]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
8aef17ff6258743b328c0f1f92e615cbcf4489ca
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdlib.h>
24 #include <string.h>
25 #include "gmqcc.h"
26 #include "ir.h"
27
28 /***********************************************************************
29  * Type sizes used at multiple points in the IR codegen
30  */
31
32 const char *type_name[TYPE_COUNT] = {
33     "void",
34     "string",
35     "float",
36     "vector",
37     "entity",
38     "field",
39     "function",
40     "pointer",
41     "integer",
42     "variant",
43     "struct",
44     "union",
45     "array",
46
47     "nil",
48     "<no-expression>"
49 };
50
51 size_t type_sizeof_[TYPE_COUNT] = {
52     1, /* TYPE_VOID     */
53     1, /* TYPE_STRING   */
54     1, /* TYPE_FLOAT    */
55     3, /* TYPE_VECTOR   */
56     1, /* TYPE_ENTITY   */
57     1, /* TYPE_FIELD    */
58     1, /* TYPE_FUNCTION */
59     1, /* TYPE_POINTER  */
60     1, /* TYPE_INTEGER  */
61     3, /* TYPE_VARIANT  */
62     0, /* TYPE_STRUCT   */
63     0, /* TYPE_UNION    */
64     0, /* TYPE_ARRAY    */
65     0, /* TYPE_NIL      */
66     0, /* TYPE_NOESPR   */
67 };
68
69 uint16_t type_store_instr[TYPE_COUNT] = {
70     INSTR_STORE_F, /* should use I when having integer support */
71     INSTR_STORE_S,
72     INSTR_STORE_F,
73     INSTR_STORE_V,
74     INSTR_STORE_ENT,
75     INSTR_STORE_FLD,
76     INSTR_STORE_FNC,
77     INSTR_STORE_ENT, /* should use I */
78 #if 0
79     INSTR_STORE_I, /* integer type */
80 #else
81     INSTR_STORE_F,
82 #endif
83
84     INSTR_STORE_V, /* variant, should never be accessed */
85
86     AINSTR_END, /* struct */
87     AINSTR_END, /* union  */
88     AINSTR_END, /* array  */
89     AINSTR_END, /* nil    */
90     AINSTR_END, /* noexpr */
91 };
92
93 uint16_t field_store_instr[TYPE_COUNT] = {
94     INSTR_STORE_FLD,
95     INSTR_STORE_FLD,
96     INSTR_STORE_FLD,
97     INSTR_STORE_V,
98     INSTR_STORE_FLD,
99     INSTR_STORE_FLD,
100     INSTR_STORE_FLD,
101     INSTR_STORE_FLD,
102 #if 0
103     INSTR_STORE_FLD, /* integer type */
104 #else
105     INSTR_STORE_FLD,
106 #endif
107
108     INSTR_STORE_V, /* variant, should never be accessed */
109
110     AINSTR_END, /* struct */
111     AINSTR_END, /* union  */
112     AINSTR_END, /* array  */
113     AINSTR_END, /* nil    */
114     AINSTR_END, /* noexpr */
115 };
116
117 uint16_t type_storep_instr[TYPE_COUNT] = {
118     INSTR_STOREP_F, /* should use I when having integer support */
119     INSTR_STOREP_S,
120     INSTR_STOREP_F,
121     INSTR_STOREP_V,
122     INSTR_STOREP_ENT,
123     INSTR_STOREP_FLD,
124     INSTR_STOREP_FNC,
125     INSTR_STOREP_ENT, /* should use I */
126 #if 0
127     INSTR_STOREP_ENT, /* integer type */
128 #else
129     INSTR_STOREP_F,
130 #endif
131
132     INSTR_STOREP_V, /* variant, should never be accessed */
133
134     AINSTR_END, /* struct */
135     AINSTR_END, /* union  */
136     AINSTR_END, /* array  */
137     AINSTR_END, /* nil    */
138     AINSTR_END, /* noexpr */
139 };
140
141 uint16_t type_eq_instr[TYPE_COUNT] = {
142     INSTR_EQ_F, /* should use I when having integer support */
143     INSTR_EQ_S,
144     INSTR_EQ_F,
145     INSTR_EQ_V,
146     INSTR_EQ_E,
147     INSTR_EQ_E, /* FLD has no comparison */
148     INSTR_EQ_FNC,
149     INSTR_EQ_E, /* should use I */
150 #if 0
151     INSTR_EQ_I,
152 #else
153     INSTR_EQ_F,
154 #endif
155
156     INSTR_EQ_V, /* variant, should never be accessed */
157
158     AINSTR_END, /* struct */
159     AINSTR_END, /* union  */
160     AINSTR_END, /* array  */
161     AINSTR_END, /* nil    */
162     AINSTR_END, /* noexpr */
163 };
164
165 uint16_t type_ne_instr[TYPE_COUNT] = {
166     INSTR_NE_F, /* should use I when having integer support */
167     INSTR_NE_S,
168     INSTR_NE_F,
169     INSTR_NE_V,
170     INSTR_NE_E,
171     INSTR_NE_E, /* FLD has no comparison */
172     INSTR_NE_FNC,
173     INSTR_NE_E, /* should use I */
174 #if 0
175     INSTR_NE_I,
176 #else
177     INSTR_NE_F,
178 #endif
179
180     INSTR_NE_V, /* variant, should never be accessed */
181
182     AINSTR_END, /* struct */
183     AINSTR_END, /* union  */
184     AINSTR_END, /* array  */
185     AINSTR_END, /* nil    */
186     AINSTR_END, /* noexpr */
187 };
188
189 uint16_t type_not_instr[TYPE_COUNT] = {
190     INSTR_NOT_F, /* should use I when having integer support */
191     INSTR_NOT_S,
192     INSTR_NOT_F,
193     INSTR_NOT_V,
194     INSTR_NOT_ENT,
195     INSTR_NOT_ENT,
196     INSTR_NOT_FNC,
197     INSTR_NOT_ENT, /* should use I */
198 #if 0
199     INSTR_NOT_I, /* integer type */
200 #else
201     INSTR_NOT_F,
202 #endif
203
204     INSTR_NOT_V, /* variant, should never be accessed */
205
206     AINSTR_END, /* struct */
207     AINSTR_END, /* union  */
208     AINSTR_END, /* array  */
209     AINSTR_END, /* nil    */
210     AINSTR_END, /* noexpr */
211 };
212
213 /* protos */
214 static ir_value* ir_gen_extparam_proto(ir_builder *ir);
215 static void      ir_gen_extparam      (ir_builder *ir);
216
217 /* error functions */
218
219 static void irerror(lex_ctx ctx, const char *msg, ...)
220 {
221     va_list ap;
222     va_start(ap, msg);
223     con_cvprintmsg((void*)&ctx, LVL_ERROR, "internal error", msg, ap);
224     va_end(ap);
225 }
226
227 static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...)
228 {
229     bool    r;
230     va_list ap;
231     va_start(ap, fmt);
232     r = vcompile_warning(ctx, warntype, fmt, ap);
233     va_end(ap);
234     return r;
235 }
236
237 /***********************************************************************
238  * Vector utility functions
239  */
240
241 bool GMQCC_WARN vec_ir_value_find(ir_value **vec, const ir_value *what, size_t *idx)
242 {
243     size_t i;
244     size_t len = vec_size(vec);
245     for (i = 0; i < len; ++i) {
246         if (vec[i] == what) {
247             if (idx) *idx = i;
248             return true;
249         }
250     }
251     return false;
252 }
253
254 bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
255 {
256     size_t i;
257     size_t len = vec_size(vec);
258     for (i = 0; i < len; ++i) {
259         if (vec[i] == what) {
260             if (idx) *idx = i;
261             return true;
262         }
263     }
264     return false;
265 }
266
267 bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
268 {
269     size_t i;
270     size_t len = vec_size(vec);
271     for (i = 0; i < len; ++i) {
272         if (vec[i] == what) {
273             if (idx) *idx = i;
274             return true;
275         }
276     }
277     return false;
278 }
279
280 /***********************************************************************
281  * IR Builder
282  */
283
284 static void ir_block_delete_quick(ir_block* self);
285 static void ir_instr_delete_quick(ir_instr *self);
286 static void ir_function_delete_quick(ir_function *self);
287
288 ir_builder* ir_builder_new(const char *modulename)
289 {
290     ir_builder* self;
291
292     self = (ir_builder*)mem_a(sizeof(*self));
293     if (!self)
294         return NULL;
295
296     self->functions   = NULL;
297     self->globals     = NULL;
298     self->fields      = NULL;
299     self->filenames   = NULL;
300     self->filestrings = NULL;
301     self->htglobals   = util_htnew(IR_HT_SIZE);
302     self->htfields    = util_htnew(IR_HT_SIZE);
303     self->htfunctions = util_htnew(IR_HT_SIZE);
304
305     self->extparams       = NULL;
306     self->extparam_protos = NULL;
307
308     self->first_common_globaltemp = 0;
309     self->max_globaltemps         = 0;
310     self->first_common_local      = 0;
311     self->max_locals              = 0;
312
313     self->str_immediate = 0;
314     self->name = NULL;
315     if (!ir_builder_set_name(self, modulename)) {
316         mem_d(self);
317         return NULL;
318     }
319
320     self->nil = ir_value_var("nil", store_value, TYPE_NIL);
321     self->nil->cvq = CV_CONST;
322
323     return self;
324 }
325
326 void ir_builder_delete(ir_builder* self)
327 {
328     size_t i;
329     util_htdel(self->htglobals);
330     util_htdel(self->htfields);
331     util_htdel(self->htfunctions);
332     mem_d((void*)self->name);
333     for (i = 0; i != vec_size(self->functions); ++i) {
334         ir_function_delete_quick(self->functions[i]);
335     }
336     vec_free(self->functions);
337     for (i = 0; i != vec_size(self->extparams); ++i) {
338         ir_value_delete(self->extparams[i]);
339     }
340     vec_free(self->extparams);
341     for (i = 0; i != vec_size(self->globals); ++i) {
342         ir_value_delete(self->globals[i]);
343     }
344     vec_free(self->globals);
345     for (i = 0; i != vec_size(self->fields); ++i) {
346         ir_value_delete(self->fields[i]);
347     }
348     ir_value_delete(self->nil);
349     vec_free(self->fields);
350     vec_free(self->filenames);
351     vec_free(self->filestrings);
352     mem_d(self);
353 }
354
355 bool ir_builder_set_name(ir_builder *self, const char *name)
356 {
357     if (self->name)
358         mem_d((void*)self->name);
359     self->name = util_strdup(name);
360     return !!self->name;
361 }
362
363 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
364 {
365     return (ir_function*)util_htget(self->htfunctions, name);
366 }
367
368 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
369 {
370     ir_function *fn = ir_builder_get_function(self, name);
371     if (fn) {
372         return NULL;
373     }
374
375     fn = ir_function_new(self, outtype);
376     if (!ir_function_set_name(fn, name))
377     {
378         ir_function_delete(fn);
379         return NULL;
380     }
381     vec_push(self->functions, fn);
382     util_htset(self->htfunctions, name, fn);
383
384     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
385     if (!fn->value) {
386         ir_function_delete(fn);
387         return NULL;
388     }
389
390     fn->value->hasvalue = true;
391     fn->value->outtype = outtype;
392     fn->value->constval.vfunc = fn;
393     fn->value->context = fn->context;
394
395     return fn;
396 }
397
398 ir_value* ir_builder_get_global(ir_builder *self, const char *name)
399 {
400     return (ir_value*)util_htget(self->htglobals, name);
401 }
402
403 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
404 {
405     ir_value *ve;
406
407     if (name && name[0] != '#')
408     {
409         ve = ir_builder_get_global(self, name);
410         if (ve) {
411             return NULL;
412         }
413     }
414
415     ve = ir_value_var(name, store_global, vtype);
416     vec_push(self->globals, ve);
417     util_htset(self->htglobals, name, ve);
418     return ve;
419 }
420
421 ir_value* ir_builder_get_field(ir_builder *self, const char *name)
422 {
423     return (ir_value*)util_htget(self->htfields, name);
424 }
425
426
427 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
428 {
429     ir_value *ve = ir_builder_get_field(self, name);
430     if (ve) {
431         return NULL;
432     }
433
434     ve = ir_value_var(name, store_global, TYPE_FIELD);
435     ve->fieldtype = vtype;
436     vec_push(self->fields, ve);
437     util_htset(self->htfields, name, ve);
438     return ve;
439 }
440
441 /***********************************************************************
442  *IR Function
443  */
444
445 bool ir_function_naive_phi(ir_function*);
446 void ir_function_enumerate(ir_function*);
447 bool ir_function_calculate_liferanges(ir_function*);
448 bool ir_function_allocate_locals(ir_function*);
449
450 ir_function* ir_function_new(ir_builder* owner, int outtype)
451 {
452     ir_function *self;
453     self = (ir_function*)mem_a(sizeof(*self));
454
455     if (!self)
456         return NULL;
457
458     memset(self, 0, sizeof(*self));
459
460     self->name = NULL;
461     if (!ir_function_set_name(self, "<@unnamed>")) {
462         mem_d(self);
463         return NULL;
464     }
465     self->flags = 0;
466
467     self->owner = owner;
468     self->context.file = "<@no context>";
469     self->context.line = 0;
470     self->outtype = outtype;
471     self->value = NULL;
472     self->builtin = 0;
473
474     self->params = NULL;
475     self->blocks = NULL;
476     self->values = NULL;
477     self->locals = NULL;
478
479     self->code_function_def = -1;
480     self->allocated_locals = 0;
481     self->globaltemps      = 0;
482
483     self->run_id = 0;
484     return self;
485 }
486
487 bool ir_function_set_name(ir_function *self, const char *name)
488 {
489     if (self->name)
490         mem_d((void*)self->name);
491     self->name = util_strdup(name);
492     return !!self->name;
493 }
494
495 static void ir_function_delete_quick(ir_function *self)
496 {
497     size_t i;
498     mem_d((void*)self->name);
499
500     for (i = 0; i != vec_size(self->blocks); ++i)
501         ir_block_delete_quick(self->blocks[i]);
502     vec_free(self->blocks);
503
504     vec_free(self->params);
505
506     for (i = 0; i != vec_size(self->values); ++i)
507         ir_value_delete(self->values[i]);
508     vec_free(self->values);
509
510     for (i = 0; i != vec_size(self->locals); ++i)
511         ir_value_delete(self->locals[i]);
512     vec_free(self->locals);
513
514     /* self->value is deleted by the builder */
515
516     mem_d(self);
517 }
518
519 void ir_function_delete(ir_function *self)
520 {
521     size_t i;
522     mem_d((void*)self->name);
523
524     for (i = 0; i != vec_size(self->blocks); ++i)
525         ir_block_delete(self->blocks[i]);
526     vec_free(self->blocks);
527
528     vec_free(self->params);
529
530     for (i = 0; i != vec_size(self->values); ++i)
531         ir_value_delete(self->values[i]);
532     vec_free(self->values);
533
534     for (i = 0; i != vec_size(self->locals); ++i)
535         ir_value_delete(self->locals[i]);
536     vec_free(self->locals);
537
538     /* self->value is deleted by the builder */
539
540     mem_d(self);
541 }
542
543 void ir_function_collect_value(ir_function *self, ir_value *v)
544 {
545     vec_push(self->values, v);
546 }
547
548 ir_block* ir_function_create_block(lex_ctx ctx, ir_function *self, const char *label)
549 {
550     ir_block* bn = ir_block_new(self, label);
551     bn->context = ctx;
552     vec_push(self->blocks, bn);
553     return bn;
554 }
555
556 static bool instr_is_operation(uint16_t op)
557 {
558     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
559              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
560              (op == INSTR_ADDRESS) ||
561              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
562              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
563              (op >= INSTR_CALL0  && op <= INSTR_CALL8) );
564 }
565
566 bool ir_function_pass_peephole(ir_function *self)
567 {
568     size_t b;
569
570     for (b = 0; b < vec_size(self->blocks); ++b) {
571         size_t    i;
572         ir_block *block = self->blocks[b];
573
574         for (i = 0; i < vec_size(block->instr); ++i) {
575             ir_instr *inst;
576             inst = block->instr[i];
577
578             if (i >= 1 &&
579                 (inst->opcode >= INSTR_STORE_F &&
580                  inst->opcode <= INSTR_STORE_FNC))
581             {
582                 ir_instr *store;
583                 ir_instr *oper;
584                 ir_value *value;
585
586                 store = inst;
587
588                 oper  = block->instr[i-1];
589                 if (!instr_is_operation(oper->opcode))
590                     continue;
591
592                 value = oper->_ops[0];
593
594                 /* only do it for SSA values */
595                 if (value->store != store_value)
596                     continue;
597
598                 /* don't optimize out the temp if it's used later again */
599                 if (vec_size(value->reads) != 1)
600                     continue;
601
602                 /* The very next store must use this value */
603                 if (value->reads[0] != store)
604                     continue;
605
606                 /* And of course the store must _read_ from it, so it's in
607                  * OP 1 */
608                 if (store->_ops[1] != value)
609                     continue;
610
611                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
612                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
613
614                 vec_remove(block->instr, i, 1);
615                 ir_instr_delete(store);
616             }
617             else if (inst->opcode == VINSTR_COND)
618             {
619                 /* COND on a value resulting from a NOT could
620                  * remove the NOT and swap its operands
621                  */
622                 while (true) {
623                     ir_block *tmp;
624                     size_t    inotid;
625                     ir_instr *inot;
626                     ir_value *value;
627                     value = inst->_ops[0];
628
629                     if (value->store != store_value ||
630                         vec_size(value->reads) != 1 ||
631                         value->reads[0] != inst)
632                     {
633                         break;
634                     }
635
636                     inot = value->writes[0];
637                     if (inot->_ops[0] != value ||
638                         inot->opcode < INSTR_NOT_F ||
639                         inot->opcode > INSTR_NOT_FNC ||
640                         inot->opcode == INSTR_NOT_V || /* can't do these */
641                         inot->opcode == INSTR_NOT_S)
642                     {
643                         break;
644                     }
645
646                     /* count */
647                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
648                     /* change operand */
649                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
650                     /* remove NOT */
651                     tmp = inot->owner;
652                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
653                         if (tmp->instr[inotid] == inot)
654                             break;
655                     }
656                     if (inotid >= vec_size(tmp->instr)) {
657                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
658                         return false;
659                     }
660                     vec_remove(tmp->instr, inotid, 1);
661                     ir_instr_delete(inot);
662                     /* swap ontrue/onfalse */
663                     tmp = inst->bops[0];
664                     inst->bops[0] = inst->bops[1];
665                     inst->bops[1] = tmp;
666                 }
667                 continue;
668             }
669         }
670     }
671
672     return true;
673 }
674
675 bool ir_function_pass_tailrecursion(ir_function *self)
676 {
677     size_t b, p;
678
679     for (b = 0; b < vec_size(self->blocks); ++b) {
680         ir_value *funcval;
681         ir_instr *ret, *call, *store = NULL;
682         ir_block *block = self->blocks[b];
683
684         if (!block->final || vec_size(block->instr) < 2)
685             continue;
686
687         ret = block->instr[vec_size(block->instr)-1];
688         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
689             continue;
690
691         call = block->instr[vec_size(block->instr)-2];
692         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
693             /* account for the unoptimized
694              * CALL
695              * STORE %return, %tmp
696              * RETURN %tmp
697              * version
698              */
699             if (vec_size(block->instr) < 3)
700                 continue;
701
702             store = call;
703             call = block->instr[vec_size(block->instr)-3];
704         }
705
706         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
707             continue;
708
709         if (store) {
710             /* optimize out the STORE */
711             if (ret->_ops[0]   &&
712                 ret->_ops[0]   == store->_ops[0] &&
713                 store->_ops[1] == call->_ops[0])
714             {
715                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
716                 call->_ops[0] = store->_ops[0];
717                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
718                 ir_instr_delete(store);
719             }
720             else
721                 continue;
722         }
723
724         if (!call->_ops[0])
725             continue;
726
727         funcval = call->_ops[1];
728         if (!funcval)
729             continue;
730         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
731             continue;
732
733         /* now we have a CALL and a RET, check if it's a tailcall */
734         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
735             continue;
736
737         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
738         vec_shrinkby(block->instr, 2);
739
740         block->final = false; /* open it back up */
741
742         /* emite parameter-stores */
743         for (p = 0; p < vec_size(call->params); ++p) {
744             /* assert(call->params_count <= self->locals_count); */
745             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
746                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
747                 return false;
748             }
749         }
750         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
751             irerror(call->context, "failed to create tailcall jump");
752             return false;
753         }
754
755         ir_instr_delete(call);
756         ir_instr_delete(ret);
757     }
758
759     return true;
760 }
761
762 bool ir_function_finalize(ir_function *self)
763 {
764     size_t i;
765
766     if (self->builtin)
767         return true;
768
769     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
770         if (!ir_function_pass_peephole(self)) {
771             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
772             return false;
773         }
774     }
775
776     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
777         if (!ir_function_pass_tailrecursion(self)) {
778             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
779             return false;
780         }
781     }
782
783     if (!ir_function_naive_phi(self)) {
784         irerror(self->context, "internal error: ir_function_naive_phi failed");
785         return false;
786     }
787
788     for (i = 0; i < vec_size(self->locals); ++i) {
789         ir_value *v = self->locals[i];
790         if (v->vtype == TYPE_VECTOR ||
791             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
792         {
793             ir_value_vector_member(v, 0);
794             ir_value_vector_member(v, 1);
795             ir_value_vector_member(v, 2);
796         }
797     }
798     for (i = 0; i < vec_size(self->values); ++i) {
799         ir_value *v = self->values[i];
800         if (v->vtype == TYPE_VECTOR ||
801             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
802         {
803             ir_value_vector_member(v, 0);
804             ir_value_vector_member(v, 1);
805             ir_value_vector_member(v, 2);
806         }
807     }
808
809     ir_function_enumerate(self);
810
811     if (!ir_function_calculate_liferanges(self))
812         return false;
813     if (!ir_function_allocate_locals(self))
814         return false;
815     return true;
816 }
817
818 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
819 {
820     ir_value *ve;
821
822     if (param &&
823         vec_size(self->locals) &&
824         self->locals[vec_size(self->locals)-1]->store != store_param) {
825         irerror(self->context, "cannot add parameters after adding locals");
826         return NULL;
827     }
828
829     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
830     if (param)
831         ve->locked = true;
832     vec_push(self->locals, ve);
833     return ve;
834 }
835
836 /***********************************************************************
837  *IR Block
838  */
839
840 ir_block* ir_block_new(ir_function* owner, const char *name)
841 {
842     ir_block *self;
843     self = (ir_block*)mem_a(sizeof(*self));
844     if (!self)
845         return NULL;
846
847     memset(self, 0, sizeof(*self));
848
849     self->label = NULL;
850     if (name && !ir_block_set_label(self, name)) {
851         mem_d(self);
852         return NULL;
853     }
854     self->owner = owner;
855     self->context.file = "<@no context>";
856     self->context.line = 0;
857     self->final = false;
858
859     self->instr   = NULL;
860     self->entries = NULL;
861     self->exits   = NULL;
862
863     self->eid = 0;
864     self->is_return = false;
865     self->run_id = 0;
866
867     self->living = NULL;
868
869     self->generated = false;
870
871     return self;
872 }
873
874 static void ir_block_delete_quick(ir_block* self)
875 {
876     size_t i;
877     if (self->label) mem_d(self->label);
878     for (i = 0; i != vec_size(self->instr); ++i)
879         ir_instr_delete_quick(self->instr[i]);
880     vec_free(self->instr);
881     vec_free(self->entries);
882     vec_free(self->exits);
883     vec_free(self->living);
884     mem_d(self);
885 }
886
887 void ir_block_delete(ir_block* self)
888 {
889     size_t i;
890     if (self->label) mem_d(self->label);
891     for (i = 0; i != vec_size(self->instr); ++i)
892         ir_instr_delete(self->instr[i]);
893     vec_free(self->instr);
894     vec_free(self->entries);
895     vec_free(self->exits);
896     vec_free(self->living);
897     mem_d(self);
898 }
899
900 bool ir_block_set_label(ir_block *self, const char *name)
901 {
902     if (self->label)
903         mem_d((void*)self->label);
904     self->label = util_strdup(name);
905     return !!self->label;
906 }
907
908 /***********************************************************************
909  *IR Instructions
910  */
911
912 ir_instr* ir_instr_new(lex_ctx ctx, ir_block* owner, int op)
913 {
914     ir_instr *self;
915     self = (ir_instr*)mem_a(sizeof(*self));
916     if (!self)
917         return NULL;
918
919     self->owner = owner;
920     self->context = ctx;
921     self->opcode = op;
922     self->_ops[0] = NULL;
923     self->_ops[1] = NULL;
924     self->_ops[2] = NULL;
925     self->bops[0] = NULL;
926     self->bops[1] = NULL;
927
928     self->phi    = NULL;
929     self->params = NULL;
930
931     self->eid = 0;
932
933     self->likely = true;
934     return self;
935 }
936
937 static void ir_instr_delete_quick(ir_instr *self)
938 {
939     vec_free(self->phi);
940     vec_free(self->params);
941     mem_d(self);
942 }
943
944 void ir_instr_delete(ir_instr *self)
945 {
946     size_t i;
947     /* The following calls can only delete from
948      * vectors, we still want to delete this instruction
949      * so ignore the return value. Since with the warn_unused_result attribute
950      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
951      * I have to improvise here and use if(foo());
952      */
953     for (i = 0; i < vec_size(self->phi); ++i) {
954         size_t idx;
955         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
956             vec_remove(self->phi[i].value->writes, idx, 1);
957         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
958             vec_remove(self->phi[i].value->reads, idx, 1);
959     }
960     vec_free(self->phi);
961     for (i = 0; i < vec_size(self->params); ++i) {
962         size_t idx;
963         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
964             vec_remove(self->params[i]->writes, idx, 1);
965         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
966             vec_remove(self->params[i]->reads, idx, 1);
967     }
968     vec_free(self->params);
969     (void)!ir_instr_op(self, 0, NULL, false);
970     (void)!ir_instr_op(self, 1, NULL, false);
971     (void)!ir_instr_op(self, 2, NULL, false);
972     mem_d(self);
973 }
974
975 bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
976 {
977     if (self->_ops[op]) {
978         size_t idx;
979         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
980             vec_remove(self->_ops[op]->writes, idx, 1);
981         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
982             vec_remove(self->_ops[op]->reads, idx, 1);
983     }
984     if (v) {
985         if (writing)
986             vec_push(v->writes, self);
987         else
988             vec_push(v->reads, self);
989     }
990     self->_ops[op] = v;
991     return true;
992 }
993
994 /***********************************************************************
995  *IR Value
996  */
997
998 void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
999 {
1000     self->code.globaladdr = gaddr;
1001     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
1002     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
1003     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
1004 }
1005
1006 int32_t ir_value_code_addr(const ir_value *self)
1007 {
1008     if (self->store == store_return)
1009         return OFS_RETURN + self->code.addroffset;
1010     return self->code.globaladdr + self->code.addroffset;
1011 }
1012
1013 ir_value* ir_value_var(const char *name, int storetype, int vtype)
1014 {
1015     ir_value *self;
1016     self = (ir_value*)mem_a(sizeof(*self));
1017     self->vtype = vtype;
1018     self->fieldtype = TYPE_VOID;
1019     self->outtype = TYPE_VOID;
1020     self->store = storetype;
1021
1022     self->reads  = NULL;
1023     self->writes = NULL;
1024
1025     self->cvq          = CV_NONE;
1026     self->hasvalue     = false;
1027     self->context.file = "<@no context>";
1028     self->context.line = 0;
1029     self->name = NULL;
1030     if (name && !ir_value_set_name(self, name)) {
1031         irerror(self->context, "out of memory");
1032         mem_d(self);
1033         return NULL;
1034     }
1035
1036     memset(&self->constval, 0, sizeof(self->constval));
1037     memset(&self->code,     0, sizeof(self->code));
1038
1039     self->members[0] = NULL;
1040     self->members[1] = NULL;
1041     self->members[2] = NULL;
1042     self->memberof = NULL;
1043
1044     self->unique_life = false;
1045     self->locked      = false;
1046     self->callparam   = false;
1047
1048     self->life = NULL;
1049     return self;
1050 }
1051
1052 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
1053 {
1054     char     *name;
1055     size_t    len;
1056     ir_value *m;
1057     if (member >= 3)
1058         return NULL;
1059
1060     if (self->members[member])
1061         return self->members[member];
1062
1063     if (self->name) {
1064         len = strlen(self->name);
1065         name = (char*)mem_a(len + 3);
1066         memcpy(name, self->name, len);
1067         name[len+0] = '_';
1068         name[len+1] = 'x' + member;
1069         name[len+2] = '\0';
1070     }
1071     else
1072         name = NULL;
1073
1074     if (self->vtype == TYPE_VECTOR)
1075     {
1076         m = ir_value_var(name, self->store, TYPE_FLOAT);
1077         if (name)
1078             mem_d(name);
1079         if (!m)
1080             return NULL;
1081         m->context = self->context;
1082
1083         self->members[member] = m;
1084         m->code.addroffset = member;
1085     }
1086     else if (self->vtype == TYPE_FIELD)
1087     {
1088         if (self->fieldtype != TYPE_VECTOR)
1089             return NULL;
1090         m = ir_value_var(name, self->store, TYPE_FIELD);
1091         if (name)
1092             mem_d(name);
1093         if (!m)
1094             return NULL;
1095         m->fieldtype = TYPE_FLOAT;
1096         m->context = self->context;
1097
1098         self->members[member] = m;
1099         m->code.addroffset = member;
1100     }
1101     else
1102     {
1103         irerror(self->context, "invalid member access on %s", self->name);
1104         return NULL;
1105     }
1106
1107     m->memberof = self;
1108     return m;
1109 }
1110
1111 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1112 {
1113     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1114         return type_sizeof_[TYPE_VECTOR];
1115     return type_sizeof_[self->vtype];
1116 }
1117
1118 ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1119 {
1120     ir_value *v = ir_value_var(name, storetype, vtype);
1121     if (!v)
1122         return NULL;
1123     ir_function_collect_value(owner, v);
1124     return v;
1125 }
1126
1127 void ir_value_delete(ir_value* self)
1128 {
1129     size_t i;
1130     if (self->name)
1131         mem_d((void*)self->name);
1132     if (self->hasvalue)
1133     {
1134         if (self->vtype == TYPE_STRING)
1135             mem_d((void*)self->constval.vstring);
1136     }
1137     for (i = 0; i < 3; ++i) {
1138         if (self->members[i])
1139             ir_value_delete(self->members[i]);
1140     }
1141     vec_free(self->reads);
1142     vec_free(self->writes);
1143     vec_free(self->life);
1144     mem_d(self);
1145 }
1146
1147 bool ir_value_set_name(ir_value *self, const char *name)
1148 {
1149     if (self->name)
1150         mem_d((void*)self->name);
1151     self->name = util_strdup(name);
1152     return !!self->name;
1153 }
1154
1155 bool ir_value_set_float(ir_value *self, float f)
1156 {
1157     if (self->vtype != TYPE_FLOAT)
1158         return false;
1159     self->constval.vfloat = f;
1160     self->hasvalue = true;
1161     return true;
1162 }
1163
1164 bool ir_value_set_func(ir_value *self, int f)
1165 {
1166     if (self->vtype != TYPE_FUNCTION)
1167         return false;
1168     self->constval.vint = f;
1169     self->hasvalue = true;
1170     return true;
1171 }
1172
1173 bool ir_value_set_vector(ir_value *self, vector v)
1174 {
1175     if (self->vtype != TYPE_VECTOR)
1176         return false;
1177     self->constval.vvec = v;
1178     self->hasvalue = true;
1179     return true;
1180 }
1181
1182 bool ir_value_set_field(ir_value *self, ir_value *fld)
1183 {
1184     if (self->vtype != TYPE_FIELD)
1185         return false;
1186     self->constval.vpointer = fld;
1187     self->hasvalue = true;
1188     return true;
1189 }
1190
1191 static char *ir_strdup(const char *str)
1192 {
1193     if (str && !*str) {
1194         /* actually dup empty strings */
1195         char *out = (char*)mem_a(1);
1196         *out = 0;
1197         return out;
1198     }
1199     return util_strdup(str);
1200 }
1201
1202 bool ir_value_set_string(ir_value *self, const char *str)
1203 {
1204     if (self->vtype != TYPE_STRING)
1205         return false;
1206     self->constval.vstring = ir_strdup(str);
1207     self->hasvalue = true;
1208     return true;
1209 }
1210
1211 #if 0
1212 bool ir_value_set_int(ir_value *self, int i)
1213 {
1214     if (self->vtype != TYPE_INTEGER)
1215         return false;
1216     self->constval.vint = i;
1217     self->hasvalue = true;
1218     return true;
1219 }
1220 #endif
1221
1222 bool ir_value_lives(ir_value *self, size_t at)
1223 {
1224     size_t i;
1225     for (i = 0; i < vec_size(self->life); ++i)
1226     {
1227         ir_life_entry_t *life = &self->life[i];
1228         if (life->start <= at && at <= life->end)
1229             return true;
1230         if (life->start > at) /* since it's ordered */
1231             return false;
1232     }
1233     return false;
1234 }
1235
1236 bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1237 {
1238     size_t k;
1239     vec_push(self->life, e);
1240     for (k = vec_size(self->life)-1; k > idx; --k)
1241         self->life[k] = self->life[k-1];
1242     self->life[idx] = e;
1243     return true;
1244 }
1245
1246 bool ir_value_life_merge(ir_value *self, size_t s)
1247 {
1248     size_t i;
1249     ir_life_entry_t *life = NULL;
1250     ir_life_entry_t *before = NULL;
1251     ir_life_entry_t new_entry;
1252
1253     /* Find the first range >= s */
1254     for (i = 0; i < vec_size(self->life); ++i)
1255     {
1256         before = life;
1257         life = &self->life[i];
1258         if (life->start > s)
1259             break;
1260     }
1261     /* nothing found? append */
1262     if (i == vec_size(self->life)) {
1263         ir_life_entry_t e;
1264         if (life && life->end+1 == s)
1265         {
1266             /* previous life range can be merged in */
1267             life->end++;
1268             return true;
1269         }
1270         if (life && life->end >= s)
1271             return false;
1272         e.start = e.end = s;
1273         vec_push(self->life, e);
1274         return true;
1275     }
1276     /* found */
1277     if (before)
1278     {
1279         if (before->end + 1 == s &&
1280             life->start - 1 == s)
1281         {
1282             /* merge */
1283             before->end = life->end;
1284             vec_remove(self->life, i, 1);
1285             return true;
1286         }
1287         if (before->end + 1 == s)
1288         {
1289             /* extend before */
1290             before->end++;
1291             return true;
1292         }
1293         /* already contained */
1294         if (before->end >= s)
1295             return false;
1296     }
1297     /* extend */
1298     if (life->start - 1 == s)
1299     {
1300         life->start--;
1301         return true;
1302     }
1303     /* insert a new entry */
1304     new_entry.start = new_entry.end = s;
1305     return ir_value_life_insert(self, i, new_entry);
1306 }
1307
1308 bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1309 {
1310     size_t i, myi;
1311
1312     if (!vec_size(other->life))
1313         return true;
1314
1315     if (!vec_size(self->life)) {
1316         size_t count = vec_size(other->life);
1317         ir_life_entry_t *life = vec_add(self->life, count);
1318         memcpy(life, other->life, count * sizeof(*life));
1319         return true;
1320     }
1321
1322     myi = 0;
1323     for (i = 0; i < vec_size(other->life); ++i)
1324     {
1325         const ir_life_entry_t *life = &other->life[i];
1326         while (true)
1327         {
1328             ir_life_entry_t *entry = &self->life[myi];
1329
1330             if (life->end+1 < entry->start)
1331             {
1332                 /* adding an interval before entry */
1333                 if (!ir_value_life_insert(self, myi, *life))
1334                     return false;
1335                 ++myi;
1336                 break;
1337             }
1338
1339             if (life->start <  entry->start &&
1340                 life->end+1 >= entry->start)
1341             {
1342                 /* starts earlier and overlaps */
1343                 entry->start = life->start;
1344             }
1345
1346             if (life->end   >  entry->end &&
1347                 life->start <= entry->end+1)
1348             {
1349                 /* ends later and overlaps */
1350                 entry->end = life->end;
1351             }
1352
1353             /* see if our change combines it with the next ranges */
1354             while (myi+1 < vec_size(self->life) &&
1355                    entry->end+1 >= self->life[1+myi].start)
1356             {
1357                 /* overlaps with (myi+1) */
1358                 if (entry->end < self->life[1+myi].end)
1359                     entry->end = self->life[1+myi].end;
1360                 vec_remove(self->life, myi+1, 1);
1361                 entry = &self->life[myi];
1362             }
1363
1364             /* see if we're after the entry */
1365             if (life->start > entry->end)
1366             {
1367                 ++myi;
1368                 /* append if we're at the end */
1369                 if (myi >= vec_size(self->life)) {
1370                     vec_push(self->life, *life);
1371                     break;
1372                 }
1373                 /* otherweise check the next range */
1374                 continue;
1375             }
1376             break;
1377         }
1378     }
1379     return true;
1380 }
1381
1382 bool ir_values_overlap(const ir_value *a, const ir_value *b)
1383 {
1384     /* For any life entry in A see if it overlaps with
1385      * any life entry in B.
1386      * Note that the life entries are orderes, so we can make a
1387      * more efficient algorithm there than naively translating the
1388      * statement above.
1389      */
1390
1391     ir_life_entry_t *la, *lb, *enda, *endb;
1392
1393     /* first of all, if either has no life range, they cannot clash */
1394     if (!vec_size(a->life) || !vec_size(b->life))
1395         return false;
1396
1397     la = a->life;
1398     lb = b->life;
1399     enda = la + vec_size(a->life);
1400     endb = lb + vec_size(b->life);
1401     while (true)
1402     {
1403         /* check if the entries overlap, for that,
1404          * both must start before the other one ends.
1405          */
1406         if (la->start < lb->end &&
1407             lb->start < la->end)
1408         {
1409             return true;
1410         }
1411
1412         /* entries are ordered
1413          * one entry is earlier than the other
1414          * that earlier entry will be moved forward
1415          */
1416         if (la->start < lb->start)
1417         {
1418             /* order: A B, move A forward
1419              * check if we hit the end with A
1420              */
1421             if (++la == enda)
1422                 break;
1423         }
1424         else /* if (lb->start < la->start)  actually <= */
1425         {
1426             /* order: B A, move B forward
1427              * check if we hit the end with B
1428              */
1429             if (++lb == endb)
1430                 break;
1431         }
1432     }
1433     return false;
1434 }
1435
1436 /***********************************************************************
1437  *IR main operations
1438  */
1439
1440 static bool ir_check_unreachable(ir_block *self)
1441 {
1442     /* The IR should never have to deal with unreachable code */
1443     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1444         return true;
1445     irerror(self->context, "unreachable statement (%s)", self->label);
1446     return false;
1447 }
1448
1449 bool ir_block_create_store_op(ir_block *self, lex_ctx ctx, int op, ir_value *target, ir_value *what)
1450 {
1451     ir_instr *in;
1452     if (!ir_check_unreachable(self))
1453         return false;
1454
1455     if (target->store == store_value &&
1456         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1457     {
1458         irerror(self->context, "cannot store to an SSA value");
1459         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1460         irerror(self->context, "instruction: %s", asm_instr[op].m);
1461         return false;
1462     }
1463
1464     in = ir_instr_new(ctx, self, op);
1465     if (!in)
1466         return false;
1467
1468     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1469         !ir_instr_op(in, 1, what, false))
1470     {
1471         ir_instr_delete(in);
1472         return false;
1473     }
1474     vec_push(self->instr, in);
1475     return true;
1476 }
1477
1478 bool ir_block_create_store(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1479 {
1480     int op = 0;
1481     int vtype;
1482     if (target->vtype == TYPE_VARIANT)
1483         vtype = what->vtype;
1484     else
1485         vtype = target->vtype;
1486
1487 #if 0
1488     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1489         op = INSTR_CONV_ITOF;
1490     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1491         op = INSTR_CONV_FTOI;
1492 #endif
1493         op = type_store_instr[vtype];
1494
1495     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1496         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1497             op = INSTR_STORE_V;
1498     }
1499
1500     return ir_block_create_store_op(self, ctx, op, target, what);
1501 }
1502
1503 bool ir_block_create_storep(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1504 {
1505     int op = 0;
1506     int vtype;
1507
1508     if (target->vtype != TYPE_POINTER)
1509         return false;
1510
1511     /* storing using pointer - target is a pointer, type must be
1512      * inferred from source
1513      */
1514     vtype = what->vtype;
1515
1516     op = type_storep_instr[vtype];
1517     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1518         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1519             op = INSTR_STOREP_V;
1520     }
1521
1522     return ir_block_create_store_op(self, ctx, op, target, what);
1523 }
1524
1525 bool ir_block_create_return(ir_block *self, lex_ctx ctx, ir_value *v)
1526 {
1527     ir_instr *in;
1528     if (!ir_check_unreachable(self))
1529         return false;
1530     self->final = true;
1531     self->is_return = true;
1532     in = ir_instr_new(ctx, self, INSTR_RETURN);
1533     if (!in)
1534         return false;
1535
1536     if (v && !ir_instr_op(in, 0, v, false)) {
1537         ir_instr_delete(in);
1538         return false;
1539     }
1540
1541     vec_push(self->instr, in);
1542     return true;
1543 }
1544
1545 bool ir_block_create_if(ir_block *self, lex_ctx ctx, ir_value *v,
1546                         ir_block *ontrue, ir_block *onfalse)
1547 {
1548     ir_instr *in;
1549     if (!ir_check_unreachable(self))
1550         return false;
1551     self->final = true;
1552     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1553     in = ir_instr_new(ctx, self, VINSTR_COND);
1554     if (!in)
1555         return false;
1556
1557     if (!ir_instr_op(in, 0, v, false)) {
1558         ir_instr_delete(in);
1559         return false;
1560     }
1561
1562     in->bops[0] = ontrue;
1563     in->bops[1] = onfalse;
1564
1565     vec_push(self->instr, in);
1566
1567     vec_push(self->exits, ontrue);
1568     vec_push(self->exits, onfalse);
1569     vec_push(ontrue->entries,  self);
1570     vec_push(onfalse->entries, self);
1571     return true;
1572 }
1573
1574 bool ir_block_create_jump(ir_block *self, lex_ctx ctx, ir_block *to)
1575 {
1576     ir_instr *in;
1577     if (!ir_check_unreachable(self))
1578         return false;
1579     self->final = true;
1580     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1581     if (!in)
1582         return false;
1583
1584     in->bops[0] = to;
1585     vec_push(self->instr, in);
1586
1587     vec_push(self->exits, to);
1588     vec_push(to->entries, self);
1589     return true;
1590 }
1591
1592 bool ir_block_create_goto(ir_block *self, lex_ctx ctx, ir_block *to)
1593 {
1594     self->owner->flags |= IR_FLAG_HAS_GOTO;
1595     return ir_block_create_jump(self, ctx, to);
1596 }
1597
1598 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx ctx, const char *label, int ot)
1599 {
1600     ir_value *out;
1601     ir_instr *in;
1602     if (!ir_check_unreachable(self))
1603         return NULL;
1604     in = ir_instr_new(ctx, self, VINSTR_PHI);
1605     if (!in)
1606         return NULL;
1607     out = ir_value_out(self->owner, label, store_value, ot);
1608     if (!out) {
1609         ir_instr_delete(in);
1610         return NULL;
1611     }
1612     if (!ir_instr_op(in, 0, out, true)) {
1613         ir_instr_delete(in);
1614         ir_value_delete(out);
1615         return NULL;
1616     }
1617     vec_push(self->instr, in);
1618     return in;
1619 }
1620
1621 ir_value* ir_phi_value(ir_instr *self)
1622 {
1623     return self->_ops[0];
1624 }
1625
1626 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1627 {
1628     ir_phi_entry_t pe;
1629
1630     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1631         /* Must not be possible to cause this, otherwise the AST
1632          * is doing something wrong.
1633          */
1634         irerror(self->context, "Invalid entry block for PHI");
1635         abort();
1636     }
1637
1638     pe.value = v;
1639     pe.from = b;
1640     vec_push(v->reads, self);
1641     vec_push(self->phi, pe);
1642 }
1643
1644 /* call related code */
1645 ir_instr* ir_block_create_call(ir_block *self, lex_ctx ctx, const char *label, ir_value *func, bool noreturn)
1646 {
1647     ir_value *out;
1648     ir_instr *in;
1649     if (!ir_check_unreachable(self))
1650         return NULL;
1651     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1652     if (!in)
1653         return NULL;
1654     if (noreturn) {
1655         self->final = true;
1656         self->is_return = true;
1657     }
1658     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1659     if (!out) {
1660         ir_instr_delete(in);
1661         return NULL;
1662     }
1663     if (!ir_instr_op(in, 0, out, true) ||
1664         !ir_instr_op(in, 1, func, false))
1665     {
1666         ir_instr_delete(in);
1667         ir_value_delete(out);
1668         return NULL;
1669     }
1670     vec_push(self->instr, in);
1671     /*
1672     if (noreturn) {
1673         if (!ir_block_create_return(self, ctx, NULL)) {
1674             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1675             ir_instr_delete(in);
1676             return NULL;
1677         }
1678     }
1679     */
1680     return in;
1681 }
1682
1683 ir_value* ir_call_value(ir_instr *self)
1684 {
1685     return self->_ops[0];
1686 }
1687
1688 void ir_call_param(ir_instr* self, ir_value *v)
1689 {
1690     vec_push(self->params, v);
1691     vec_push(v->reads, self);
1692 }
1693
1694 /* binary op related code */
1695
1696 ir_value* ir_block_create_binop(ir_block *self, lex_ctx ctx,
1697                                 const char *label, int opcode,
1698                                 ir_value *left, ir_value *right)
1699 {
1700     int ot = TYPE_VOID;
1701     switch (opcode) {
1702         case INSTR_ADD_F:
1703         case INSTR_SUB_F:
1704         case INSTR_DIV_F:
1705         case INSTR_MUL_F:
1706         case INSTR_MUL_V:
1707         case INSTR_AND:
1708         case INSTR_OR:
1709 #if 0
1710         case INSTR_AND_I:
1711         case INSTR_AND_IF:
1712         case INSTR_AND_FI:
1713         case INSTR_OR_I:
1714         case INSTR_OR_IF:
1715         case INSTR_OR_FI:
1716 #endif
1717         case INSTR_BITAND:
1718         case INSTR_BITOR:
1719 #if 0
1720         case INSTR_SUB_S: /* -- offset of string as float */
1721         case INSTR_MUL_IF:
1722         case INSTR_MUL_FI:
1723         case INSTR_DIV_IF:
1724         case INSTR_DIV_FI:
1725         case INSTR_BITOR_IF:
1726         case INSTR_BITOR_FI:
1727         case INSTR_BITAND_FI:
1728         case INSTR_BITAND_IF:
1729         case INSTR_EQ_I:
1730         case INSTR_NE_I:
1731 #endif
1732             ot = TYPE_FLOAT;
1733             break;
1734 #if 0
1735         case INSTR_ADD_I:
1736         case INSTR_ADD_IF:
1737         case INSTR_ADD_FI:
1738         case INSTR_SUB_I:
1739         case INSTR_SUB_FI:
1740         case INSTR_SUB_IF:
1741         case INSTR_MUL_I:
1742         case INSTR_DIV_I:
1743         case INSTR_BITAND_I:
1744         case INSTR_BITOR_I:
1745         case INSTR_XOR_I:
1746         case INSTR_RSHIFT_I:
1747         case INSTR_LSHIFT_I:
1748             ot = TYPE_INTEGER;
1749             break;
1750 #endif
1751         case INSTR_ADD_V:
1752         case INSTR_SUB_V:
1753         case INSTR_MUL_VF:
1754         case INSTR_MUL_FV:
1755 #if 0
1756         case INSTR_DIV_VF:
1757         case INSTR_MUL_IV:
1758         case INSTR_MUL_VI:
1759 #endif
1760             ot = TYPE_VECTOR;
1761             break;
1762 #if 0
1763         case INSTR_ADD_SF:
1764             ot = TYPE_POINTER;
1765             break;
1766 #endif
1767         default:
1768             /* ranges: */
1769             /* boolean operations result in floats */
1770             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1771                 ot = TYPE_FLOAT;
1772             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1773                 ot = TYPE_FLOAT;
1774 #if 0
1775             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1776                 ot = TYPE_FLOAT;
1777 #endif
1778             break;
1779     };
1780     if (ot == TYPE_VOID) {
1781         /* The AST or parser were supposed to check this! */
1782         return NULL;
1783     }
1784
1785     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1786 }
1787
1788 ir_value* ir_block_create_unary(ir_block *self, lex_ctx ctx,
1789                                 const char *label, int opcode,
1790                                 ir_value *operand)
1791 {
1792     int ot = TYPE_FLOAT;
1793     switch (opcode) {
1794         case INSTR_NOT_F:
1795         case INSTR_NOT_V:
1796         case INSTR_NOT_S:
1797         case INSTR_NOT_ENT:
1798         case INSTR_NOT_FNC:
1799 #if 0
1800         case INSTR_NOT_I:
1801 #endif
1802             ot = TYPE_FLOAT;
1803             break;
1804         /* QC doesn't have other unary operations. We expect extensions to fill
1805          * the above list, otherwise we assume out-type = in-type, eg for an
1806          * unary minus
1807          */
1808         default:
1809             ot = operand->vtype;
1810             break;
1811     };
1812     if (ot == TYPE_VOID) {
1813         /* The AST or parser were supposed to check this! */
1814         return NULL;
1815     }
1816
1817     /* let's use the general instruction creator and pass NULL for OPB */
1818     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1819 }
1820
1821 ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx ctx, const char *label,
1822                                         int op, ir_value *a, ir_value *b, int outype)
1823 {
1824     ir_instr *instr;
1825     ir_value *out;
1826
1827     out = ir_value_out(self->owner, label, store_value, outype);
1828     if (!out)
1829         return NULL;
1830
1831     instr = ir_instr_new(ctx, self, op);
1832     if (!instr) {
1833         ir_value_delete(out);
1834         return NULL;
1835     }
1836
1837     if (!ir_instr_op(instr, 0, out, true) ||
1838         !ir_instr_op(instr, 1, a, false) ||
1839         !ir_instr_op(instr, 2, b, false) )
1840     {
1841         goto on_error;
1842     }
1843
1844     vec_push(self->instr, instr);
1845
1846     return out;
1847 on_error:
1848     ir_instr_delete(instr);
1849     ir_value_delete(out);
1850     return NULL;
1851 }
1852
1853 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field)
1854 {
1855     ir_value *v;
1856
1857     /* Support for various pointer types todo if so desired */
1858     if (ent->vtype != TYPE_ENTITY)
1859         return NULL;
1860
1861     if (field->vtype != TYPE_FIELD)
1862         return NULL;
1863
1864     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1865     v->fieldtype = field->fieldtype;
1866     return v;
1867 }
1868
1869 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1870 {
1871     int op;
1872     if (ent->vtype != TYPE_ENTITY)
1873         return NULL;
1874
1875     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1876     if (field->vtype != TYPE_FIELD)
1877         return NULL;
1878
1879     switch (outype)
1880     {
1881         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1882         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1883         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1884         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1885         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1886         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1887 #if 0
1888         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1889         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1890 #endif
1891         default:
1892             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1893             return NULL;
1894     }
1895
1896     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1897 }
1898
1899 /* PHI resolving breaks the SSA, and must thus be the last
1900  * step before life-range calculation.
1901  */
1902
1903 static bool ir_block_naive_phi(ir_block *self);
1904 bool ir_function_naive_phi(ir_function *self)
1905 {
1906     size_t i;
1907
1908     for (i = 0; i < vec_size(self->blocks); ++i)
1909     {
1910         if (!ir_block_naive_phi(self->blocks[i]))
1911             return false;
1912     }
1913     return true;
1914 }
1915
1916 static bool ir_block_naive_phi(ir_block *self)
1917 {
1918     size_t i, p; /*, w;*/
1919     /* FIXME: optionally, create_phi can add the phis
1920      * to a list so we don't need to loop through blocks
1921      * - anyway: "don't optimize YET"
1922      */
1923     for (i = 0; i < vec_size(self->instr); ++i)
1924     {
1925         ir_instr *instr = self->instr[i];
1926         if (instr->opcode != VINSTR_PHI)
1927             continue;
1928
1929         vec_remove(self->instr, i, 1);
1930         --i; /* NOTE: i+1 below */
1931
1932         for (p = 0; p < vec_size(instr->phi); ++p)
1933         {
1934             ir_value *v = instr->phi[p].value;
1935             ir_block *b = instr->phi[p].from;
1936
1937             if (v->store == store_value &&
1938                 vec_size(v->reads) == 1 &&
1939                 vec_size(v->writes) == 1)
1940             {
1941                 /* replace the value */
1942                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
1943                     return false;
1944             }
1945             else
1946             {
1947                 /* force a move instruction */
1948                 ir_instr *prevjump = vec_last(b->instr);
1949                 vec_pop(b->instr);
1950                 b->final = false;
1951                 instr->_ops[0]->store = store_global;
1952                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
1953                     return false;
1954                 instr->_ops[0]->store = store_value;
1955                 vec_push(b->instr, prevjump);
1956                 b->final = true;
1957             }
1958         }
1959         ir_instr_delete(instr);
1960     }
1961     return true;
1962 }
1963
1964 /***********************************************************************
1965  *IR Temp allocation code
1966  * Propagating value life ranges by walking through the function backwards
1967  * until no more changes are made.
1968  * In theory this should happen once more than once for every nested loop
1969  * level.
1970  * Though this implementation might run an additional time for if nests.
1971  */
1972
1973 /* Enumerate instructions used by value's life-ranges
1974  */
1975 static void ir_block_enumerate(ir_block *self, size_t *_eid)
1976 {
1977     size_t i;
1978     size_t eid = *_eid;
1979     for (i = 0; i < vec_size(self->instr); ++i)
1980     {
1981         self->instr[i]->eid = eid++;
1982     }
1983     *_eid = eid;
1984 }
1985
1986 /* Enumerate blocks and instructions.
1987  * The block-enumeration is unordered!
1988  * We do not really use the block enumreation, however
1989  * the instruction enumeration is important for life-ranges.
1990  */
1991 void ir_function_enumerate(ir_function *self)
1992 {
1993     size_t i;
1994     size_t instruction_id = 1;
1995     for (i = 0; i < vec_size(self->blocks); ++i)
1996     {
1997         self->blocks[i]->eid = i;
1998         self->blocks[i]->run_id = 0;
1999         ir_block_enumerate(self->blocks[i], &instruction_id);
2000     }
2001 }
2002
2003 static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
2004 bool ir_function_calculate_liferanges(ir_function *self)
2005 {
2006     size_t i, s;
2007     bool changed;
2008
2009     /* parameters live at 0 */
2010     for (i = 0; i < vec_size(self->params); ++i)
2011         ir_value_life_merge(self->locals[i], 0);
2012
2013     do {
2014         self->run_id++;
2015         changed = false;
2016         for (i = 0; i != vec_size(self->blocks); ++i)
2017         {
2018             if (self->blocks[i]->is_return)
2019             {
2020                 vec_free(self->blocks[i]->living);
2021                 if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
2022                     return false;
2023             }
2024         }
2025     } while (changed);
2026     if (vec_size(self->blocks)) {
2027         ir_block *block = self->blocks[0];
2028         for (i = 0; i < vec_size(block->living); ++i) {
2029             ir_value *v = block->living[i];
2030             if (v->store != store_local)
2031                 continue;
2032             if (v->vtype == TYPE_VECTOR)
2033                 continue;
2034             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2035             /* find the instruction reading from it */
2036             for (s = 0; s < vec_size(v->reads); ++s) {
2037                 if (v->reads[s]->eid == v->life[0].end)
2038                     break;
2039             }
2040             if (s < vec_size(v->reads)) {
2041                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2042                               "variable `%s` may be used uninitialized in this function\n"
2043                               " -> %s:%i",
2044                               v->name,
2045                               v->reads[s]->context.file, v->reads[s]->context.line)
2046                    )
2047                 {
2048                     return false;
2049                 }
2050                 continue;
2051             }
2052             if (v->memberof) {
2053                 ir_value *vec = v->memberof;
2054                 for (s = 0; s < vec_size(vec->reads); ++s) {
2055                     if (vec->reads[s]->eid == v->life[0].end)
2056                         break;
2057                 }
2058                 if (s < vec_size(vec->reads)) {
2059                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2060                                   "variable `%s` may be used uninitialized in this function\n"
2061                                   " -> %s:%i",
2062                                   v->name,
2063                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2064                        )
2065                     {
2066                         return false;
2067                     }
2068                     continue;
2069                 }
2070             }
2071             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2072                           "variable `%s` may be used uninitialized in this function", v->name))
2073             {
2074                 return false;
2075             }
2076         }
2077     }
2078     return true;
2079 }
2080
2081 /* Local-value allocator
2082  * After finishing creating the liferange of all values used in a function
2083  * we can allocate their global-positions.
2084  * This is the counterpart to register-allocation in register machines.
2085  */
2086 typedef struct {
2087     ir_value **locals;
2088     size_t    *sizes;
2089     size_t    *positions;
2090     bool      *unique;
2091 } function_allocator;
2092
2093 static bool function_allocator_alloc(function_allocator *alloc, ir_value *var)
2094 {
2095     ir_value *slot;
2096     size_t vsize = ir_value_sizeof(var);
2097
2098     var->code.local = vec_size(alloc->locals);
2099
2100     slot = ir_value_var("reg", store_global, var->vtype);
2101     if (!slot)
2102         return false;
2103
2104     if (!ir_value_life_merge_into(slot, var))
2105         goto localerror;
2106
2107     vec_push(alloc->locals, slot);
2108     vec_push(alloc->sizes, vsize);
2109     vec_push(alloc->unique, var->unique_life);
2110
2111     return true;
2112
2113 localerror:
2114     ir_value_delete(slot);
2115     return false;
2116 }
2117
2118 static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v)
2119 {
2120     size_t a;
2121     ir_value *slot;
2122
2123     if (v->unique_life)
2124         return function_allocator_alloc(alloc, v);
2125
2126     for (a = 0; a < vec_size(alloc->locals); ++a)
2127     {
2128         /* if it's reserved for a unique liferange: skip */
2129         if (alloc->unique[a])
2130             continue;
2131
2132         slot = alloc->locals[a];
2133
2134         /* never resize parameters
2135          * will be required later when overlapping temps + locals
2136          */
2137         if (a < vec_size(self->params) &&
2138             alloc->sizes[a] < ir_value_sizeof(v))
2139         {
2140             continue;
2141         }
2142
2143         if (ir_values_overlap(v, slot))
2144             continue;
2145
2146         if (!ir_value_life_merge_into(slot, v))
2147             return false;
2148
2149         /* adjust size for this slot */
2150         if (alloc->sizes[a] < ir_value_sizeof(v))
2151             alloc->sizes[a] = ir_value_sizeof(v);
2152
2153         v->code.local = a;
2154         return true;
2155     }
2156     if (a >= vec_size(alloc->locals)) {
2157         if (!function_allocator_alloc(alloc, v))
2158             return false;
2159     }
2160     return true;
2161 }
2162
2163 static bool ir_value_has_point_life(const ir_value *v)
2164 {
2165     size_t i, vs = vec_size(v->life);
2166     for (i = 0; i < vs; ++i) {
2167         if (v->life[i].start == v->life[i].end)
2168             return true;
2169     }
2170     return false;
2171 }
2172
2173 bool ir_function_allocate_locals(ir_function *self)
2174 {
2175     size_t i;
2176     bool   retval = true;
2177     size_t pos;
2178     bool   opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS);
2179
2180     ir_value *v;
2181
2182     function_allocator lockalloc, globalloc;
2183
2184     if (!vec_size(self->locals) && !vec_size(self->values))
2185         return true;
2186
2187     globalloc.locals    = NULL;
2188     globalloc.sizes     = NULL;
2189     globalloc.positions = NULL;
2190     globalloc.unique    = NULL;
2191     lockalloc.locals    = NULL;
2192     lockalloc.sizes     = NULL;
2193     lockalloc.positions = NULL;
2194     lockalloc.unique    = NULL;
2195
2196     for (i = 0; i < vec_size(self->locals); ++i)
2197     {
2198         v = self->locals[i];
2199         if (ir_value_has_point_life(v))
2200             v->unique_life = true;
2201         if (!OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) {
2202             v->locked      = true;
2203             v->unique_life = true;
2204         }
2205         else if (i >= vec_size(self->params))
2206             break;
2207         else
2208             v->locked = true; /* lock parameters locals */
2209         if (!function_allocator_alloc((v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2210             goto error;
2211     }
2212     for (; i < vec_size(self->locals); ++i)
2213     {
2214         v = self->locals[i];
2215         if (!vec_size(v->life))
2216             continue;
2217         if (ir_value_has_point_life(v))
2218             v->unique_life = true;
2219         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2220             goto error;
2221     }
2222
2223     /* Allocate a slot for any value that still exists */
2224     for (i = 0; i < vec_size(self->values); ++i)
2225     {
2226         v = self->values[i];
2227
2228         if (!vec_size(v->life))
2229             continue;
2230         if (ir_value_has_point_life(v)) {
2231             /* happens on free ternarys like:
2232              if (x) {
2233                  cond ? a : b;
2234              }
2235             irerror(v->context, "internal error: point life SSA value leaked: %s", v->name);
2236             */
2237             v->unique_life = true;
2238         }
2239
2240         /* CALL optimization:
2241          * If the value is a parameter-temp: 1 write, 1 read from a CALL
2242          * and it's not "locked", write it to the OFS_PARM directly.
2243          */
2244         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->locked && !v->unique_life) {
2245             if (vec_size(v->reads) == 1 && vec_size(v->writes) == 1 &&
2246                 (v->reads[0]->opcode == VINSTR_NRCALL ||
2247                  (v->reads[0]->opcode >= INSTR_CALL0 && v->reads[0]->opcode <= INSTR_CALL8)
2248                 )
2249                )
2250             {
2251                 size_t    param;
2252                 ir_instr *call = v->reads[0];
2253                 if (!vec_ir_value_find(call->params, v, &param)) {
2254                     irerror(call->context, "internal error: unlocked parameter %s not found", v->name);
2255                     goto error;
2256                 }
2257
2258                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2259                 v->callparam = true;
2260                 if (param < 8)
2261                     ir_value_code_setaddr(v, OFS_PARM0 + 3*param);
2262                 else {
2263                     ir_value *ep;
2264                     param -= 8;
2265                     if (vec_size(self->owner->extparam_protos) <= param)
2266                         ep = ir_gen_extparam_proto(self->owner);
2267                     else
2268                         ep = self->owner->extparam_protos[param];
2269                     ir_instr_op(v->writes[0], 0, ep, true);
2270                     call->params[param+8] = ep;
2271                 }
2272                 continue;
2273             }
2274             if (vec_size(v->writes) == 1 && v->writes[0]->opcode == INSTR_CALL0)
2275             {
2276                 v->store = store_return;
2277                 if (v->members[0]) v->members[0]->store = store_return;
2278                 if (v->members[1]) v->members[1]->store = store_return;
2279                 if (v->members[2]) v->members[2]->store = store_return;
2280                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2281                 continue;
2282             }
2283         }
2284
2285         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2286             goto error;
2287     }
2288
2289     if (!lockalloc.sizes && !globalloc.sizes) {
2290         goto cleanup;
2291     }
2292     vec_push(lockalloc.positions, 0);
2293     vec_push(globalloc.positions, 0);
2294
2295     /* Adjust slot positions based on sizes */
2296     if (lockalloc.sizes) {
2297         pos = (vec_size(lockalloc.sizes) ? lockalloc.positions[0] : 0);
2298         for (i = 1; i < vec_size(lockalloc.sizes); ++i)
2299         {
2300             pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1];
2301             vec_push(lockalloc.positions, pos);
2302         }
2303         self->allocated_locals = pos + vec_last(lockalloc.sizes);
2304     }
2305     if (globalloc.sizes) {
2306         pos = (vec_size(globalloc.sizes) ? globalloc.positions[0] : 0);
2307         for (i = 1; i < vec_size(globalloc.sizes); ++i)
2308         {
2309             pos = globalloc.positions[i-1] + globalloc.sizes[i-1];
2310             vec_push(globalloc.positions, pos);
2311         }
2312         self->globaltemps = pos + vec_last(globalloc.sizes);
2313     }
2314
2315     /* Locals need to know their new position */
2316     for (i = 0; i < vec_size(self->locals); ++i) {
2317         v = self->locals[i];
2318         if (i >= vec_size(self->params) && !vec_size(v->life))
2319             continue;
2320         if (v->locked || !opt_gt)
2321             v->code.local = lockalloc.positions[v->code.local];
2322         else
2323             v->code.local = globalloc.positions[v->code.local];
2324     }
2325     /* Take over the actual slot positions on values */
2326     for (i = 0; i < vec_size(self->values); ++i) {
2327         v = self->values[i];
2328         if (!vec_size(v->life))
2329             continue;
2330         if (v->locked || !opt_gt)
2331             v->code.local = lockalloc.positions[v->code.local];
2332         else
2333             v->code.local = globalloc.positions[v->code.local];
2334     }
2335
2336     goto cleanup;
2337
2338 error:
2339     retval = false;
2340 cleanup:
2341     for (i = 0; i < vec_size(lockalloc.locals); ++i)
2342         ir_value_delete(lockalloc.locals[i]);
2343     for (i = 0; i < vec_size(globalloc.locals); ++i)
2344         ir_value_delete(globalloc.locals[i]);
2345     vec_free(globalloc.unique);
2346     vec_free(globalloc.locals);
2347     vec_free(globalloc.sizes);
2348     vec_free(globalloc.positions);
2349     vec_free(lockalloc.unique);
2350     vec_free(lockalloc.locals);
2351     vec_free(lockalloc.sizes);
2352     vec_free(lockalloc.positions);
2353     return retval;
2354 }
2355
2356 /* Get information about which operand
2357  * is read from, or written to.
2358  */
2359 static void ir_op_read_write(int op, size_t *read, size_t *write)
2360 {
2361     switch (op)
2362     {
2363     case VINSTR_JUMP:
2364     case INSTR_GOTO:
2365         *write = 0;
2366         *read = 0;
2367         break;
2368     case INSTR_IF:
2369     case INSTR_IFNOT:
2370 #if 0
2371     case INSTR_IF_S:
2372     case INSTR_IFNOT_S:
2373 #endif
2374     case INSTR_RETURN:
2375     case VINSTR_COND:
2376         *write = 0;
2377         *read = 1;
2378         break;
2379     case INSTR_STOREP_F:
2380     case INSTR_STOREP_V:
2381     case INSTR_STOREP_S:
2382     case INSTR_STOREP_ENT:
2383     case INSTR_STOREP_FLD:
2384     case INSTR_STOREP_FNC:
2385         *write = 0;
2386         *read  = 7;
2387         break;
2388     default:
2389         *write = 1;
2390         *read = 6;
2391         break;
2392     };
2393 }
2394
2395 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2396 {
2397     size_t i;
2398     bool changed = false;
2399     bool tempbool;
2400     for (i = 0; i != vec_size(self->living); ++i)
2401     {
2402         tempbool = ir_value_life_merge(self->living[i], eid);
2403         changed = changed || tempbool;
2404     }
2405     return changed;
2406 }
2407
2408 static bool ir_block_living_lock(ir_block *self)
2409 {
2410     size_t i;
2411     bool changed = false;
2412     for (i = 0; i != vec_size(self->living); ++i)
2413     {
2414         if (!self->living[i]->locked) {
2415             self->living[i]->locked = true;
2416             changed = true;
2417         }
2418     }
2419     return changed;
2420 }
2421
2422 static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
2423 {
2424     size_t i;
2425
2426     (void)changed;
2427
2428     /* values which have been read in a previous iteration are now
2429      * in the "living" array even if the previous block doesn't use them.
2430      * So we have to remove whatever does not exist in the previous block.
2431      * They will be re-added on-read, but the liferange merge won't cause
2432      * a change.
2433     for (i = 0; i < vec_size(self->living); ++i)
2434     {
2435         if (!vec_ir_value_find(prev->living, self->living[i], NULL)) {
2436             vec_remove(self->living, i, 1);
2437             --i;
2438         }
2439     }
2440      */
2441
2442     /* Whatever the previous block still has in its living set
2443      * must now be added to ours as well.
2444      */
2445     for (i = 0; i < vec_size(prev->living); ++i)
2446     {
2447         if (vec_ir_value_find(self->living, prev->living[i], NULL))
2448             continue;
2449         vec_push(self->living, prev->living[i]);
2450         /*
2451         irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name);
2452         */
2453     }
2454     return true;
2455 }
2456
2457 static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
2458 {
2459     ir_instr *instr;
2460     ir_value *value;
2461     bool  tempbool;
2462     size_t i, o, p, mem;
2463     /* bitmasks which operands are read from or written to */
2464     size_t read, write;
2465     char dbg_ind[16];
2466     dbg_ind[0] = '#';
2467     dbg_ind[1] = '0';
2468     (void)dbg_ind;
2469
2470     if (prev)
2471     {
2472         if (!ir_block_life_prop_previous(self, prev, changed))
2473             return false;
2474     }
2475
2476     i = vec_size(self->instr);
2477     while (i)
2478     { --i;
2479         instr = self->instr[i];
2480
2481         /* See which operands are read and write operands */
2482         ir_op_read_write(instr->opcode, &read, &write);
2483
2484         if (instr->opcode == INSTR_MUL_VF)
2485         {
2486             /* the float source will get an additional lifetime */
2487             tempbool = ir_value_life_merge(instr->_ops[2], instr->eid+1);
2488             *changed = *changed || tempbool;
2489         }
2490         else if (instr->opcode == INSTR_MUL_FV)
2491         {
2492             /* the float source will get an additional lifetime */
2493             tempbool = ir_value_life_merge(instr->_ops[1], instr->eid+1);
2494             *changed = *changed || tempbool;
2495         }
2496
2497         /* Go through the 3 main operands
2498          * writes first, then reads
2499          */
2500         for (o = 0; o < 3; ++o)
2501         {
2502             if (!instr->_ops[o]) /* no such operand */
2503                 continue;
2504
2505             value = instr->_ops[o];
2506
2507             /* We only care about locals */
2508             /* we also calculate parameter liferanges so that locals
2509              * can take up parameter slots */
2510             if (value->store != store_value &&
2511                 value->store != store_local &&
2512                 value->store != store_param)
2513                 continue;
2514
2515             /* write operands */
2516             /* When we write to a local, we consider it "dead" for the
2517              * remaining upper part of the function, since in SSA a value
2518              * can only be written once (== created)
2519              */
2520             if (write & (1<<o))
2521             {
2522                 size_t idx;
2523                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2524                 if (!in_living)
2525                 {
2526                     /* If the value isn't alive it hasn't been read before... */
2527                     /* TODO: See if the warning can be emitted during parsing or AST processing
2528                      * otherwise have warning printed here.
2529                      * IF printing a warning here: include filecontext_t,
2530                      * and make sure it's only printed once
2531                      * since this function is run multiple times.
2532                      */
2533                     /* con_err( "Value only written %s\n", value->name); */
2534                     tempbool = ir_value_life_merge(value, instr->eid);
2535                     *changed = *changed || tempbool;
2536                 } else {
2537                     /* since 'living' won't contain it
2538                      * anymore, merge the value, since
2539                      * (A) doesn't.
2540                      */
2541                     tempbool = ir_value_life_merge(value, instr->eid);
2542                     *changed = *changed || tempbool;
2543                     /* Then remove */
2544                     vec_remove(self->living, idx, 1);
2545                 }
2546                 /* Removing a vector removes all members */
2547                 for (mem = 0; mem < 3; ++mem) {
2548                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2549                         tempbool = ir_value_life_merge(value->members[mem], instr->eid);
2550                         *changed = *changed || tempbool;
2551                         vec_remove(self->living, idx, 1);
2552                     }
2553                 }
2554                 /* Removing the last member removes the vector */
2555                 if (value->memberof) {
2556                     value = value->memberof;
2557                     for (mem = 0; mem < 3; ++mem) {
2558                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2559                             break;
2560                     }
2561                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2562                         tempbool = ir_value_life_merge(value, instr->eid);
2563                         *changed = *changed || tempbool;
2564                         vec_remove(self->living, idx, 1);
2565                     }
2566                 }
2567             }
2568         }
2569
2570         for (o = 0; o < 3; ++o)
2571         {
2572             if (!instr->_ops[o]) /* no such operand */
2573                 continue;
2574
2575             value = instr->_ops[o];
2576
2577             /* We only care about locals */
2578             /* we also calculate parameter liferanges so that locals
2579              * can take up parameter slots */
2580             if (value->store != store_value &&
2581                 value->store != store_local &&
2582                 value->store != store_param)
2583                 continue;
2584
2585             /* read operands */
2586             if (read & (1<<o))
2587             {
2588                 if (!vec_ir_value_find(self->living, value, NULL))
2589                     vec_push(self->living, value);
2590                 /* reading adds the full vector */
2591                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2592                     vec_push(self->living, value->memberof);
2593                 for (mem = 0; mem < 3; ++mem) {
2594                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2595                         vec_push(self->living, value->members[mem]);
2596                 }
2597             }
2598         }
2599         /* PHI operands are always read operands */
2600         for (p = 0; p < vec_size(instr->phi); ++p)
2601         {
2602             value = instr->phi[p].value;
2603             if (!vec_ir_value_find(self->living, value, NULL))
2604                 vec_push(self->living, value);
2605             /* reading adds the full vector */
2606             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2607                 vec_push(self->living, value->memberof);
2608             for (mem = 0; mem < 3; ++mem) {
2609                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2610                     vec_push(self->living, value->members[mem]);
2611             }
2612         }
2613
2614         /* on a call, all these values must be "locked" */
2615         if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
2616             if (ir_block_living_lock(self))
2617                 *changed = true;
2618         }
2619         /* call params are read operands too */
2620         for (p = 0; p < vec_size(instr->params); ++p)
2621         {
2622             value = instr->params[p];
2623             if (!vec_ir_value_find(self->living, value, NULL))
2624                 vec_push(self->living, value);
2625             /* reading adds the full vector */
2626             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2627                 vec_push(self->living, value->memberof);
2628             for (mem = 0; mem < 3; ++mem) {
2629                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2630                     vec_push(self->living, value->members[mem]);
2631             }
2632         }
2633
2634         /* (A) */
2635         tempbool = ir_block_living_add_instr(self, instr->eid);
2636         /*con_err( "living added values\n");*/
2637         *changed = *changed || tempbool;
2638
2639     }
2640
2641     if (self->run_id == self->owner->run_id)
2642         return true;
2643
2644     self->run_id = self->owner->run_id;
2645
2646     for (i = 0; i < vec_size(self->entries); ++i)
2647     {
2648         ir_block *entry = self->entries[i];
2649         ir_block_life_propagate(entry, self, changed);
2650     }
2651
2652     return true;
2653 }
2654
2655 /***********************************************************************
2656  *IR Code-Generation
2657  *
2658  * Since the IR has the convention of putting 'write' operands
2659  * at the beginning, we have to rotate the operands of instructions
2660  * properly in order to generate valid QCVM code.
2661  *
2662  * Having destinations at a fixed position is more convenient. In QC
2663  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2664  * read from from OPA,  and store to OPB rather than OPC.   Which is
2665  * partially the reason why the implementation of these instructions
2666  * in darkplaces has been delayed for so long.
2667  *
2668  * Breaking conventions is annoying...
2669  */
2670 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal);
2671
2672 static bool gen_global_field(ir_value *global)
2673 {
2674     if (global->hasvalue)
2675     {
2676         ir_value *fld = global->constval.vpointer;
2677         if (!fld) {
2678             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2679             return false;
2680         }
2681
2682         /* copy the field's value */
2683         ir_value_code_setaddr(global, vec_size(code_globals));
2684         vec_push(code_globals, fld->code.fieldaddr);
2685         if (global->fieldtype == TYPE_VECTOR) {
2686             vec_push(code_globals, fld->code.fieldaddr+1);
2687             vec_push(code_globals, fld->code.fieldaddr+2);
2688         }
2689     }
2690     else
2691     {
2692         ir_value_code_setaddr(global, vec_size(code_globals));
2693         vec_push(code_globals, 0);
2694         if (global->fieldtype == TYPE_VECTOR) {
2695             vec_push(code_globals, 0);
2696             vec_push(code_globals, 0);
2697         }
2698     }
2699     if (global->code.globaladdr < 0)
2700         return false;
2701     return true;
2702 }
2703
2704 static bool gen_global_pointer(ir_value *global)
2705 {
2706     if (global->hasvalue)
2707     {
2708         ir_value *target = global->constval.vpointer;
2709         if (!target) {
2710             irerror(global->context, "Invalid pointer constant: %s", global->name);
2711             /* NULL pointers are pointing to the NULL constant, which also
2712              * sits at address 0, but still has an ir_value for itself.
2713              */
2714             return false;
2715         }
2716
2717         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2718          * void() foo; <- proto
2719          * void() *fooptr = &foo;
2720          * void() foo = { code }
2721          */
2722         if (!target->code.globaladdr) {
2723             /* FIXME: Check for the constant nullptr ir_value!
2724              * because then code.globaladdr being 0 is valid.
2725              */
2726             irerror(global->context, "FIXME: Relocation support");
2727             return false;
2728         }
2729
2730         ir_value_code_setaddr(global, vec_size(code_globals));
2731         vec_push(code_globals, target->code.globaladdr);
2732     }
2733     else
2734     {
2735         ir_value_code_setaddr(global, vec_size(code_globals));
2736         vec_push(code_globals, 0);
2737     }
2738     if (global->code.globaladdr < 0)
2739         return false;
2740     return true;
2741 }
2742
2743 static bool gen_blocks_recursive(ir_function *func, ir_block *block)
2744 {
2745     prog_section_statement stmt;
2746     ir_instr *instr;
2747     ir_block *target;
2748     ir_block *ontrue;
2749     ir_block *onfalse;
2750     size_t    stidx;
2751     size_t    i;
2752
2753 tailcall:
2754     block->generated = true;
2755     block->code_start = vec_size(code_statements);
2756     for (i = 0; i < vec_size(block->instr); ++i)
2757     {
2758         instr = block->instr[i];
2759
2760         if (instr->opcode == VINSTR_PHI) {
2761             irerror(block->context, "cannot generate virtual instruction (phi)");
2762             return false;
2763         }
2764
2765         if (instr->opcode == VINSTR_JUMP) {
2766             target = instr->bops[0];
2767             /* for uncoditional jumps, if the target hasn't been generated
2768              * yet, we generate them right here.
2769              */
2770             if (!target->generated) {
2771                 block = target;
2772                 goto tailcall;
2773             }
2774
2775             /* otherwise we generate a jump instruction */
2776             stmt.opcode = INSTR_GOTO;
2777             stmt.o1.s1 = (target->code_start) - vec_size(code_statements);
2778             stmt.o2.s1 = 0;
2779             stmt.o3.s1 = 0;
2780             if (stmt.o1.s1 != 1)
2781                 code_push_statement(&stmt, instr->context.line);
2782
2783             /* no further instructions can be in this block */
2784             return true;
2785         }
2786
2787         if (instr->opcode == VINSTR_COND) {
2788             ontrue  = instr->bops[0];
2789             onfalse = instr->bops[1];
2790             /* TODO: have the AST signal which block should
2791              * come first: eg. optimize IFs without ELSE...
2792              */
2793
2794             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
2795             stmt.o2.u1 = 0;
2796             stmt.o3.s1 = 0;
2797
2798             if (ontrue->generated) {
2799                 stmt.opcode = INSTR_IF;
2800                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code_statements);
2801                 if (stmt.o2.s1 != 1)
2802                     code_push_statement(&stmt, instr->context.line);
2803             }
2804             if (onfalse->generated) {
2805                 stmt.opcode = INSTR_IFNOT;
2806                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code_statements);
2807                 if (stmt.o2.s1 != 1)
2808                     code_push_statement(&stmt, instr->context.line);
2809             }
2810             if (!ontrue->generated) {
2811                 if (onfalse->generated) {
2812                     block = ontrue;
2813                     goto tailcall;
2814                 }
2815             }
2816             if (!onfalse->generated) {
2817                 if (ontrue->generated) {
2818                     block = onfalse;
2819                     goto tailcall;
2820                 }
2821             }
2822             /* neither ontrue nor onfalse exist */
2823             stmt.opcode = INSTR_IFNOT;
2824             if (!instr->likely) {
2825                 /* Honor the likelyhood hint */
2826                 ir_block *tmp = onfalse;
2827                 stmt.opcode = INSTR_IF;
2828                 onfalse = ontrue;
2829                 ontrue = tmp;
2830             }
2831             stidx = vec_size(code_statements);
2832             code_push_statement(&stmt, instr->context.line);
2833             /* on false we jump, so add ontrue-path */
2834             if (!gen_blocks_recursive(func, ontrue))
2835                 return false;
2836             /* fixup the jump address */
2837             code_statements[stidx].o2.s1 = vec_size(code_statements) - stidx;
2838             /* generate onfalse path */
2839             if (onfalse->generated) {
2840                 /* fixup the jump address */
2841                 code_statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
2842                 if (stidx+2 == vec_size(code_statements) && code_statements[stidx].o2.s1 == 1) {
2843                     code_statements[stidx] = code_statements[stidx+1];
2844                     if (code_statements[stidx].o1.s1 < 0)
2845                         code_statements[stidx].o1.s1++;
2846                     code_pop_statement();
2847                 }
2848                 stmt.opcode = vec_last(code_statements).opcode;
2849                 if (stmt.opcode == INSTR_GOTO ||
2850                     stmt.opcode == INSTR_IF ||
2851                     stmt.opcode == INSTR_IFNOT ||
2852                     stmt.opcode == INSTR_RETURN ||
2853                     stmt.opcode == INSTR_DONE)
2854                 {
2855                     /* no use jumping from here */
2856                     return true;
2857                 }
2858                 /* may have been generated in the previous recursive call */
2859                 stmt.opcode = INSTR_GOTO;
2860                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code_statements);
2861                 stmt.o2.s1 = 0;
2862                 stmt.o3.s1 = 0;
2863                 if (stmt.o1.s1 != 1)
2864                     code_push_statement(&stmt, instr->context.line);
2865                 return true;
2866             }
2867             else if (stidx+2 == vec_size(code_statements) && code_statements[stidx].o2.s1 == 1) {
2868                 code_statements[stidx] = code_statements[stidx+1];
2869                 if (code_statements[stidx].o1.s1 < 0)
2870                     code_statements[stidx].o1.s1++;
2871                 code_pop_statement();
2872             }
2873             /* if not, generate now */
2874             block = onfalse;
2875             goto tailcall;
2876         }
2877
2878         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
2879            || instr->opcode == VINSTR_NRCALL)
2880         {
2881             size_t p, first;
2882             ir_value *retvalue;
2883
2884             first = vec_size(instr->params);
2885             if (first > 8)
2886                 first = 8;
2887             for (p = 0; p < first; ++p)
2888             {
2889                 ir_value *param = instr->params[p];
2890                 if (param->callparam)
2891                     continue;
2892
2893                 stmt.opcode = INSTR_STORE_F;
2894                 stmt.o3.u1 = 0;
2895
2896                 if (param->vtype == TYPE_FIELD)
2897                     stmt.opcode = field_store_instr[param->fieldtype];
2898                 else if (param->vtype == TYPE_NIL)
2899                     stmt.opcode = INSTR_STORE_V;
2900                 else
2901                     stmt.opcode = type_store_instr[param->vtype];
2902                 stmt.o1.u1 = ir_value_code_addr(param);
2903                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
2904                 code_push_statement(&stmt, instr->context.line);
2905             }
2906             /* Now handle extparams */
2907             first = vec_size(instr->params);
2908             for (; p < first; ++p)
2909             {
2910                 ir_builder *ir = func->owner;
2911                 ir_value *param = instr->params[p];
2912                 ir_value *targetparam;
2913
2914                 if (param->callparam)
2915                     continue;
2916
2917                 if (p-8 >= vec_size(ir->extparams))
2918                     ir_gen_extparam(ir);
2919
2920                 targetparam = ir->extparams[p-8];
2921
2922                 stmt.opcode = INSTR_STORE_F;
2923                 stmt.o3.u1 = 0;
2924
2925                 if (param->vtype == TYPE_FIELD)
2926                     stmt.opcode = field_store_instr[param->fieldtype];
2927                 else if (param->vtype == TYPE_NIL)
2928                     stmt.opcode = INSTR_STORE_V;
2929                 else
2930                     stmt.opcode = type_store_instr[param->vtype];
2931                 stmt.o1.u1 = ir_value_code_addr(param);
2932                 stmt.o2.u1 = ir_value_code_addr(targetparam);
2933                 code_push_statement(&stmt, instr->context.line);
2934             }
2935
2936             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
2937             if (stmt.opcode > INSTR_CALL8)
2938                 stmt.opcode = INSTR_CALL8;
2939             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2940             stmt.o2.u1 = 0;
2941             stmt.o3.u1 = 0;
2942             code_push_statement(&stmt, instr->context.line);
2943
2944             retvalue = instr->_ops[0];
2945             if (retvalue && retvalue->store != store_return &&
2946                 (retvalue->store == store_global || vec_size(retvalue->life)))
2947             {
2948                 /* not to be kept in OFS_RETURN */
2949                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
2950                     stmt.opcode = field_store_instr[retvalue->fieldtype];
2951                 else
2952                     stmt.opcode = type_store_instr[retvalue->vtype];
2953                 stmt.o1.u1 = OFS_RETURN;
2954                 stmt.o2.u1 = ir_value_code_addr(retvalue);
2955                 stmt.o3.u1 = 0;
2956                 code_push_statement(&stmt, instr->context.line);
2957             }
2958             continue;
2959         }
2960
2961         if (instr->opcode == INSTR_STATE) {
2962             irerror(block->context, "TODO: state instruction");
2963             return false;
2964         }
2965
2966         stmt.opcode = instr->opcode;
2967         stmt.o1.u1 = 0;
2968         stmt.o2.u1 = 0;
2969         stmt.o3.u1 = 0;
2970
2971         /* This is the general order of operands */
2972         if (instr->_ops[0])
2973             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
2974
2975         if (instr->_ops[1])
2976             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2977
2978         if (instr->_ops[2])
2979             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
2980
2981         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
2982         {
2983             stmt.o1.u1 = stmt.o3.u1;
2984             stmt.o3.u1 = 0;
2985         }
2986         else if ((stmt.opcode >= INSTR_STORE_F &&
2987                   stmt.opcode <= INSTR_STORE_FNC) ||
2988                  (stmt.opcode >= INSTR_STOREP_F &&
2989                   stmt.opcode <= INSTR_STOREP_FNC))
2990         {
2991             /* 2-operand instructions with A -> B */
2992             stmt.o2.u1 = stmt.o3.u1;
2993             stmt.o3.u1 = 0;
2994
2995             /* tiny optimization, don't output
2996              * STORE a, a
2997              */
2998             if (stmt.o2.u1 == stmt.o1.u1 &&
2999                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
3000             {
3001                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
3002                 continue;
3003             }
3004         }
3005
3006         code_push_statement(&stmt, instr->context.line);
3007     }
3008     return true;
3009 }
3010
3011 static bool gen_function_code(ir_function *self)
3012 {
3013     ir_block *block;
3014     prog_section_statement stmt, *retst;
3015
3016     /* Starting from entry point, we generate blocks "as they come"
3017      * for now. Dead blocks will not be translated obviously.
3018      */
3019     if (!vec_size(self->blocks)) {
3020         irerror(self->context, "Function '%s' declared without body.", self->name);
3021         return false;
3022     }
3023
3024     block = self->blocks[0];
3025     if (block->generated)
3026         return true;
3027
3028     if (!gen_blocks_recursive(self, block)) {
3029         irerror(self->context, "failed to generate blocks for '%s'", self->name);
3030         return false;
3031     }
3032
3033     /* code_write and qcvm -disasm need to know that the function ends here */
3034     retst = &vec_last(code_statements);
3035     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
3036         self->outtype == TYPE_VOID &&
3037         retst->opcode == INSTR_RETURN &&
3038         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
3039     {
3040         retst->opcode = INSTR_DONE;
3041         ++opts_optimizationcount[OPTIM_VOID_RETURN];
3042     } else {
3043         stmt.opcode = INSTR_DONE;
3044         stmt.o1.u1 = 0;
3045         stmt.o2.u1 = 0;
3046         stmt.o3.u1 = 0;
3047         code_push_statement(&stmt, vec_last(code_linenums));
3048     }
3049     return true;
3050 }
3051
3052 static qcint ir_builder_filestring(ir_builder *ir, const char *filename)
3053 {
3054     /* NOTE: filename pointers are copied, we never strdup them,
3055      * thus we can use pointer-comparison to find the string.
3056      */
3057     size_t i;
3058     qcint  str;
3059
3060     for (i = 0; i < vec_size(ir->filenames); ++i) {
3061         if (ir->filenames[i] == filename)
3062             return ir->filestrings[i];
3063     }
3064
3065     str = code_genstring(filename);
3066     vec_push(ir->filenames, filename);
3067     vec_push(ir->filestrings, str);
3068     return str;
3069 }
3070
3071 static bool gen_global_function(ir_builder *ir, ir_value *global)
3072 {
3073     prog_section_function fun;
3074     ir_function          *irfun;
3075
3076     size_t i;
3077
3078     if (!global->hasvalue || (!global->constval.vfunc))
3079     {
3080         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
3081         return false;
3082     }
3083
3084     irfun = global->constval.vfunc;
3085
3086     fun.name    = global->code.name;
3087     fun.file    = ir_builder_filestring(ir, global->context.file);
3088     fun.profile = 0; /* always 0 */
3089     fun.nargs   = vec_size(irfun->params);
3090     if (fun.nargs > 8)
3091         fun.nargs = 8;
3092
3093     for (i = 0;i < 8; ++i) {
3094         if ((int32_t)i >= fun.nargs)
3095             fun.argsize[i] = 0;
3096         else
3097             fun.argsize[i] = type_sizeof_[irfun->params[i]];
3098     }
3099
3100     fun.firstlocal = 0;
3101     fun.locals     = irfun->allocated_locals;
3102
3103     if (irfun->builtin)
3104         fun.entry = irfun->builtin+1;
3105     else {
3106         irfun->code_function_def = vec_size(code_functions);
3107         fun.entry = vec_size(code_statements);
3108     }
3109
3110     vec_push(code_functions, fun);
3111     return true;
3112 }
3113
3114 static ir_value* ir_gen_extparam_proto(ir_builder *ir)
3115 {
3116     ir_value *global;
3117     char      name[128];
3118
3119     snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparam_protos)+8));
3120     global = ir_value_var(name, store_global, TYPE_VECTOR);
3121
3122     vec_push(ir->extparam_protos, global);
3123     return global;
3124 }
3125
3126 static void ir_gen_extparam(ir_builder *ir)
3127 {
3128     prog_section_def def;
3129     ir_value        *global;
3130
3131     if (vec_size(ir->extparam_protos) < vec_size(ir->extparams)+1)
3132         global = ir_gen_extparam_proto(ir);
3133     else
3134         global = ir->extparam_protos[vec_size(ir->extparams)];
3135
3136     def.name = code_genstring(global->name);
3137     def.type = TYPE_VECTOR;
3138     def.offset = vec_size(code_globals);
3139
3140     vec_push(code_defs, def);
3141     ir_value_code_setaddr(global, def.offset);
3142     vec_push(code_globals, 0);
3143     vec_push(code_globals, 0);
3144     vec_push(code_globals, 0);
3145
3146     vec_push(ir->extparams, global);
3147 }
3148
3149 static bool gen_function_extparam_copy(ir_function *self)
3150 {
3151     size_t i, ext, numparams;
3152
3153     ir_builder *ir = self->owner;
3154     ir_value   *ep;
3155     prog_section_statement stmt;
3156
3157     numparams = vec_size(self->params);
3158     if (!numparams)
3159         return true;
3160
3161     stmt.opcode = INSTR_STORE_F;
3162     stmt.o3.s1 = 0;
3163     for (i = 8; i < numparams; ++i) {
3164         ext = i - 8;
3165         if (ext >= vec_size(ir->extparams))
3166             ir_gen_extparam(ir);
3167
3168         ep = ir->extparams[ext];
3169
3170         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3171         if (self->locals[i]->vtype == TYPE_FIELD &&
3172             self->locals[i]->fieldtype == TYPE_VECTOR)
3173         {
3174             stmt.opcode = INSTR_STORE_V;
3175         }
3176         stmt.o1.u1 = ir_value_code_addr(ep);
3177         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3178         code_push_statement(&stmt, self->context.line);
3179     }
3180
3181     return true;
3182 }
3183
3184 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3185 {
3186     prog_section_function *def;
3187     ir_function           *irfun;
3188     size_t                 i;
3189     uint32_t               firstlocal, firstglobal;
3190
3191     irfun = global->constval.vfunc;
3192     def   = code_functions + irfun->code_function_def;
3193
3194     if (opts.g || !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS) || (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3195         firstlocal = def->firstlocal = vec_size(code_globals);
3196     else {
3197         firstlocal = def->firstlocal = ir->first_common_local;
3198         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3199     }
3200
3201     firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? ir->first_common_globaltemp : firstlocal);
3202
3203     for (i = vec_size(code_globals); i < firstlocal + irfun->allocated_locals; ++i)
3204         vec_push(code_globals, 0);
3205     for (i = 0; i < vec_size(irfun->locals); ++i) {
3206         ir_value *v = irfun->locals[i];
3207         if (v->locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) {
3208             ir_value_code_setaddr(v, firstlocal + v->code.local);
3209             if (!ir_builder_gen_global(ir, irfun->locals[i], true)) {
3210                 irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3211                 return false;
3212             }
3213         }
3214         else
3215             ir_value_code_setaddr(v, firstglobal + v->code.local);
3216     }
3217     for (i = 0; i < vec_size(irfun->values); ++i)
3218     {
3219         ir_value *v = irfun->values[i];
3220         if (v->callparam)
3221             continue;
3222         if (v->locked)
3223             ir_value_code_setaddr(v, firstlocal + v->code.local);
3224         else
3225             ir_value_code_setaddr(v, firstglobal + v->code.local);
3226     }
3227     return true;
3228 }
3229
3230 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3231 {
3232     prog_section_function *fundef;
3233     ir_function           *irfun;
3234
3235     (void)ir;
3236
3237     irfun = global->constval.vfunc;
3238     if (!irfun) {
3239         if (global->cvq == CV_NONE) {
3240             irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3241                       "function `%s` has no body and in QC implicitly becomes a function-pointer", global->name);
3242         }
3243         /* this was a function pointer, don't generate code for those */
3244         return true;
3245     }
3246
3247     if (irfun->builtin)
3248         return true;
3249
3250     if (irfun->code_function_def < 0) {
3251         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3252         return false;
3253     }
3254     fundef = &code_functions[irfun->code_function_def];
3255
3256     fundef->entry = vec_size(code_statements);
3257     if (!gen_function_locals(ir, global)) {
3258         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3259         return false;
3260     }
3261     if (!gen_function_extparam_copy(irfun)) {
3262         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3263         return false;
3264     }
3265     if (!gen_function_code(irfun)) {
3266         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3267         return false;
3268     }
3269     return true;
3270 }
3271
3272 static void gen_vector_defs(prog_section_def def, const char *name)
3273 {
3274     char  *component;
3275     size_t len, i;
3276
3277     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3278         return;
3279
3280     def.type = TYPE_FLOAT;
3281
3282     len = strlen(name);
3283
3284     component = (char*)mem_a(len+3);
3285     memcpy(component, name, len);
3286     len += 2;
3287     component[len-0] = 0;
3288     component[len-2] = '_';
3289
3290     component[len-1] = 'x';
3291
3292     for (i = 0; i < 3; ++i) {
3293         def.name = code_genstring(component);
3294         vec_push(code_defs, def);
3295         def.offset++;
3296         component[len-1]++;
3297     }
3298 }
3299
3300 static void gen_vector_fields(prog_section_field fld, const char *name)
3301 {
3302     char  *component;
3303     size_t len, i;
3304
3305     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3306         return;
3307
3308     fld.type = TYPE_FLOAT;
3309
3310     len = strlen(name);
3311
3312     component = (char*)mem_a(len+3);
3313     memcpy(component, name, len);
3314     len += 2;
3315     component[len-0] = 0;
3316     component[len-2] = '_';
3317
3318     component[len-1] = 'x';
3319
3320     for (i = 0; i < 3; ++i) {
3321         fld.name = code_genstring(component);
3322         vec_push(code_fields, fld);
3323         fld.offset++;
3324         component[len-1]++;
3325     }
3326 }
3327
3328 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal)
3329 {
3330     size_t           i;
3331     int32_t         *iptr;
3332     prog_section_def def;
3333     bool             pushdef = false;
3334
3335     def.type   = global->vtype;
3336     def.offset = vec_size(code_globals);
3337     def.name   = 0;
3338     if (opts.g || !islocal)
3339     {
3340         pushdef = true;
3341
3342         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3343             (global->name[0] == '#' || global->cvq == CV_CONST))
3344         {
3345             pushdef = false;
3346         }
3347
3348         if (pushdef && global->name) {
3349             if (global->name[0] == '#') {
3350                 if (!self->str_immediate)
3351                     self->str_immediate = code_genstring("IMMEDIATE");
3352                 def.name = global->code.name = self->str_immediate;
3353             }
3354             else
3355                 def.name = global->code.name = code_genstring(global->name);
3356         }
3357         else
3358             def.name   = 0;
3359         if (islocal) {
3360             def.offset = ir_value_code_addr(global);
3361             vec_push(code_defs, def);
3362             if (global->vtype == TYPE_VECTOR)
3363                 gen_vector_defs(def, global->name);
3364             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3365                 gen_vector_defs(def, global->name);
3366             return true;
3367         }
3368     }
3369     if (islocal)
3370         return true;
3371
3372     switch (global->vtype)
3373     {
3374     case TYPE_VOID:
3375         if (!strcmp(global->name, "end_sys_globals")) {
3376             /* TODO: remember this point... all the defs before this one
3377              * should be checksummed and added to progdefs.h when we generate it.
3378              */
3379         }
3380         else if (!strcmp(global->name, "end_sys_fields")) {
3381             /* TODO: same as above but for entity-fields rather than globsl
3382              */
3383         }
3384         else
3385             irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3386                       global->name);
3387         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3388          * the system fields actually go? Though the engine knows this anyway...
3389          * Maybe this could be an -foption
3390          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3391          */
3392         ir_value_code_setaddr(global, vec_size(code_globals));
3393         vec_push(code_globals, 0);
3394         /* Add the def */
3395         if (pushdef) vec_push(code_defs, def);
3396         return true;
3397     case TYPE_POINTER:
3398         if (pushdef) vec_push(code_defs, def);
3399         return gen_global_pointer(global);
3400     case TYPE_FIELD:
3401         if (pushdef) {
3402             vec_push(code_defs, def);
3403             if (global->fieldtype == TYPE_VECTOR)
3404                 gen_vector_defs(def, global->name);
3405         }
3406         return gen_global_field(global);
3407     case TYPE_ENTITY:
3408         /* fall through */
3409     case TYPE_FLOAT:
3410     {
3411         ir_value_code_setaddr(global, vec_size(code_globals));
3412         if (global->hasvalue) {
3413             iptr = (int32_t*)&global->constval.ivec[0];
3414             vec_push(code_globals, *iptr);
3415         } else {
3416             vec_push(code_globals, 0);
3417         }
3418         if (!islocal && global->cvq != CV_CONST)
3419             def.type |= DEF_SAVEGLOBAL;
3420         if (pushdef) vec_push(code_defs, def);
3421
3422         return global->code.globaladdr >= 0;
3423     }
3424     case TYPE_STRING:
3425     {
3426         ir_value_code_setaddr(global, vec_size(code_globals));
3427         if (global->hasvalue) {
3428             vec_push(code_globals, code_genstring(global->constval.vstring));
3429         } else {
3430             vec_push(code_globals, 0);
3431         }
3432         if (!islocal && global->cvq != CV_CONST)
3433             def.type |= DEF_SAVEGLOBAL;
3434         if (pushdef) vec_push(code_defs, def);
3435         return global->code.globaladdr >= 0;
3436     }
3437     case TYPE_VECTOR:
3438     {
3439         size_t d;
3440         ir_value_code_setaddr(global, vec_size(code_globals));
3441         if (global->hasvalue) {
3442             iptr = (int32_t*)&global->constval.ivec[0];
3443             vec_push(code_globals, iptr[0]);
3444             if (global->code.globaladdr < 0)
3445                 return false;
3446             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3447                 vec_push(code_globals, iptr[d]);
3448             }
3449         } else {
3450             vec_push(code_globals, 0);
3451             if (global->code.globaladdr < 0)
3452                 return false;
3453             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3454                 vec_push(code_globals, 0);
3455             }
3456         }
3457         if (!islocal && global->cvq != CV_CONST)
3458             def.type |= DEF_SAVEGLOBAL;
3459
3460         if (pushdef) {
3461             vec_push(code_defs, def);
3462             def.type &= ~DEF_SAVEGLOBAL;
3463             gen_vector_defs(def, global->name);
3464         }
3465         return global->code.globaladdr >= 0;
3466     }
3467     case TYPE_FUNCTION:
3468         ir_value_code_setaddr(global, vec_size(code_globals));
3469         if (!global->hasvalue) {
3470             vec_push(code_globals, 0);
3471             if (global->code.globaladdr < 0)
3472                 return false;
3473         } else {
3474             vec_push(code_globals, vec_size(code_functions));
3475             if (!gen_global_function(self, global))
3476                 return false;
3477         }
3478         if (!islocal && global->cvq != CV_CONST)
3479             def.type |= DEF_SAVEGLOBAL;
3480         if (pushdef) vec_push(code_defs, def);
3481         return true;
3482     case TYPE_VARIANT:
3483         /* assume biggest type */
3484             ir_value_code_setaddr(global, vec_size(code_globals));
3485             vec_push(code_globals, 0);
3486             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3487                 vec_push(code_globals, 0);
3488             return true;
3489     default:
3490         /* refuse to create 'void' type or any other fancy business. */
3491         irerror(global->context, "Invalid type for global variable `%s`: %s",
3492                 global->name, type_name[global->vtype]);
3493         return false;
3494     }
3495 }
3496
3497 static void ir_builder_prepare_field(ir_value *field)
3498 {
3499     field->code.fieldaddr = code_alloc_field(type_sizeof_[field->fieldtype]);
3500 }
3501
3502 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3503 {
3504     prog_section_def def;
3505     prog_section_field fld;
3506
3507     (void)self;
3508
3509     def.type   = (uint16_t)field->vtype;
3510     def.offset = (uint16_t)vec_size(code_globals);
3511
3512     /* create a global named the same as the field */
3513     if (opts.standard == COMPILER_GMQCC) {
3514         /* in our standard, the global gets a dot prefix */
3515         size_t len = strlen(field->name);
3516         char name[1024];
3517
3518         /* we really don't want to have to allocate this, and 1024
3519          * bytes is more than enough for a variable/field name
3520          */
3521         if (len+2 >= sizeof(name)) {
3522             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3523             return false;
3524         }
3525
3526         name[0] = '.';
3527         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3528         name[len+1] = 0;
3529
3530         def.name = code_genstring(name);
3531         fld.name = def.name + 1; /* we reuse that string table entry */
3532     } else {
3533         /* in plain QC, there cannot be a global with the same name,
3534          * and so we also name the global the same.
3535          * FIXME: fteqcc should create a global as well
3536          * check if it actually uses the same name. Probably does
3537          */
3538         def.name = code_genstring(field->name);
3539         fld.name = def.name;
3540     }
3541
3542     field->code.name = def.name;
3543
3544     vec_push(code_defs, def);
3545
3546     fld.type = field->fieldtype;
3547
3548     if (fld.type == TYPE_VOID) {
3549         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3550         return false;
3551     }
3552
3553     fld.offset = field->code.fieldaddr;
3554
3555     vec_push(code_fields, fld);
3556
3557     ir_value_code_setaddr(field, vec_size(code_globals));
3558     vec_push(code_globals, fld.offset);
3559     if (fld.type == TYPE_VECTOR) {
3560         vec_push(code_globals, fld.offset+1);
3561         vec_push(code_globals, fld.offset+2);
3562     }
3563
3564     if (field->fieldtype == TYPE_VECTOR) {
3565         gen_vector_defs(def, field->name);
3566         gen_vector_fields(fld, field->name);
3567     }
3568
3569     return field->code.globaladdr >= 0;
3570 }
3571
3572 bool ir_builder_generate(ir_builder *self, const char *filename)
3573 {
3574     prog_section_statement stmt;
3575     size_t i;
3576     char  *lnofile = NULL;
3577
3578     code_init();
3579
3580     for (i = 0; i < vec_size(self->fields); ++i)
3581     {
3582         ir_builder_prepare_field(self->fields[i]);
3583     }
3584
3585     for (i = 0; i < vec_size(self->globals); ++i)
3586     {
3587         if (!ir_builder_gen_global(self, self->globals[i], false)) {
3588             return false;
3589         }
3590         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3591             ir_function *func = self->globals[i]->constval.vfunc;
3592             if (func && self->max_locals < func->allocated_locals &&
3593                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3594             {
3595                 self->max_locals = func->allocated_locals;
3596             }
3597             if (func && self->max_globaltemps < func->globaltemps)
3598                 self->max_globaltemps = func->globaltemps;
3599         }
3600     }
3601
3602     for (i = 0; i < vec_size(self->fields); ++i)
3603     {
3604         if (!ir_builder_gen_field(self, self->fields[i])) {
3605             return false;
3606         }
3607     }
3608
3609     /* generate nil */
3610     ir_value_code_setaddr(self->nil, vec_size(code_globals));
3611     vec_push(code_globals, 0);
3612     vec_push(code_globals, 0);
3613     vec_push(code_globals, 0);
3614
3615     /* generate global temps */
3616     self->first_common_globaltemp = vec_size(code_globals);
3617     for (i = 0; i < self->max_globaltemps; ++i) {
3618         vec_push(code_globals, 0);
3619     }
3620     /* generate common locals */
3621     self->first_common_local = vec_size(code_globals);
3622     for (i = 0; i < self->max_locals; ++i) {
3623         vec_push(code_globals, 0);
3624     }
3625
3626     /* generate function code */
3627     for (i = 0; i < vec_size(self->globals); ++i)
3628     {
3629         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3630             if (!gen_global_function_code(self, self->globals[i])) {
3631                 return false;
3632             }
3633         }
3634     }
3635
3636     if (vec_size(code_globals) >= 65536) {
3637         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3638         return false;
3639     }
3640
3641     /* DP errors if the last instruction is not an INSTR_DONE. */
3642     if (vec_last(code_statements).opcode != INSTR_DONE)
3643     {
3644         stmt.opcode = INSTR_DONE;
3645         stmt.o1.u1 = 0;
3646         stmt.o2.u1 = 0;
3647         stmt.o3.u1 = 0;
3648         code_push_statement(&stmt, vec_last(code_linenums));
3649     }
3650
3651     if (opts.pp_only)
3652         return true;
3653
3654     if (vec_size(code_statements) != vec_size(code_linenums)) {
3655         con_err("Linecounter wrong: %lu != %lu\n",
3656                 (unsigned long)vec_size(code_statements),
3657                 (unsigned long)vec_size(code_linenums));
3658     } else if (OPTS_FLAG(LNO)) {
3659         char *dot;
3660         size_t filelen = strlen(filename);
3661
3662         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3663         dot = strrchr(lnofile, '.');
3664         if (!dot) {
3665             vec_pop(lnofile);
3666         } else {
3667             vec_shrinkto(lnofile, dot - lnofile);
3668         }
3669         memcpy(vec_add(lnofile, 5), ".lno", 5);
3670     }
3671
3672     if (!opts.quiet) {
3673         if (lnofile)
3674             con_out("writing '%s' and '%s'...\n", filename, lnofile);
3675         else
3676             con_out("writing '%s'\n", filename);
3677     }
3678     if (!code_write(filename, lnofile)) {
3679         vec_free(lnofile);
3680         return false;
3681     }
3682     vec_free(lnofile);
3683     return true;
3684 }
3685
3686 /***********************************************************************
3687  *IR DEBUG Dump functions...
3688  */
3689
3690 #define IND_BUFSZ 1024
3691
3692 #ifdef _MSC_VER
3693 #   define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE)
3694 #endif
3695
3696 const char *qc_opname(int op)
3697 {
3698     if (op < 0) return "<INVALID>";
3699     if (op < (int)( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
3700         return asm_instr[op].m;
3701     switch (op) {
3702         case VINSTR_PHI:  return "PHI";
3703         case VINSTR_JUMP: return "JUMP";
3704         case VINSTR_COND: return "COND";
3705         default:          return "<UNK>";
3706     }
3707 }
3708
3709 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
3710 {
3711     size_t i;
3712     char indent[IND_BUFSZ];
3713     indent[0] = '\t';
3714     indent[1] = 0;
3715
3716     oprintf("module %s\n", b->name);
3717     for (i = 0; i < vec_size(b->globals); ++i)
3718     {
3719         oprintf("global ");
3720         if (b->globals[i]->hasvalue)
3721             oprintf("%s = ", b->globals[i]->name);
3722         ir_value_dump(b->globals[i], oprintf);
3723         oprintf("\n");
3724     }
3725     for (i = 0; i < vec_size(b->functions); ++i)
3726         ir_function_dump(b->functions[i], indent, oprintf);
3727     oprintf("endmodule %s\n", b->name);
3728 }
3729
3730 void ir_function_dump(ir_function *f, char *ind,
3731                       int (*oprintf)(const char*, ...))
3732 {
3733     size_t i;
3734     if (f->builtin != 0) {
3735         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
3736         return;
3737     }
3738     oprintf("%sfunction %s\n", ind, f->name);
3739     strncat(ind, "\t", IND_BUFSZ);
3740     if (vec_size(f->locals))
3741     {
3742         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
3743         for (i = 0; i < vec_size(f->locals); ++i) {
3744             oprintf("%s\t", ind);
3745             ir_value_dump(f->locals[i], oprintf);
3746             oprintf("\n");
3747         }
3748     }
3749     oprintf("%sliferanges:\n", ind);
3750     for (i = 0; i < vec_size(f->locals); ++i) {
3751         const char *attr = "";
3752         size_t l, m;
3753         ir_value *v = f->locals[i];
3754         if (v->unique_life && v->locked)
3755             attr = "unique,locked ";
3756         else if (v->unique_life)
3757             attr = "unique ";
3758         else if (v->locked)
3759             attr = "locked ";
3760         oprintf("%s\t%s: %s %s%s@%i ", ind, v->name, type_name[v->vtype],
3761                 attr, (v->callparam ? "callparam " : ""),
3762                 (int)v->code.local);
3763         for (l = 0; l < vec_size(v->life); ++l) {
3764             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3765         }
3766         oprintf("\n");
3767         for (m = 0; m < 3; ++m) {
3768             ir_value *vm = v->members[m];
3769             if (!vm)
3770                 continue;
3771             if (vm->unique_life && vm->locked)
3772                 attr = "unique,locked ";
3773             else if (vm->unique_life)
3774                 attr = "unique ";
3775             else if (vm->locked)
3776                 attr = "locked ";
3777             oprintf("%s\t%s: %s@%i ", ind, vm->name, attr, (int)vm->code.local);
3778             for (l = 0; l < vec_size(vm->life); ++l) {
3779                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3780             }
3781             oprintf("\n");
3782         }
3783     }
3784     for (i = 0; i < vec_size(f->values); ++i) {
3785         const char *attr = "";
3786         size_t l, m;
3787         ir_value *v = f->values[i];
3788         if (v->unique_life && v->locked)
3789             attr = "unique,locked ";
3790         else if (v->unique_life)
3791             attr = "unique ";
3792         else if (v->locked)
3793             attr = "locked ";
3794         oprintf("%s\t%s: %s %s%s@%i ", ind, v->name, type_name[v->vtype],
3795                 attr, (v->callparam ? "callparam " : ""),
3796                 (int)v->code.local);
3797         for (l = 0; l < vec_size(v->life); ++l) {
3798             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3799         }
3800         oprintf("\n");
3801         for (m = 0; m < 3; ++m) {
3802             ir_value *vm = v->members[m];
3803             if (!vm)
3804                 continue;
3805             if (vm->unique_life && vm->locked)
3806                 attr = "unique,locked ";
3807             else if (vm->unique_life)
3808                 attr = "unique ";
3809             else if (vm->locked)
3810                 attr = "locked ";
3811             oprintf("%s\t%s: %s@%i ", ind, vm->name, attr, (int)vm->code.local);
3812             for (l = 0; l < vec_size(vm->life); ++l) {
3813                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3814             }
3815             oprintf("\n");
3816         }
3817     }
3818     if (vec_size(f->blocks))
3819     {
3820         oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
3821         for (i = 0; i < vec_size(f->blocks); ++i) {
3822             if (f->blocks[i]->run_id != f->run_id) {
3823                 oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
3824             }
3825             ir_block_dump(f->blocks[i], ind, oprintf);
3826         }
3827
3828     }
3829     ind[strlen(ind)-1] = 0;
3830     oprintf("%sendfunction %s\n", ind, f->name);
3831 }
3832
3833 void ir_block_dump(ir_block* b, char *ind,
3834                    int (*oprintf)(const char*, ...))
3835 {
3836     size_t i;
3837     oprintf("%s:%s\n", ind, b->label);
3838     strncat(ind, "\t", IND_BUFSZ);
3839
3840     for (i = 0; i < vec_size(b->instr); ++i)
3841         ir_instr_dump(b->instr[i], ind, oprintf);
3842     ind[strlen(ind)-1] = 0;
3843 }
3844
3845 void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
3846 {
3847     size_t i;
3848     oprintf("%s <- phi ", in->_ops[0]->name);
3849     for (i = 0; i < vec_size(in->phi); ++i)
3850     {
3851         oprintf("([%s] : %s) ", in->phi[i].from->label,
3852                                 in->phi[i].value->name);
3853     }
3854     oprintf("\n");
3855 }
3856
3857 void ir_instr_dump(ir_instr *in, char *ind,
3858                        int (*oprintf)(const char*, ...))
3859 {
3860     size_t i;
3861     const char *comma = NULL;
3862
3863     oprintf("%s (%i) ", ind, (int)in->eid);
3864
3865     if (in->opcode == VINSTR_PHI) {
3866         dump_phi(in, oprintf);
3867         return;
3868     }
3869
3870     strncat(ind, "\t", IND_BUFSZ);
3871
3872     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
3873         ir_value_dump(in->_ops[0], oprintf);
3874         if (in->_ops[1] || in->_ops[2])
3875             oprintf(" <- ");
3876     }
3877     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
3878         oprintf("CALL%i\t", vec_size(in->params));
3879     } else
3880         oprintf("%s\t", qc_opname(in->opcode));
3881
3882     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
3883         ir_value_dump(in->_ops[0], oprintf);
3884         comma = ",\t";
3885     }
3886     else
3887     {
3888         for (i = 1; i != 3; ++i) {
3889             if (in->_ops[i]) {
3890                 if (comma)
3891                     oprintf(comma);
3892                 ir_value_dump(in->_ops[i], oprintf);
3893                 comma = ",\t";
3894             }
3895         }
3896     }
3897     if (in->bops[0]) {
3898         if (comma)
3899             oprintf(comma);
3900         oprintf("[%s]", in->bops[0]->label);
3901         comma = ",\t";
3902     }
3903     if (in->bops[1])
3904         oprintf("%s[%s]", comma, in->bops[1]->label);
3905     if (vec_size(in->params)) {
3906         oprintf("\tparams: ");
3907         for (i = 0; i != vec_size(in->params); ++i) {
3908             oprintf("%s, ", in->params[i]->name);
3909         }
3910     }
3911     oprintf("\n");
3912     ind[strlen(ind)-1] = 0;
3913 }
3914
3915 void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
3916 {
3917     oprintf("\"");
3918     for (; *str; ++str) {
3919         switch (*str) {
3920             case '\n': oprintf("\\n"); break;
3921             case '\r': oprintf("\\r"); break;
3922             case '\t': oprintf("\\t"); break;
3923             case '\v': oprintf("\\v"); break;
3924             case '\f': oprintf("\\f"); break;
3925             case '\b': oprintf("\\b"); break;
3926             case '\a': oprintf("\\a"); break;
3927             case '\\': oprintf("\\\\"); break;
3928             case '"': oprintf("\\\""); break;
3929             default: oprintf("%c", *str); break;
3930         }
3931     }
3932     oprintf("\"");
3933 }
3934
3935 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
3936 {
3937     if (v->hasvalue) {
3938         switch (v->vtype) {
3939             default:
3940             case TYPE_VOID:
3941                 oprintf("(void)");
3942                 break;
3943             case TYPE_FUNCTION:
3944                 oprintf("fn:%s", v->name);
3945                 break;
3946             case TYPE_FLOAT:
3947                 oprintf("%g", v->constval.vfloat);
3948                 break;
3949             case TYPE_VECTOR:
3950                 oprintf("'%g %g %g'",
3951                         v->constval.vvec.x,
3952                         v->constval.vvec.y,
3953                         v->constval.vvec.z);
3954                 break;
3955             case TYPE_ENTITY:
3956                 oprintf("(entity)");
3957                 break;
3958             case TYPE_STRING:
3959                 ir_value_dump_string(v->constval.vstring, oprintf);
3960                 break;
3961 #if 0
3962             case TYPE_INTEGER:
3963                 oprintf("%i", v->constval.vint);
3964                 break;
3965 #endif
3966             case TYPE_POINTER:
3967                 oprintf("&%s",
3968                     v->constval.vpointer->name);
3969                 break;
3970         }
3971     } else {
3972         oprintf("%s", v->name);
3973     }
3974 }
3975
3976 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
3977 {
3978     size_t i;
3979     oprintf("Life of %12s:", self->name);
3980     for (i = 0; i < vec_size(self->life); ++i)
3981     {
3982         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
3983     }
3984 }