]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Add a comment about why we don't delete the owner
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     /* The owner is always an ast_value, which has .keep=true,
409      * also: ast_members are usually deleted after the owner, thus
410      * this will cause invalid access
411     ast_unref(self->owner);
412      * once we allow (expression).x to access a vector-member, we need
413      * to change this: preferably by creating an alternate ast node for this
414      * purpose that is not garbage-collected.
415     */
416     ast_expression_delete((ast_expression*)self);
417     mem_d(self);
418 }
419
420 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
421 {
422     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
423     if (!ontrue && !onfalse) {
424         /* because it is invalid */
425         mem_d(self);
426         return NULL;
427     }
428     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
429
430     self->cond     = cond;
431     self->on_true  = ontrue;
432     self->on_false = onfalse;
433
434     return self;
435 }
436
437 void ast_ifthen_delete(ast_ifthen *self)
438 {
439     ast_unref(self->cond);
440     if (self->on_true)
441         ast_unref(self->on_true);
442     if (self->on_false)
443         ast_unref(self->on_false);
444     ast_expression_delete((ast_expression*)self);
445     mem_d(self);
446 }
447
448 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
449 {
450     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
451     /* This time NEITHER must be NULL */
452     if (!ontrue || !onfalse) {
453         mem_d(self);
454         return NULL;
455     }
456     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
457
458     self->cond     = cond;
459     self->on_true  = ontrue;
460     self->on_false = onfalse;
461     self->phi_out  = NULL;
462
463     return self;
464 }
465
466 void ast_ternary_delete(ast_ternary *self)
467 {
468     ast_unref(self->cond);
469     ast_unref(self->on_true);
470     ast_unref(self->on_false);
471     ast_expression_delete((ast_expression*)self);
472     mem_d(self);
473 }
474
475 ast_loop* ast_loop_new(lex_ctx ctx,
476                        ast_expression *initexpr,
477                        ast_expression *precond,
478                        ast_expression *postcond,
479                        ast_expression *increment,
480                        ast_expression *body)
481 {
482     ast_instantiate(ast_loop, ctx, ast_loop_delete);
483     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
484
485     self->initexpr  = initexpr;
486     self->precond   = precond;
487     self->postcond  = postcond;
488     self->increment = increment;
489     self->body      = body;
490
491     return self;
492 }
493
494 void ast_loop_delete(ast_loop *self)
495 {
496     if (self->initexpr)
497         ast_unref(self->initexpr);
498     if (self->precond)
499         ast_unref(self->precond);
500     if (self->postcond)
501         ast_unref(self->postcond);
502     if (self->increment)
503         ast_unref(self->increment);
504     if (self->body)
505         ast_unref(self->body);
506     ast_expression_delete((ast_expression*)self);
507     mem_d(self);
508 }
509
510 ast_call* ast_call_new(lex_ctx ctx,
511                        ast_expression *funcexpr)
512 {
513     ast_instantiate(ast_call, ctx, ast_call_delete);
514     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
515
516     MEM_VECTOR_INIT(self, params);
517
518     self->func = funcexpr;
519
520     return self;
521 }
522 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
523
524 void ast_call_delete(ast_call *self)
525 {
526     size_t i;
527     for (i = 0; i < self->params_count; ++i)
528         ast_unref(self->params[i]);
529     MEM_VECTOR_CLEAR(self, params);
530
531     if (self->func)
532         ast_unref(self->func);
533
534     ast_expression_delete((ast_expression*)self);
535     mem_d(self);
536 }
537
538 ast_store* ast_store_new(lex_ctx ctx, int op,
539                          ast_expression *dest, ast_expression *source)
540 {
541     ast_instantiate(ast_store, ctx, ast_store_delete);
542     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
543
544     self->op = op;
545     self->dest = dest;
546     self->source = source;
547
548     return self;
549 }
550
551 void ast_store_delete(ast_store *self)
552 {
553     ast_unref(self->dest);
554     ast_unref(self->source);
555     ast_expression_delete((ast_expression*)self);
556     mem_d(self);
557 }
558
559 ast_block* ast_block_new(lex_ctx ctx)
560 {
561     ast_instantiate(ast_block, ctx, ast_block_delete);
562     ast_expression_init((ast_expression*)self,
563                         (ast_expression_codegen*)&ast_block_codegen);
564
565     MEM_VECTOR_INIT(self, locals);
566     MEM_VECTOR_INIT(self, exprs);
567     MEM_VECTOR_INIT(self, collect);
568
569     return self;
570 }
571 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
572 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
573 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
574
575 bool ast_block_collect(ast_block *self, ast_expression *expr)
576 {
577     if (!ast_block_collect_add(self, expr))
578         return false;
579     expr->expression.node.keep = true;
580     return true;
581 }
582
583 void ast_block_delete(ast_block *self)
584 {
585     size_t i;
586     for (i = 0; i < self->exprs_count; ++i)
587         ast_unref(self->exprs[i]);
588     MEM_VECTOR_CLEAR(self, exprs);
589     for (i = 0; i < self->locals_count; ++i)
590         ast_delete(self->locals[i]);
591     MEM_VECTOR_CLEAR(self, locals);
592     for (i = 0; i < self->collect_count; ++i)
593         ast_delete(self->collect[i]);
594     MEM_VECTOR_CLEAR(self, collect);
595     ast_expression_delete((ast_expression*)self);
596     mem_d(self);
597 }
598
599 bool ast_block_set_type(ast_block *self, ast_expression *from)
600 {
601     if (self->expression.next)
602         ast_delete(self->expression.next);
603     self->expression.vtype = from->expression.vtype;
604     if (from->expression.next) {
605         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
606         if (!self->expression.next)
607             return false;
608     }
609     return true;
610 }
611
612 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
613 {
614     ast_instantiate(ast_function, ctx, ast_function_delete);
615
616     if (!vtype ||
617         vtype->isconst ||
618         vtype->expression.vtype != TYPE_FUNCTION)
619     {
620         mem_d(self);
621         return NULL;
622     }
623
624     self->vtype = vtype;
625     self->name = name ? util_strdup(name) : NULL;
626     MEM_VECTOR_INIT(self, blocks);
627
628     self->labelcount = 0;
629     self->builtin = 0;
630
631     self->ir_func = NULL;
632     self->curblock = NULL;
633
634     self->breakblock    = NULL;
635     self->continueblock = NULL;
636
637     vtype->isconst = true;
638     vtype->constval.vfunc = self;
639
640     return self;
641 }
642
643 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
644
645 void ast_function_delete(ast_function *self)
646 {
647     size_t i;
648     if (self->name)
649         mem_d((void*)self->name);
650     if (self->vtype) {
651         /* ast_value_delete(self->vtype); */
652         self->vtype->isconst = false;
653         self->vtype->constval.vfunc = NULL;
654         /* We use unref - if it was stored in a global table it is supposed
655          * to be deleted from *there*
656          */
657         ast_unref(self->vtype);
658     }
659     for (i = 0; i < self->blocks_count; ++i)
660         ast_delete(self->blocks[i]);
661     MEM_VECTOR_CLEAR(self, blocks);
662     mem_d(self);
663 }
664
665 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
666 {
667     unsigned int base = 10;
668 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
669 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
670     if (size < 1)
671         return;
672     checknul();
673     if (!num)
674         addch('0');
675     else {
676         while (num)
677         {
678             int digit = num % base;
679             num /= base;
680             addch('0' + digit);
681         }
682     }
683
684     *buf = 0;
685 #undef addch
686 #undef checknul
687 }
688
689 const char* ast_function_label(ast_function *self, const char *prefix)
690 {
691     size_t id = (self->labelcount++);
692     size_t len = strlen(prefix);
693     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
694     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
695     return self->labelbuf;
696 }
697
698 /*********************************************************************/
699 /* AST codegen part
700  * by convention you must never pass NULL to the 'ir_value **out'
701  * parameter. If you really don't care about the output, pass a dummy.
702  * But I can't imagine a pituation where the output is truly unnecessary.
703  */
704
705 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
706 {
707     /* NOTE: This is the codegen for a variable used in an expression.
708      * It is not the codegen to generate the value. For this purpose,
709      * ast_local_codegen and ast_global_codegen are to be used before this
710      * is executed. ast_function_codegen should take care of its locals,
711      * and the ast-user should take care of ast_global_codegen to be used
712      * on all the globals.
713      */
714     if (!self->ir_v) {
715         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
716         return false;
717     }
718     *out = self->ir_v;
719     return true;
720 }
721
722 bool ast_global_codegen(ast_value *self, ir_builder *ir)
723 {
724     ir_value *v = NULL;
725     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
726     {
727         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
728         if (!func)
729             return false;
730
731         self->constval.vfunc->ir_func = func;
732         self->ir_v = func->value;
733         /* The function is filled later on ast_function_codegen... */
734         return true;
735     }
736
737     if (self->expression.vtype == TYPE_FIELD) {
738         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
739         if (!v)
740             return false;
741         if (self->isconst) {
742             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
743             goto error;
744         }
745         self->ir_v = v;
746         return true;
747     }
748
749     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
750     if (!v) {
751         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
752         return false;
753     }
754
755     if (self->isconst) {
756         switch (self->expression.vtype)
757         {
758             case TYPE_FLOAT:
759                 if (!ir_value_set_float(v, self->constval.vfloat))
760                     goto error;
761                 break;
762             case TYPE_VECTOR:
763                 if (!ir_value_set_vector(v, self->constval.vvec))
764                     goto error;
765                 break;
766             case TYPE_STRING:
767                 if (!ir_value_set_string(v, self->constval.vstring))
768                     goto error;
769                 break;
770             case TYPE_FUNCTION:
771                 asterror(ast_ctx(self), "global of type function not properly generated\n");
772                 goto error;
773                 /* Cannot generate an IR value for a function,
774                  * need a pointer pointing to a function rather.
775                  */
776             default:
777                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
778                 break;
779         }
780     }
781
782     /* link us to the ir_value */
783     self->ir_v = v;
784     return true;
785
786 error: /* clean up */
787     ir_value_delete(v);
788     return false;
789 }
790
791 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
792 {
793     ir_value *v = NULL;
794     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
795     {
796         /* Do we allow local functions? I think not...
797          * this is NOT a function pointer atm.
798          */
799         return false;
800     }
801
802     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
803     if (!v)
804         return false;
805
806     /* A constant local... hmmm...
807      * I suppose the IR will have to deal with this
808      */
809     if (self->isconst) {
810         switch (self->expression.vtype)
811         {
812             case TYPE_FLOAT:
813                 if (!ir_value_set_float(v, self->constval.vfloat))
814                     goto error;
815                 break;
816             case TYPE_VECTOR:
817                 if (!ir_value_set_vector(v, self->constval.vvec))
818                     goto error;
819                 break;
820             case TYPE_STRING:
821                 if (!ir_value_set_string(v, self->constval.vstring))
822                     goto error;
823                 break;
824             default:
825                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
826                 break;
827         }
828     }
829
830     /* link us to the ir_value */
831     self->ir_v = v;
832     return true;
833
834 error: /* clean up */
835     ir_value_delete(v);
836     return false;
837 }
838
839 bool ast_function_codegen(ast_function *self, ir_builder *ir)
840 {
841     ir_function *irf;
842     ir_value    *dummy;
843     ast_expression_common *ec;
844     size_t    i;
845
846     irf = self->ir_func;
847     if (!irf) {
848         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
849         return false;
850     }
851
852     /* fill the parameter list */
853     ec = &self->vtype->expression;
854     for (i = 0; i < ec->params_count; ++i)
855     {
856         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
857             return false;
858         if (!self->builtin) {
859             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
860                 return false;
861         }
862     }
863
864     if (self->builtin) {
865         irf->builtin = self->builtin;
866         return true;
867     }
868
869     if (!self->blocks_count) {
870         asterror(ast_ctx(self), "function `%s` has no body", self->name);
871         return false;
872     }
873
874     self->curblock = ir_function_create_block(irf, "entry");
875     if (!self->curblock)
876         return false;
877
878     for (i = 0; i < self->blocks_count; ++i) {
879         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
880         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
881             return false;
882     }
883
884     /* TODO: check return types */
885     if (!self->curblock->is_return)
886     {
887         if (!self->vtype->expression.next ||
888             self->vtype->expression.next->expression.vtype == TYPE_VOID)
889         {
890             return ir_block_create_return(self->curblock, NULL);
891         }
892         else
893         {
894             /* error("missing return"); */
895             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
896             return false;
897         }
898     }
899     return true;
900 }
901
902 /* Note, you will not see ast_block_codegen generate ir_blocks.
903  * To the AST and the IR, blocks are 2 different things.
904  * In the AST it represents a block of code, usually enclosed in
905  * curly braces {...}.
906  * While in the IR it represents a block in terms of control-flow.
907  */
908 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
909 {
910     size_t i;
911
912     /* We don't use this
913      * Note: an ast-representation using the comma-operator
914      * of the form: (a, b, c) = x should not assign to c...
915      */
916     (void)lvalue;
917     if (self->expression.outr) {
918         *out = self->expression.outr;
919         return true;
920     }
921
922     /* output is NULL at first, we'll have each expression
923      * assign to out output, thus, a comma-operator represention
924      * using an ast_block will return the last generated value,
925      * so: (b, c) + a  executed both b and c, and returns c,
926      * which is then added to a.
927      */
928     *out = NULL;
929
930     /* generate locals */
931     for (i = 0; i < self->locals_count; ++i)
932     {
933         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
934             return false;
935     }
936
937     for (i = 0; i < self->exprs_count; ++i)
938     {
939         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
940         if (!(*gen)(self->exprs[i], func, false, out))
941             return false;
942     }
943
944     self->expression.outr = *out;
945
946     return true;
947 }
948
949 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
950 {
951     ast_expression_codegen *cgen;
952     ir_value *left, *right;
953
954     if (lvalue && self->expression.outl) {
955         *out = self->expression.outl;
956         return true;
957     }
958
959     if (!lvalue && self->expression.outr) {
960         *out = self->expression.outr;
961         return true;
962     }
963
964     cgen = self->dest->expression.codegen;
965     /* lvalue! */
966     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
967         return false;
968     self->expression.outl = left;
969
970     cgen = self->source->expression.codegen;
971     /* rvalue! */
972     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
973         return false;
974
975     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
976         return false;
977     self->expression.outr = right;
978
979     /* Theoretically, an assinment returns its left side as an
980      * lvalue, if we don't need an lvalue though, we return
981      * the right side as an rvalue, otherwise we have to
982      * somehow know whether or not we need to dereference the pointer
983      * on the left side - that is: OP_LOAD if it was an address.
984      * Also: in original QC we cannot OP_LOADP *anyway*.
985      */
986     *out = (lvalue ? left : right);
987
988     return true;
989 }
990
991 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
992 {
993     ast_expression_codegen *cgen;
994     ir_value *left, *right;
995
996     /* In the context of a binary operation, we can disregard
997      * the lvalue flag.
998      */
999     (void)lvalue;
1000     if (self->expression.outr) {
1001         *out = self->expression.outr;
1002         return true;
1003     }
1004
1005     cgen = self->left->expression.codegen;
1006     /* lvalue! */
1007     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1008         return false;
1009
1010     cgen = self->right->expression.codegen;
1011     /* rvalue! */
1012     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1013         return false;
1014
1015     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1016                                  self->op, left, right);
1017     if (!*out)
1018         return false;
1019     self->expression.outr = *out;
1020
1021     return true;
1022 }
1023
1024 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1025 {
1026     ast_expression_codegen *cgen;
1027     ir_value *leftl, *leftr, *right, *bin;
1028
1029     if (lvalue && self->expression.outl) {
1030         *out = self->expression.outl;
1031         return true;
1032     }
1033
1034     if (!lvalue && self->expression.outr) {
1035         *out = self->expression.outr;
1036         return true;
1037     }
1038
1039     /* for a binstore we need both an lvalue and an rvalue for the left side */
1040     /* rvalue of destination! */
1041     cgen = self->dest->expression.codegen;
1042     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1043         return false;
1044
1045     /* source as rvalue only */
1046     cgen = self->source->expression.codegen;
1047     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1048         return false;
1049
1050     /* now the binary */
1051     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1052                                 self->opbin, leftr, right);
1053     self->expression.outr = bin;
1054
1055     /* now store them */
1056     cgen = self->dest->expression.codegen;
1057     /* lvalue of destination */
1058     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1059         return false;
1060     self->expression.outl = leftl;
1061
1062     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1063         return false;
1064     self->expression.outr = bin;
1065
1066     /* Theoretically, an assinment returns its left side as an
1067      * lvalue, if we don't need an lvalue though, we return
1068      * the right side as an rvalue, otherwise we have to
1069      * somehow know whether or not we need to dereference the pointer
1070      * on the left side - that is: OP_LOAD if it was an address.
1071      * Also: in original QC we cannot OP_LOADP *anyway*.
1072      */
1073     *out = (lvalue ? leftl : bin);
1074
1075     return true;
1076 }
1077
1078 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1079 {
1080     ast_expression_codegen *cgen;
1081     ir_value *operand;
1082
1083     /* In the context of a unary operation, we can disregard
1084      * the lvalue flag.
1085      */
1086     (void)lvalue;
1087     if (self->expression.outr) {
1088         *out = self->expression.outr;
1089         return true;
1090     }
1091
1092     cgen = self->operand->expression.codegen;
1093     /* lvalue! */
1094     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1095         return false;
1096
1097     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1098                                  self->op, operand);
1099     if (!*out)
1100         return false;
1101     self->expression.outr = *out;
1102
1103     return true;
1104 }
1105
1106 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1107 {
1108     ast_expression_codegen *cgen;
1109     ir_value *operand;
1110
1111     /* In the context of a return operation, we can disregard
1112      * the lvalue flag.
1113      */
1114     (void)lvalue;
1115     if (self->expression.outr) {
1116         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1117         return false;
1118     }
1119     self->expression.outr = (ir_value*)1;
1120
1121     cgen = self->operand->expression.codegen;
1122     /* lvalue! */
1123     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1124         return false;
1125
1126     if (!ir_block_create_return(func->curblock, operand))
1127         return false;
1128
1129     return true;
1130 }
1131
1132 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1133 {
1134     ast_expression_codegen *cgen;
1135     ir_value *ent, *field;
1136
1137     /* This function needs to take the 'lvalue' flag into account!
1138      * As lvalue we provide a field-pointer, as rvalue we provide the
1139      * value in a temp.
1140      */
1141
1142     if (lvalue && self->expression.outl) {
1143         *out = self->expression.outl;
1144         return true;
1145     }
1146
1147     if (!lvalue && self->expression.outr) {
1148         *out = self->expression.outr;
1149         return true;
1150     }
1151
1152     cgen = self->entity->expression.codegen;
1153     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1154         return false;
1155
1156     cgen = self->field->expression.codegen;
1157     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1158         return false;
1159
1160     if (lvalue) {
1161         /* address! */
1162         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1163                                             ent, field);
1164     } else {
1165         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1166                                              ent, field, self->expression.vtype);
1167     }
1168     if (!*out) {
1169         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1170                  (lvalue ? "ADDRESS" : "FIELD"),
1171                  type_name[self->expression.vtype]);
1172         return false;
1173     }
1174
1175     if (lvalue)
1176         self->expression.outl = *out;
1177     else
1178         self->expression.outr = *out;
1179
1180     /* Hm that should be it... */
1181     return true;
1182 }
1183
1184 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1185 {
1186     ast_expression_codegen *cgen;
1187     ir_value *vec;
1188
1189     /* in QC this is always an lvalue */
1190     (void)lvalue;
1191     if (self->expression.outl) {
1192         *out = self->expression.outl;
1193         return true;
1194     }
1195
1196     cgen = self->owner->expression.codegen;
1197     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1198         return false;
1199
1200     if (vec->vtype != TYPE_VECTOR &&
1201         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1202     {
1203         return false;
1204     }
1205
1206     *out = ir_value_vector_member(vec, self->field);
1207     self->expression.outl = *out;
1208
1209     return (*out != NULL);
1210 }
1211
1212 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1213 {
1214     ast_expression_codegen *cgen;
1215
1216     ir_value *condval;
1217     ir_value *dummy;
1218
1219     ir_block *cond = func->curblock;
1220     ir_block *ontrue;
1221     ir_block *onfalse;
1222     ir_block *merge;
1223
1224     /* We don't output any value, thus also don't care about r/lvalue */
1225     (void)out;
1226     (void)lvalue;
1227
1228     if (self->expression.outr) {
1229         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1230         return false;
1231     }
1232     self->expression.outr = (ir_value*)1;
1233
1234     /* generate the condition */
1235     func->curblock = cond;
1236     cgen = self->cond->expression.codegen;
1237     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1238         return false;
1239
1240     /* on-true path */
1241
1242     if (self->on_true) {
1243         /* create on-true block */
1244         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1245         if (!ontrue)
1246             return false;
1247
1248         /* enter the block */
1249         func->curblock = ontrue;
1250
1251         /* generate */
1252         cgen = self->on_true->expression.codegen;
1253         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1254             return false;
1255     } else
1256         ontrue = NULL;
1257
1258     /* on-false path */
1259     if (self->on_false) {
1260         /* create on-false block */
1261         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1262         if (!onfalse)
1263             return false;
1264
1265         /* enter the block */
1266         func->curblock = onfalse;
1267
1268         /* generate */
1269         cgen = self->on_false->expression.codegen;
1270         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1271             return false;
1272     } else
1273         onfalse = NULL;
1274
1275     /* Merge block were they all merge in to */
1276     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1277     if (!merge)
1278         return false;
1279
1280     /* add jumps ot the merge block */
1281     if (ontrue && !ir_block_create_jump(ontrue, merge))
1282         return false;
1283     if (onfalse && !ir_block_create_jump(onfalse, merge))
1284         return false;
1285
1286     /* we create the if here, that way all blocks are ordered :)
1287      */
1288     if (!ir_block_create_if(cond, condval,
1289                             (ontrue  ? ontrue  : merge),
1290                             (onfalse ? onfalse : merge)))
1291     {
1292         return false;
1293     }
1294
1295     /* Now enter the merge block */
1296     func->curblock = merge;
1297
1298     return true;
1299 }
1300
1301 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1302 {
1303     ast_expression_codegen *cgen;
1304
1305     ir_value *condval;
1306     ir_value *trueval, *falseval;
1307     ir_instr *phi;
1308
1309     ir_block *cond = func->curblock;
1310     ir_block *ontrue;
1311     ir_block *onfalse;
1312     ir_block *merge;
1313
1314     /* Ternary can never create an lvalue... */
1315     if (lvalue)
1316         return false;
1317
1318     /* In theory it shouldn't be possible to pass through a node twice, but
1319      * in case we add any kind of optimization pass for the AST itself, it
1320      * may still happen, thus we remember a created ir_value and simply return one
1321      * if it already exists.
1322      */
1323     if (self->phi_out) {
1324         *out = self->phi_out;
1325         return true;
1326     }
1327
1328     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1329
1330     /* generate the condition */
1331     func->curblock = cond;
1332     cgen = self->cond->expression.codegen;
1333     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1334         return false;
1335
1336     /* create on-true block */
1337     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1338     if (!ontrue)
1339         return false;
1340     else
1341     {
1342         /* enter the block */
1343         func->curblock = ontrue;
1344
1345         /* generate */
1346         cgen = self->on_true->expression.codegen;
1347         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1348             return false;
1349     }
1350
1351     /* create on-false block */
1352     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1353     if (!onfalse)
1354         return false;
1355     else
1356     {
1357         /* enter the block */
1358         func->curblock = onfalse;
1359
1360         /* generate */
1361         cgen = self->on_false->expression.codegen;
1362         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1363             return false;
1364     }
1365
1366     /* create merge block */
1367     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1368     if (!merge)
1369         return false;
1370     /* jump to merge block */
1371     if (!ir_block_create_jump(ontrue, merge))
1372         return false;
1373     if (!ir_block_create_jump(onfalse, merge))
1374         return false;
1375
1376     /* create if instruction */
1377     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1378         return false;
1379
1380     /* Now enter the merge block */
1381     func->curblock = merge;
1382
1383     /* Here, now, we need a PHI node
1384      * but first some sanity checking...
1385      */
1386     if (trueval->vtype != falseval->vtype) {
1387         /* error("ternary with different types on the two sides"); */
1388         return false;
1389     }
1390
1391     /* create PHI */
1392     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1393     if (!phi ||
1394         !ir_phi_add(phi, ontrue,  trueval) ||
1395         !ir_phi_add(phi, onfalse, falseval))
1396     {
1397         return false;
1398     }
1399
1400     self->phi_out = ir_phi_value(phi);
1401     *out = self->phi_out;
1402
1403     return true;
1404 }
1405
1406 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1407 {
1408     ast_expression_codegen *cgen;
1409
1410     ir_value *dummy      = NULL;
1411     ir_value *precond    = NULL;
1412     ir_value *postcond   = NULL;
1413
1414     /* Since we insert some jumps "late" so we have blocks
1415      * ordered "nicely", we need to keep track of the actual end-blocks
1416      * of expressions to add the jumps to.
1417      */
1418     ir_block *bbody      = NULL, *end_bbody      = NULL;
1419     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1420     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1421     ir_block *bincrement = NULL, *end_bincrement = NULL;
1422     ir_block *bout       = NULL, *bin            = NULL;
1423
1424     /* let's at least move the outgoing block to the end */
1425     size_t    bout_id;
1426
1427     /* 'break' and 'continue' need to be able to find the right blocks */
1428     ir_block *bcontinue     = NULL;
1429     ir_block *bbreak        = NULL;
1430
1431     ir_block *old_bcontinue = NULL;
1432     ir_block *old_bbreak    = NULL;
1433
1434     ir_block *tmpblock      = NULL;
1435
1436     (void)lvalue;
1437     (void)out;
1438
1439     if (self->expression.outr) {
1440         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1441         return false;
1442     }
1443     self->expression.outr = (ir_value*)1;
1444
1445     /* NOTE:
1446      * Should we ever need some kind of block ordering, better make this function
1447      * move blocks around than write a block ordering algorithm later... after all
1448      * the ast and ir should work together, not against each other.
1449      */
1450
1451     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1452      * anyway if for example it contains a ternary.
1453      */
1454     if (self->initexpr)
1455     {
1456         cgen = self->initexpr->expression.codegen;
1457         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1458             return false;
1459     }
1460
1461     /* Store the block from which we enter this chaos */
1462     bin = func->curblock;
1463
1464     /* The pre-loop condition needs its own block since we
1465      * need to be able to jump to the start of that expression.
1466      */
1467     if (self->precond)
1468     {
1469         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1470         if (!bprecond)
1471             return false;
1472
1473         /* the pre-loop-condition the least important place to 'continue' at */
1474         bcontinue = bprecond;
1475
1476         /* enter */
1477         func->curblock = bprecond;
1478
1479         /* generate */
1480         cgen = self->precond->expression.codegen;
1481         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1482             return false;
1483
1484         end_bprecond = func->curblock;
1485     } else {
1486         bprecond = end_bprecond = NULL;
1487     }
1488
1489     /* Now the next blocks won't be ordered nicely, but we need to
1490      * generate them this early for 'break' and 'continue'.
1491      */
1492     if (self->increment) {
1493         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1494         if (!bincrement)
1495             return false;
1496         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1497     } else {
1498         bincrement = end_bincrement = NULL;
1499     }
1500
1501     if (self->postcond) {
1502         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1503         if (!bpostcond)
1504             return false;
1505         bcontinue = bpostcond; /* postcond comes before the increment */
1506     } else {
1507         bpostcond = end_bpostcond = NULL;
1508     }
1509
1510     bout_id = func->ir_func->blocks_count;
1511     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1512     if (!bout)
1513         return false;
1514     bbreak = bout;
1515
1516     /* The loop body... */
1517     if (self->body)
1518     {
1519         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1520         if (!bbody)
1521             return false;
1522
1523         /* enter */
1524         func->curblock = bbody;
1525
1526         old_bbreak          = func->breakblock;
1527         old_bcontinue       = func->continueblock;
1528         func->breakblock    = bbreak;
1529         func->continueblock = bcontinue;
1530
1531         /* generate */
1532         cgen = self->body->expression.codegen;
1533         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1534             return false;
1535
1536         end_bbody = func->curblock;
1537         func->breakblock    = old_bbreak;
1538         func->continueblock = old_bcontinue;
1539     }
1540
1541     /* post-loop-condition */
1542     if (self->postcond)
1543     {
1544         /* enter */
1545         func->curblock = bpostcond;
1546
1547         /* generate */
1548         cgen = self->postcond->expression.codegen;
1549         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1550             return false;
1551
1552         end_bpostcond = func->curblock;
1553     }
1554
1555     /* The incrementor */
1556     if (self->increment)
1557     {
1558         /* enter */
1559         func->curblock = bincrement;
1560
1561         /* generate */
1562         cgen = self->increment->expression.codegen;
1563         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1564             return false;
1565
1566         end_bincrement = func->curblock;
1567     }
1568
1569     /* In any case now, we continue from the outgoing block */
1570     func->curblock = bout;
1571
1572     /* Now all blocks are in place */
1573     /* From 'bin' we jump to whatever comes first */
1574     if      (bprecond)   tmpblock = bprecond;
1575     else if (bbody)      tmpblock = bbody;
1576     else if (bpostcond)  tmpblock = bpostcond;
1577     else                 tmpblock = bout;
1578     if (!ir_block_create_jump(bin, tmpblock))
1579         return false;
1580
1581     /* From precond */
1582     if (bprecond)
1583     {
1584         ir_block *ontrue, *onfalse;
1585         if      (bbody)      ontrue = bbody;
1586         else if (bincrement) ontrue = bincrement;
1587         else if (bpostcond)  ontrue = bpostcond;
1588         else                 ontrue = bprecond;
1589         onfalse = bout;
1590         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1591             return false;
1592     }
1593
1594     /* from body */
1595     if (bbody)
1596     {
1597         if      (bincrement) tmpblock = bincrement;
1598         else if (bpostcond)  tmpblock = bpostcond;
1599         else if (bprecond)   tmpblock = bprecond;
1600         else                 tmpblock = bout;
1601         if (!ir_block_create_jump(end_bbody, tmpblock))
1602             return false;
1603     }
1604
1605     /* from increment */
1606     if (bincrement)
1607     {
1608         if      (bpostcond)  tmpblock = bpostcond;
1609         else if (bprecond)   tmpblock = bprecond;
1610         else if (bbody)      tmpblock = bbody;
1611         else                 tmpblock = bout;
1612         if (!ir_block_create_jump(end_bincrement, tmpblock))
1613             return false;
1614     }
1615
1616     /* from postcond */
1617     if (bpostcond)
1618     {
1619         ir_block *ontrue, *onfalse;
1620         if      (bprecond)   ontrue = bprecond;
1621         else if (bbody)      ontrue = bbody;
1622         else if (bincrement) ontrue = bincrement;
1623         else                 ontrue = bpostcond;
1624         onfalse = bout;
1625         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1626             return false;
1627     }
1628
1629     /* Move 'bout' to the end */
1630     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1631         !ir_function_blocks_add(func->ir_func, bout))
1632     {
1633         ir_block_delete(bout);
1634         return false;
1635     }
1636
1637     return true;
1638 }
1639
1640 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1641 {
1642     ast_expression_codegen *cgen;
1643     ir_value_vector         params;
1644     ir_instr               *callinstr;
1645     size_t i;
1646
1647     ir_value *funval = NULL;
1648
1649     /* return values are never lvalues */
1650     (void)lvalue;
1651
1652     if (self->expression.outr) {
1653         *out = self->expression.outr;
1654         return true;
1655     }
1656
1657     cgen = self->func->expression.codegen;
1658     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1659         return false;
1660     if (!funval)
1661         return false;
1662
1663     MEM_VECTOR_INIT(&params, v);
1664
1665     /* parameters */
1666     for (i = 0; i < self->params_count; ++i)
1667     {
1668         ir_value *param;
1669         ast_expression *expr = self->params[i];
1670
1671         cgen = expr->expression.codegen;
1672         if (!(*cgen)(expr, func, false, &param))
1673             goto error;
1674         if (!param)
1675             goto error;
1676         if (!ir_value_vector_v_add(&params, param))
1677             goto error;
1678     }
1679
1680     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1681     if (!callinstr)
1682         goto error;
1683
1684     for (i = 0; i < params.v_count; ++i) {
1685         if (!ir_call_param(callinstr, params.v[i]))
1686             goto error;
1687     }
1688
1689     *out = ir_call_value(callinstr);
1690     self->expression.outr = *out;
1691
1692     MEM_VECTOR_CLEAR(&params, v);
1693     return true;
1694 error:
1695     MEM_VECTOR_CLEAR(&params, v);
1696     return false;
1697 }