsl
3316              */
3317         }
3318         else
3319             irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3320                       global->name);
3321         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3322          * the system fields actually go? Though the engine knows this anyway...
3323          * Maybe this could be an -foption
3324          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3325          */
3326         ir_value_code_setaddr(global, vec_size(code_globals));
3327         vec_push(code_globals, 0);
3328         /* Add the def */
3329         if (pushdef) vec_push(code_defs, def);
3330         return true;
3331     case TYPE_POINTER:
3332         if (pushdef) vec_push(code_defs, def);
3333         return gen_global_pointer(global);
3334     case TYPE_FIELD:
3335         if (pushdef) {
3336             vec_push(code_defs, def);
3337             if (global->fieldtype == TYPE_VECTOR)
3338                 gen_vector_defs(def, global->name);
3339         }
3340         return gen_global_field(global);
3341     case TYPE_ENTITY:
3342         /* fall through */
3343     case TYPE_FLOAT:
3344     {
3345         ir_value_code_setaddr(global, vec_size(code_globals));
3346         if (global->hasvalue) {
3347             iptr = (int32_t*)&global->constval.ivec[0];
3348             vec_push(code_globals, *iptr);
3349         } else {
3350             vec_push(code_globals, 0);
3351         }
3352         if (!islocal && global->cvq != CV_CONST)
3353             def.type |= DEF_SAVEGLOBAL;
3354         if (pushdef) vec_push(code_defs, def);
3355
3356         return global->code.globaladdr >= 0;
3357     }
3358     case TYPE_STRING:
3359     {
3360         ir_value_code_setaddr(global, vec_size(code_globals));
3361         if (global->hasvalue) {
3362             vec_push(code_globals, code_genstring(global->constval.vstring));
3363         } else {
3364             vec_push(code_globals, 0);
3365         }
3366         if (!islocal && global->cvq != CV_CONST)
3367             def.type |= DEF_SAVEGLOBAL;
3368         if (pushdef) vec_push(code_defs, def);
3369         return global->code.globaladdr >= 0;
3370     }
3371     case TYPE_VECTOR:
3372     {
3373         size_t d;
3374         ir_value_code_setaddr(global, vec_size(code_globals));
3375         if (global->hasvalue) {
3376             iptr = (int32_t*)&global->constval.ivec[0];
3377             vec_push(code_globals, iptr[0]);
3378             if (global->code.globaladdr < 0)
3379                 return false;
3380             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3381                 vec_push(code_globals, iptr[d]);
3382             }
3383         } else {
3384             vec_push(code_globals, 0);
3385             if (global->code.globaladdr < 0)
3386                 return false;
3387             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3388                 vec_push(code_globals, 0);
3389             }
3390         }
3391         if (!islocal && global->cvq != CV_CONST)
3392             def.type |= DEF_SAVEGLOBAL;
3393
3394         if (pushdef) {
3395             vec_push(code_defs, def);
3396             def.type &= ~DEF_SAVEGLOBAL;
3397             gen_vector_defs(def, global->name);
3398         }
3399         return global->code.globaladdr >= 0;
3400     }
3401     case TYPE_FUNCTION:
3402         ir_value_code_setaddr(global, vec_size(code_globals));
3403         if (!global->hasvalue) {
3404             vec_push(code_globals, 0);
3405             if (global->code.globaladdr < 0)
3406                 return false;
3407         } else {
3408             vec_push(code_globals, vec_size(code_functions));
3409             if (!gen_global_function(self, global))
3410                 return false;
3411         }
3412         if (!islocal && global->cvq != CV_CONST)
3413             def.type |= DEF_SAVEGLOBAL;
3414         if (pushdef) vec_push(code_defs, def);
3415         return true;
3416     case TYPE_VARIANT:
3417         /* assume biggest type */
3418             ir_value_code_setaddr(global, vec_size(code_globals));
3419             vec_push(code_globals, 0);
3420             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3421                 vec_push(code_globals, 0);
3422             return true;
3423     default:
3424         /* refuse to create 'void' type or any other fancy business. */
3425         irerror(global->context, "Invalid type for global variable `%s`: %s",
3426                 global->name, type_name[global->vtype]);
3427         return false;
3428     }
3429 }
3430
3431 static void ir_builder_prepare_field(ir_value *field)
3432 {
3433     field->code.fieldaddr = code_alloc_field(type_sizeof_[field->fieldtype]);
3434 }
3435
3436 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3437 {
3438     prog_section_def def;
3439     prog_section_field fld;
3440
3441     (void)self;
3442
3443     def.type   = (uint16_t)field->vtype;
3444     def.offset = (uint16_t)vec_size(code_globals);
3445
3446     /* create a global named the same as the field */
3447     if (opts.standard == COMPILER_GMQCC) {
3448         /* in our standard, the global gets a dot prefix */
3449         size_t len = strlen(field->name);
3450         char name[1024];
3451
3452         /* we really don't want to have to allocate this, and 1024
3453          * bytes is more than enough for a variable/field name
3454          */
3455         if (len+2 >= sizeof(name)) {
3456             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3457             return false;
3458         }
3459
3460         name[0] = '.';
3461         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3462         name[len+1] = 0;
3463
3464         def.name = code_genstring(name);
3465         fld.name = def.name + 1; /* we reuse that string table entry */
3466     } else {
3467         /* in plain QC, there cannot be a global with the same name,
3468          * and so we also name the global the same.
3469          * FIXME: fteqcc should create a global as well
3470          * check if it actually uses the same name. Probably does
3471          */
3472         def.name = code_genstring(field->name);
3473         fld.name = def.name;
3474     }
3475
3476     field->code.name = def.name;
3477
3478     vec_push(code_defs, def);
3479
3480     fld.type = field->fieldtype;
3481
3482     if (fld.type == TYPE_VOID) {
3483         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3484         return false;
3485     }
3486
3487     fld.offset = field->code.fieldaddr;
3488
3489     vec_push(code_fields, fld);
3490
3491     ir_value_code_setaddr(field, vec_size(code_globals));
3492     vec_push(code_globals, fld.offset);
3493     if (fld.type == TYPE_VECTOR) {
3494         vec_push(code_globals, fld.offset+1);
3495         vec_push(code_globals, fld.offset+2);
3496     }
3497
3498     if (field->fieldtype == TYPE_VECTOR) {
3499         gen_vector_defs(def, field->name);
3500         gen_vector_fields(fld, field->name);
3501     }
3502
3503     return field->code.globaladdr >= 0;
3504 }
3505
3506 bool ir_builder_generate(ir_builder *self, const char *filename)
3507 {
3508     prog_section_statement stmt;
3509     size_t i;
3510     char  *lnofile = NULL;
3511
3512     code_init();
3513
3514     for (i = 0; i < vec_size(self->fields); ++i)
3515     {
3516         ir_builder_prepare_field(self->fields[i]);
3517     }
3518
3519     for (i = 0; i < vec_size(self->globals); ++i)
3520     {
3521         if (!ir_builder_gen_global(self, self->globals[i], false, false)) {
3522             return false;
3523         }
3524         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3525             ir_function *func = self->globals[i]->constval.vfunc;
3526             if (func && self->max_locals < func->allocated_locals &&
3527                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3528             {
3529                 self->max_locals = func->allocated_locals;
3530             }
3531         }
3532     }
3533
3534     for (i = 0; i < vec_size(self->fields); ++i)
3535     {
3536         if (!ir_builder_gen_field(self, self->fields[i])) {
3537             return false;
3538         }
3539     }
3540
3541     /* generate common locals */
3542     self->first_common_local = vec_size(code_globals);
3543     for (i = 0; i < self->max_locals; ++i) {
3544         vec_push(code_globals, 0);
3545     }
3546
3547     /* generate function code */
3548     for (i = 0; i < vec_size(self->globals); ++i)
3549     {
3550         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3551             if (!gen_global_function_code(self, self->globals[i])) {
3552                 return false;
3553             }
3554         }
3555     }
3556
3557     if (vec_size(code_globals) >= 65536) {
3558         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3559         return false;
3560     }
3561
3562     /* DP errors if the last instruction is not an INSTR_DONE. */
3563     if (vec_last(code_statements).opcode != INSTR_DONE)
3564     {
3565         stmt.opcode = INSTR_DONE;
3566         stmt.o1.u1 = 0;
3567         stmt.o2.u1 = 0;
3568         stmt.o3.u1 = 0;
3569         code_push_statement(&stmt, vec_last(code_linenums));
3570     }
3571
3572     if (opts.pp_only)
3573         return true;
3574
3575     if (vec_size(code_statements) != vec_size(code_linenums)) {
3576         con_err("Linecounter wrong: %lu != %lu\n",
3577                 (unsigned long)vec_size(code_statements),
3578                 (unsigned long)vec_size(code_linenums));
3579     } else if (OPTS_FLAG(LNO)) {
3580         char *dot;
3581         size_t filelen = strlen(filename);
3582
3583         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3584         dot = strrchr(lnofile, '.');
3585         if (!dot) {
3586             vec_pop(lnofile);
3587         } else {
3588             vec_shrinkto(lnofile, dot - lnofile);
3589         }
3590         memcpy(vec_add(lnofile, 5), ".lno", 5);
3591     }
3592
3593     if (!opts.quiet) {
3594         if (lnofile)
3595             con_out("writing '%s' and '%s'...\n", filename, lnofile);
3596         else
3597             con_out("writing '%s'\n", filename);
3598     }
3599     if (!code_write(filename, lnofile)) {
3600         vec_free(lnofile);
3601         return false;
3602     }
3603     vec_free(lnofile);
3604     return true;
3605 }
3606
3607 /***********************************************************************
3608  *IR DEBUG Dump functions...
3609  */
3610
3611 #define IND_BUFSZ 1024
3612
3613 #ifdef _MSC_VER
3614 #   define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE)
3615 #endif
3616
3617 const char *qc_opname(int op)
3618 {
3619     if (op < 0) return "<INVALID>";
3620     if (op < (int)( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
3621         return asm_instr[op].m;
3622     switch (op) {
3623         case VINSTR_PHI:  return "PHI";
3624         case VINSTR_JUMP: return "JUMP";
3625         case VINSTR_COND: return "COND";
3626         default:          return "<UNK>";
3627     }
3628 }
3629
3630 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
3631 {
3632     size_t i;
3633     char indent[IND_BUFSZ];
3634     indent[0] = '\t';
3635     indent[1] = 0;
3636
3637     oprintf("module %s\n", b->name);
3638     for (i = 0; i < vec_size(b->globals); ++i)
3639     {
3640         oprintf("global ");
3641         if (b->globals[i]->hasvalue)
3642             oprintf("%s = ", b->globals[i]->name);
3643         ir_value_dump(b->globals[i], oprintf);
3644         oprintf("\n");
3645     }
3646     for (i = 0; i < vec_size(b->functions); ++i)
3647         ir_function_dump(b->functions[i], indent, oprintf);
3648     oprintf("endmodule %s\n", b->name);
3649 }
3650
3651 void ir_function_dump(ir_function *f, char *ind,
3652                       int (*oprintf)(const char*, ...))
3653 {
3654     size_t i;
3655     if (f->builtin != 0) {
3656         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
3657         return;
3658     }
3659     oprintf("%sfunction %s\n", ind, f->name);
3660     strncat(ind, "\t", IND_BUFSZ);
3661     if (vec_size(f->locals))
3662     {
3663         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
3664         for (i = 0; i < vec_size(f->locals); ++i) {
3665             oprintf("%s\t", ind);
3666             ir_value_dump(f->locals[i], oprintf);
3667             oprintf("\n");
3668         }
3669     }
3670     oprintf("%sliferanges:\n", ind);
3671     for (i = 0; i < vec_size(f->locals); ++i) {
3672         size_t l, m;
3673         ir_value *v = f->locals[i];
3674         oprintf("%s\t%s: %s@%i ", ind, v->name, (v->unique_life ? "unique " : ""), (int)v->code.local);
3675         for (l = 0; l < vec_size(v->life); ++l) {
3676             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3677         }
3678         oprintf("\n");
3679         for (m = 0; m < 3; ++m) {
3680             ir_value *vm = v->members[m];
3681             if (!vm)
3682                 continue;
3683             oprintf("%s\t%s: %s@%i ", ind, vm->name, (vm->unique_life ? "unique " : ""), (int)vm->code.local);
3684             for (l = 0; l < vec_size(vm->life); ++l) {
3685                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3686             }
3687             oprintf("\n");
3688         }
3689     }
3690     for (i = 0; i < vec_size(f->values); ++i) {
3691         size_t l;
3692         ir_value *v = f->values[i];
3693         oprintf("%s\t%s: @%i ", ind, v->name, (int)v->code.local);
3694         for (l = 0; l < vec_size(v->life); ++l) {
3695             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3696         }
3697         oprintf("\n");
3698     }
3699     if (vec_size(f->blocks))
3700     {
3701         oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
3702         for (i = 0; i < vec_size(f->blocks); ++i) {
3703             if (f->blocks[i]->run_id != f->run_id) {
3704                 oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
3705             }
3706             ir_block_dump(f->blocks[i], ind, oprintf);
3707         }
3708
3709     }
3710     ind[strlen(ind)-1] = 0;
3711     oprintf("%sendfunction %s\n", ind, f->name);
3712 }
3713
3714 void ir_block_dump(ir_block* b, char *ind,
3715                    int (*oprintf)(const char*, ...))
3716 {
3717     size_t i;
3718     oprintf("%s:%s\n", ind, b->label);
3719     strncat(ind, "\t", IND_BUFSZ);
3720
3721     for (i = 0; i < vec_size(b->instr); ++i)
3722         ir_instr_dump(b->instr[i], ind, oprintf);
3723     ind[strlen(ind)-1] = 0;
3724 }
3725
3726 void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
3727 {
3728     size_t i;
3729     oprintf("%s <- phi ", in->_ops[0]->name);
3730     for (i = 0; i < vec_size(in->phi); ++i)
3731     {
3732         oprintf("([%s] : %s) ", in->phi[i].from->label,
3733                                 in->phi[i].value->name);
3734     }
3735     oprintf("\n");
3736 }
3737
3738 void ir_instr_dump(ir_instr *in, char *ind,
3739                        int (*oprintf)(const char*, ...))
3740 {
3741     size_t i;
3742     const char *comma = NULL;
3743
3744     oprintf("%s (%i) ", ind, (int)in->eid);
3745
3746     if (in->opcode == VINSTR_PHI) {
3747         dump_phi(in, oprintf);
3748         return;
3749     }
3750
3751     strncat(ind, "\t", IND_BUFSZ);
3752
3753     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
3754         ir_value_dump(in->_ops[0], oprintf);
3755         if (in->_ops[1] || in->_ops[2])
3756             oprintf(" <- ");
3757     }
3758     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
3759         oprintf("CALL%i\t", vec_size(in->params));
3760     } else
3761         oprintf("%s\t", qc_opname(in->opcode));
3762
3763     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
3764         ir_value_dump(in->_ops[0], oprintf);
3765         comma = ",\t";
3766     }
3767     else
3768     {
3769         for (i = 1; i != 3; ++i) {
3770             if (in->_ops[i]) {
3771                 if (comma)
3772                     oprintf(comma);
3773                 ir_value_dump(in->_ops[i], oprintf);
3774                 comma = ",\t";
3775             }
3776         }
3777     }
3778     if (in->bops[0]) {
3779         if (comma)
3780             oprintf(comma);
3781         oprintf("[%s]", in->bops[0]->label);
3782         comma = ",\t";
3783     }
3784     if (in->bops[1])
3785         oprintf("%s[%s]", comma, in->bops[1]->label);
3786     if (vec_size(in->params)) {
3787         oprintf("\tparams: ");
3788         for (i = 0; i != vec_size(in->params); ++i) {
3789             oprintf("%s, ", in->params[i]->name);
3790         }
3791     }
3792     oprintf("\n");
3793     ind[strlen(ind)-1] = 0;
3794 }
3795
3796 void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
3797 {
3798     oprintf("\"");
3799     for (; *str; ++str) {
3800         switch (*str) {
3801             case '\n': oprintf("\\n"); break;
3802             case '\r': oprintf("\\r"); break;
3803             case '\t': oprintf("\\t"); break;
3804             case '\v': oprintf("\\v"); break;
3805             case '\f': oprintf("\\f"); break;
3806             case '\b': oprintf("\\b"); break;
3807             case '\a': oprintf("\\a"); break;
3808             case '\\': oprintf("\\\\"); break;
3809             case '"': oprintf("\\\""); break;
3810             default: oprintf("%c", *str); break;
3811         }
3812     }
3813     oprintf("\"");
3814 }
3815
3816 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
3817 {
3818     if (v->hasvalue) {
3819         switch (v->vtype) {
3820             default:
3821             case TYPE_VOID:
3822                 oprintf("(void)");
3823                 break;
3824             case TYPE_FUNCTION:
3825                 oprintf("fn:%s", v->name);
3826                 break;
3827             case TYPE_FLOAT:
3828                 oprintf("%g", v->constval.vfloat);
3829                 break;
3830             case TYPE_VECTOR:
3831                 oprintf("'%g %g %g'",
3832                         v->constval.vvec.x,
3833                         v->constval.vvec.y,
3834                         v->constval.vvec.z);
3835                 break;
3836             case TYPE_ENTITY:
3837                 oprintf("(entity)");
3838                 break;
3839             case TYPE_STRING:
3840                 ir_value_dump_string(v->constval.vstring, oprintf);
3841                 break;
3842 #if 0
3843             case TYPE_INTEGER:
3844                 oprintf("%i", v->constval.vint);
3845                 break;
3846 #endif
3847             case TYPE_POINTER:
3848                 oprintf("&%s",
3849                     v->constval.vpointer->name);
3850                 break;
3851         }
3852     } else {
3853         oprintf("%s", v->name);
3854     }
3855 }
3856
3857 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
3858 {
3859     size_t i;
3860     oprintf("Life of %12s:", self->name);
3861     for (i = 0; i < vec_size(self->life); ++i)
3862     {
3863         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
3864     }
3865 }