]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Variadic functions: works for builtins, warns for implemenetd functions, -Wvariadic...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     memset(&self->constval, 0, sizeof(self->constval));
232
233     self->ir_v    = NULL;
234
235     return self;
236 }
237
238 void ast_value_delete(ast_value* self)
239 {
240     if (self->name)
241         mem_d((void*)self->name);
242     if (self->isconst) {
243         switch (self->expression.vtype)
244         {
245         case TYPE_STRING:
246             mem_d((void*)self->constval.vstring);
247             break;
248         case TYPE_FUNCTION:
249             /* unlink us from the function node */
250             self->constval.vfunc->vtype = NULL;
251             break;
252         /* NOTE: delete function? currently collected in
253          * the parser structure
254          */
255         default:
256             break;
257         }
258     }
259     ast_expression_delete((ast_expression*)self);
260     mem_d(self);
261 }
262
263 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
264 {
265     return ast_expression_common_params_add(&self->expression, p);
266 }
267
268 bool ast_value_set_name(ast_value *self, const char *name)
269 {
270     if (self->name)
271         mem_d((void*)self->name);
272     self->name = util_strdup(name);
273     return !!self->name;
274 }
275
276 ast_binary* ast_binary_new(lex_ctx ctx, int op,
277                            ast_expression* left, ast_expression* right)
278 {
279     ast_instantiate(ast_binary, ctx, ast_binary_delete);
280     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
281
282     self->op = op;
283     self->left = left;
284     self->right = right;
285
286     if (op >= INSTR_EQ_F && op <= INSTR_GT)
287         self->expression.vtype = TYPE_FLOAT;
288     else if (op == INSTR_AND || op == INSTR_OR ||
289              op == INSTR_BITAND || op == INSTR_BITOR)
290         self->expression.vtype = TYPE_FLOAT;
291     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
292         self->expression.vtype = TYPE_VECTOR;
293     else if (op == INSTR_MUL_V)
294         self->expression.vtype = TYPE_FLOAT;
295     else
296         self->expression.vtype = left->expression.vtype;
297
298     return self;
299 }
300
301 void ast_binary_delete(ast_binary *self)
302 {
303     ast_unref(self->left);
304     ast_unref(self->right);
305     ast_expression_delete((ast_expression*)self);
306     mem_d(self);
307 }
308
309 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
310                                ast_expression* left, ast_expression* right)
311 {
312     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
313     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
314
315     self->opstore = storop;
316     self->opbin   = op;
317     self->dest    = left;
318     self->source  = right;
319
320     self->expression.vtype = left->expression.vtype;
321     if (left->expression.next) {
322         self->expression.next = ast_type_copy(ctx, left);
323         if (!self->expression.next) {
324             ast_delete(self);
325             return NULL;
326         }
327     }
328     else
329         self->expression.next = NULL;
330
331     return self;
332 }
333
334 void ast_binstore_delete(ast_binstore *self)
335 {
336     ast_unref(self->dest);
337     ast_unref(self->source);
338     ast_expression_delete((ast_expression*)self);
339     mem_d(self);
340 }
341
342 ast_unary* ast_unary_new(lex_ctx ctx, int op,
343                          ast_expression *expr)
344 {
345     ast_instantiate(ast_unary, ctx, ast_unary_delete);
346     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
347
348     self->op = op;
349     self->operand = expr;
350
351     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
352         self->expression.vtype = TYPE_FLOAT;
353     } else
354         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
355
356     return self;
357 }
358
359 void ast_unary_delete(ast_unary *self)
360 {
361     ast_unref(self->operand);
362     ast_expression_delete((ast_expression*)self);
363     mem_d(self);
364 }
365
366 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
367 {
368     ast_instantiate(ast_return, ctx, ast_return_delete);
369     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
370
371     self->operand = expr;
372
373     return self;
374 }
375
376 void ast_return_delete(ast_return *self)
377 {
378     if (self->operand)
379         ast_unref(self->operand);
380     ast_expression_delete((ast_expression*)self);
381     mem_d(self);
382 }
383
384 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
385 {
386     const ast_expression *outtype;
387
388     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
389
390     if (field->expression.vtype != TYPE_FIELD) {
391         mem_d(self);
392         return NULL;
393     }
394
395     outtype = field->expression.next;
396     if (!outtype) {
397         mem_d(self);
398         /* Error: field has no type... */
399         return NULL;
400     }
401
402     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
403
404     self->entity = entity;
405     self->field  = field;
406
407     if (!ast_type_adopt(self, outtype)) {
408         ast_entfield_delete(self);
409         return NULL;
410     }
411
412     return self;
413 }
414
415 void ast_entfield_delete(ast_entfield *self)
416 {
417     ast_unref(self->entity);
418     ast_unref(self->field);
419     ast_expression_delete((ast_expression*)self);
420     mem_d(self);
421 }
422
423 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
424 {
425     ast_instantiate(ast_member, ctx, ast_member_delete);
426     if (field >= 3) {
427         mem_d(self);
428         return NULL;
429     }
430
431     if (owner->expression.vtype != TYPE_VECTOR &&
432         owner->expression.vtype != TYPE_FIELD) {
433         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
434         mem_d(self);
435         return NULL;
436     }
437
438     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
439     self->expression.node.keep = true; /* keep */
440
441     if (owner->expression.vtype == TYPE_VECTOR) {
442         self->expression.vtype = TYPE_FLOAT;
443         self->expression.next  = NULL;
444     } else {
445         self->expression.vtype = TYPE_FIELD;
446         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
447     }
448
449     self->owner = owner;
450     self->field = field;
451
452     return self;
453 }
454
455 void ast_member_delete(ast_member *self)
456 {
457     /* The owner is always an ast_value, which has .keep=true,
458      * also: ast_members are usually deleted after the owner, thus
459      * this will cause invalid access
460     ast_unref(self->owner);
461      * once we allow (expression).x to access a vector-member, we need
462      * to change this: preferably by creating an alternate ast node for this
463      * purpose that is not garbage-collected.
464     */
465     ast_expression_delete((ast_expression*)self);
466     mem_d(self);
467 }
468
469 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
470 {
471     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
472     if (!ontrue && !onfalse) {
473         /* because it is invalid */
474         mem_d(self);
475         return NULL;
476     }
477     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
478
479     self->cond     = cond;
480     self->on_true  = ontrue;
481     self->on_false = onfalse;
482
483     return self;
484 }
485
486 void ast_ifthen_delete(ast_ifthen *self)
487 {
488     ast_unref(self->cond);
489     if (self->on_true)
490         ast_unref(self->on_true);
491     if (self->on_false)
492         ast_unref(self->on_false);
493     ast_expression_delete((ast_expression*)self);
494     mem_d(self);
495 }
496
497 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
498 {
499     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
500     /* This time NEITHER must be NULL */
501     if (!ontrue || !onfalse) {
502         mem_d(self);
503         return NULL;
504     }
505     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
506
507     self->cond     = cond;
508     self->on_true  = ontrue;
509     self->on_false = onfalse;
510     self->phi_out  = NULL;
511
512     return self;
513 }
514
515 void ast_ternary_delete(ast_ternary *self)
516 {
517     ast_unref(self->cond);
518     ast_unref(self->on_true);
519     ast_unref(self->on_false);
520     ast_expression_delete((ast_expression*)self);
521     mem_d(self);
522 }
523
524 ast_loop* ast_loop_new(lex_ctx ctx,
525                        ast_expression *initexpr,
526                        ast_expression *precond,
527                        ast_expression *postcond,
528                        ast_expression *increment,
529                        ast_expression *body)
530 {
531     ast_instantiate(ast_loop, ctx, ast_loop_delete);
532     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
533
534     self->initexpr  = initexpr;
535     self->precond   = precond;
536     self->postcond  = postcond;
537     self->increment = increment;
538     self->body      = body;
539
540     return self;
541 }
542
543 void ast_loop_delete(ast_loop *self)
544 {
545     if (self->initexpr)
546         ast_unref(self->initexpr);
547     if (self->precond)
548         ast_unref(self->precond);
549     if (self->postcond)
550         ast_unref(self->postcond);
551     if (self->increment)
552         ast_unref(self->increment);
553     if (self->body)
554         ast_unref(self->body);
555     ast_expression_delete((ast_expression*)self);
556     mem_d(self);
557 }
558
559 ast_call* ast_call_new(lex_ctx ctx,
560                        ast_expression *funcexpr)
561 {
562     ast_instantiate(ast_call, ctx, ast_call_delete);
563     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
564
565     MEM_VECTOR_INIT(self, params);
566
567     self->func = funcexpr;
568
569     self->expression.vtype = funcexpr->expression.next->expression.vtype;
570     if (funcexpr->expression.next->expression.next)
571         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
572
573     return self;
574 }
575 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
576
577 void ast_call_delete(ast_call *self)
578 {
579     size_t i;
580     for (i = 0; i < self->params_count; ++i)
581         ast_unref(self->params[i]);
582     MEM_VECTOR_CLEAR(self, params);
583
584     if (self->func)
585         ast_unref(self->func);
586
587     ast_expression_delete((ast_expression*)self);
588     mem_d(self);
589 }
590
591 ast_store* ast_store_new(lex_ctx ctx, int op,
592                          ast_expression *dest, ast_expression *source)
593 {
594     ast_instantiate(ast_store, ctx, ast_store_delete);
595     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
596
597     self->op = op;
598     self->dest = dest;
599     self->source = source;
600
601     return self;
602 }
603
604 void ast_store_delete(ast_store *self)
605 {
606     ast_unref(self->dest);
607     ast_unref(self->source);
608     ast_expression_delete((ast_expression*)self);
609     mem_d(self);
610 }
611
612 ast_block* ast_block_new(lex_ctx ctx)
613 {
614     ast_instantiate(ast_block, ctx, ast_block_delete);
615     ast_expression_init((ast_expression*)self,
616                         (ast_expression_codegen*)&ast_block_codegen);
617
618     MEM_VECTOR_INIT(self, locals);
619     MEM_VECTOR_INIT(self, exprs);
620     MEM_VECTOR_INIT(self, collect);
621
622     return self;
623 }
624 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
625 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
627
628 bool ast_block_collect(ast_block *self, ast_expression *expr)
629 {
630     if (!ast_block_collect_add(self, expr))
631         return false;
632     expr->expression.node.keep = true;
633     return true;
634 }
635
636 void ast_block_delete(ast_block *self)
637 {
638     size_t i;
639     for (i = 0; i < self->exprs_count; ++i)
640         ast_unref(self->exprs[i]);
641     MEM_VECTOR_CLEAR(self, exprs);
642     for (i = 0; i < self->locals_count; ++i)
643         ast_delete(self->locals[i]);
644     MEM_VECTOR_CLEAR(self, locals);
645     for (i = 0; i < self->collect_count; ++i)
646         ast_delete(self->collect[i]);
647     MEM_VECTOR_CLEAR(self, collect);
648     ast_expression_delete((ast_expression*)self);
649     mem_d(self);
650 }
651
652 bool ast_block_set_type(ast_block *self, ast_expression *from)
653 {
654     if (self->expression.next)
655         ast_delete(self->expression.next);
656     self->expression.vtype = from->expression.vtype;
657     if (from->expression.next) {
658         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
659         if (!self->expression.next)
660             return false;
661     }
662     else
663         self->expression.next = NULL;
664     return true;
665 }
666
667 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
668 {
669     ast_instantiate(ast_function, ctx, ast_function_delete);
670
671     if (!vtype ||
672         vtype->isconst ||
673         vtype->expression.vtype != TYPE_FUNCTION)
674     {
675         mem_d(self);
676         return NULL;
677     }
678
679     self->vtype = vtype;
680     self->name = name ? util_strdup(name) : NULL;
681     MEM_VECTOR_INIT(self, blocks);
682
683     self->labelcount = 0;
684     self->builtin = 0;
685
686     self->ir_func = NULL;
687     self->curblock = NULL;
688
689     self->breakblock    = NULL;
690     self->continueblock = NULL;
691
692     vtype->isconst = true;
693     vtype->constval.vfunc = self;
694
695     return self;
696 }
697
698 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
699
700 void ast_function_delete(ast_function *self)
701 {
702     size_t i;
703     if (self->name)
704         mem_d((void*)self->name);
705     if (self->vtype) {
706         /* ast_value_delete(self->vtype); */
707         self->vtype->isconst = false;
708         self->vtype->constval.vfunc = NULL;
709         /* We use unref - if it was stored in a global table it is supposed
710          * to be deleted from *there*
711          */
712         ast_unref(self->vtype);
713     }
714     for (i = 0; i < self->blocks_count; ++i)
715         ast_delete(self->blocks[i]);
716     MEM_VECTOR_CLEAR(self, blocks);
717     mem_d(self);
718 }
719
720 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
721 {
722     unsigned int base = 10;
723 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
724 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
725     if (size < 1)
726         return;
727     checknul();
728     if (!num)
729         addch('0');
730     else {
731         while (num)
732         {
733             int digit = num % base;
734             num /= base;
735             addch('0' + digit);
736         }
737     }
738
739     *buf = 0;
740 #undef addch
741 #undef checknul
742 }
743
744 const char* ast_function_label(ast_function *self, const char *prefix)
745 {
746     size_t id = (self->labelcount++);
747     size_t len = strlen(prefix);
748     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
749     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
750     return self->labelbuf;
751 }
752
753 /*********************************************************************/
754 /* AST codegen part
755  * by convention you must never pass NULL to the 'ir_value **out'
756  * parameter. If you really don't care about the output, pass a dummy.
757  * But I can't imagine a pituation where the output is truly unnecessary.
758  */
759
760 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
761 {
762     /* NOTE: This is the codegen for a variable used in an expression.
763      * It is not the codegen to generate the value. For this purpose,
764      * ast_local_codegen and ast_global_codegen are to be used before this
765      * is executed. ast_function_codegen should take care of its locals,
766      * and the ast-user should take care of ast_global_codegen to be used
767      * on all the globals.
768      */
769     if (!self->ir_v) {
770         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
771         return false;
772     }
773     *out = self->ir_v;
774     return true;
775 }
776
777 bool ast_global_codegen(ast_value *self, ir_builder *ir)
778 {
779     ir_value *v = NULL;
780     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
781     {
782         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
783         if (!func)
784             return false;
785         func->context = ast_ctx(self);
786
787         self->constval.vfunc->ir_func = func;
788         self->ir_v = func->value;
789         /* The function is filled later on ast_function_codegen... */
790         return true;
791     }
792
793     if (self->expression.vtype == TYPE_FIELD) {
794         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
795         if (!v)
796             return false;
797         v->context = ast_ctx(self);
798         if (self->isconst) {
799             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
800             goto error;
801         }
802         self->ir_v = v;
803         return true;
804     }
805
806     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
807     if (!v) {
808         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
809         return false;
810     }
811     v->context = ast_ctx(self);
812
813     if (self->isconst) {
814         switch (self->expression.vtype)
815         {
816             case TYPE_FLOAT:
817                 if (!ir_value_set_float(v, self->constval.vfloat))
818                     goto error;
819                 break;
820             case TYPE_VECTOR:
821                 if (!ir_value_set_vector(v, self->constval.vvec))
822                     goto error;
823                 break;
824             case TYPE_STRING:
825                 if (!ir_value_set_string(v, self->constval.vstring))
826                     goto error;
827                 break;
828             case TYPE_FUNCTION:
829                 asterror(ast_ctx(self), "global of type function not properly generated\n");
830                 goto error;
831                 /* Cannot generate an IR value for a function,
832                  * need a pointer pointing to a function rather.
833                  */
834             default:
835                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
836                 break;
837         }
838     }
839
840     /* link us to the ir_value */
841     self->ir_v = v;
842     return true;
843
844 error: /* clean up */
845     ir_value_delete(v);
846     return false;
847 }
848
849 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
850 {
851     ir_value *v = NULL;
852     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
853     {
854         /* Do we allow local functions? I think not...
855          * this is NOT a function pointer atm.
856          */
857         return false;
858     }
859
860     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
861     if (!v)
862         return false;
863     v->context = ast_ctx(self);
864
865     /* A constant local... hmmm...
866      * I suppose the IR will have to deal with this
867      */
868     if (self->isconst) {
869         switch (self->expression.vtype)
870         {
871             case TYPE_FLOAT:
872                 if (!ir_value_set_float(v, self->constval.vfloat))
873                     goto error;
874                 break;
875             case TYPE_VECTOR:
876                 if (!ir_value_set_vector(v, self->constval.vvec))
877                     goto error;
878                 break;
879             case TYPE_STRING:
880                 if (!ir_value_set_string(v, self->constval.vstring))
881                     goto error;
882                 break;
883             default:
884                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
885                 break;
886         }
887     }
888
889     /* link us to the ir_value */
890     self->ir_v = v;
891     return true;
892
893 error: /* clean up */
894     ir_value_delete(v);
895     return false;
896 }
897
898 bool ast_function_codegen(ast_function *self, ir_builder *ir)
899 {
900     ir_function *irf;
901     ir_value    *dummy;
902     ast_expression_common *ec;
903     size_t    i;
904
905     irf = self->ir_func;
906     if (!irf) {
907         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
908         return false;
909     }
910
911     /* fill the parameter list */
912     ec = &self->vtype->expression;
913     for (i = 0; i < ec->params_count; ++i)
914     {
915         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
916             return false;
917         if (!self->builtin) {
918             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
919                 return false;
920         }
921     }
922
923     if (self->builtin) {
924         irf->builtin = self->builtin;
925         return true;
926     }
927
928     if (!self->blocks_count) {
929         asterror(ast_ctx(self), "function `%s` has no body", self->name);
930         return false;
931     }
932
933     self->curblock = ir_function_create_block(irf, "entry");
934     if (!self->curblock)
935         return false;
936
937     for (i = 0; i < self->blocks_count; ++i) {
938         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
939         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
940             return false;
941     }
942
943     /* TODO: check return types */
944     if (!self->curblock->is_return)
945     {
946         return ir_block_create_return(self->curblock, NULL);
947         /* From now on the parser has to handle this situation */
948 #if 0
949         if (!self->vtype->expression.next ||
950             self->vtype->expression.next->expression.vtype == TYPE_VOID)
951         {
952             return ir_block_create_return(self->curblock, NULL);
953         }
954         else
955         {
956             /* error("missing return"); */
957             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
958             return false;
959         }
960 #endif
961     }
962     return true;
963 }
964
965 /* Note, you will not see ast_block_codegen generate ir_blocks.
966  * To the AST and the IR, blocks are 2 different things.
967  * In the AST it represents a block of code, usually enclosed in
968  * curly braces {...}.
969  * While in the IR it represents a block in terms of control-flow.
970  */
971 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
972 {
973     size_t i;
974
975     /* We don't use this
976      * Note: an ast-representation using the comma-operator
977      * of the form: (a, b, c) = x should not assign to c...
978      */
979     (void)lvalue;
980     if (self->expression.outr) {
981         *out = self->expression.outr;
982         return true;
983     }
984
985     /* output is NULL at first, we'll have each expression
986      * assign to out output, thus, a comma-operator represention
987      * using an ast_block will return the last generated value,
988      * so: (b, c) + a  executed both b and c, and returns c,
989      * which is then added to a.
990      */
991     *out = NULL;
992
993     /* generate locals */
994     for (i = 0; i < self->locals_count; ++i)
995     {
996         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
997             return false;
998     }
999
1000     for (i = 0; i < self->exprs_count; ++i)
1001     {
1002         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1003         if (!(*gen)(self->exprs[i], func, false, out))
1004             return false;
1005     }
1006
1007     self->expression.outr = *out;
1008
1009     return true;
1010 }
1011
1012 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1013 {
1014     ast_expression_codegen *cgen;
1015     ir_value *left, *right;
1016
1017     if (lvalue && self->expression.outl) {
1018         *out = self->expression.outl;
1019         return true;
1020     }
1021
1022     if (!lvalue && self->expression.outr) {
1023         *out = self->expression.outr;
1024         return true;
1025     }
1026
1027     cgen = self->dest->expression.codegen;
1028     /* lvalue! */
1029     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1030         return false;
1031     self->expression.outl = left;
1032
1033     cgen = self->source->expression.codegen;
1034     /* rvalue! */
1035     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1036         return false;
1037
1038     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1039         return false;
1040     self->expression.outr = right;
1041
1042     /* Theoretically, an assinment returns its left side as an
1043      * lvalue, if we don't need an lvalue though, we return
1044      * the right side as an rvalue, otherwise we have to
1045      * somehow know whether or not we need to dereference the pointer
1046      * on the left side - that is: OP_LOAD if it was an address.
1047      * Also: in original QC we cannot OP_LOADP *anyway*.
1048      */
1049     *out = (lvalue ? left : right);
1050
1051     return true;
1052 }
1053
1054 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1055 {
1056     ast_expression_codegen *cgen;
1057     ir_value *left, *right;
1058
1059     /* In the context of a binary operation, we can disregard
1060      * the lvalue flag.
1061      */
1062     (void)lvalue;
1063     if (self->expression.outr) {
1064         *out = self->expression.outr;
1065         return true;
1066     }
1067
1068     cgen = self->left->expression.codegen;
1069     /* lvalue! */
1070     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1071         return false;
1072
1073     cgen = self->right->expression.codegen;
1074     /* rvalue! */
1075     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1076         return false;
1077
1078     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1079                                  self->op, left, right);
1080     if (!*out)
1081         return false;
1082     self->expression.outr = *out;
1083
1084     return true;
1085 }
1086
1087 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1088 {
1089     ast_expression_codegen *cgen;
1090     ir_value *leftl, *leftr, *right, *bin;
1091
1092     if (lvalue && self->expression.outl) {
1093         *out = self->expression.outl;
1094         return true;
1095     }
1096
1097     if (!lvalue && self->expression.outr) {
1098         *out = self->expression.outr;
1099         return true;
1100     }
1101
1102     /* for a binstore we need both an lvalue and an rvalue for the left side */
1103     /* rvalue of destination! */
1104     cgen = self->dest->expression.codegen;
1105     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1106         return false;
1107
1108     /* source as rvalue only */
1109     cgen = self->source->expression.codegen;
1110     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1111         return false;
1112
1113     /* now the binary */
1114     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1115                                 self->opbin, leftr, right);
1116     self->expression.outr = bin;
1117
1118     /* now store them */
1119     cgen = self->dest->expression.codegen;
1120     /* lvalue of destination */
1121     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1122         return false;
1123     self->expression.outl = leftl;
1124
1125     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1126         return false;
1127     self->expression.outr = bin;
1128
1129     /* Theoretically, an assinment returns its left side as an
1130      * lvalue, if we don't need an lvalue though, we return
1131      * the right side as an rvalue, otherwise we have to
1132      * somehow know whether or not we need to dereference the pointer
1133      * on the left side - that is: OP_LOAD if it was an address.
1134      * Also: in original QC we cannot OP_LOADP *anyway*.
1135      */
1136     *out = (lvalue ? leftl : bin);
1137
1138     return true;
1139 }
1140
1141 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1142 {
1143     ast_expression_codegen *cgen;
1144     ir_value *operand;
1145
1146     /* In the context of a unary operation, we can disregard
1147      * the lvalue flag.
1148      */
1149     (void)lvalue;
1150     if (self->expression.outr) {
1151         *out = self->expression.outr;
1152         return true;
1153     }
1154
1155     cgen = self->operand->expression.codegen;
1156     /* lvalue! */
1157     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1158         return false;
1159
1160     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1161                                  self->op, operand);
1162     if (!*out)
1163         return false;
1164     self->expression.outr = *out;
1165
1166     return true;
1167 }
1168
1169 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1170 {
1171     ast_expression_codegen *cgen;
1172     ir_value *operand;
1173
1174     /* In the context of a return operation, we can disregard
1175      * the lvalue flag.
1176      */
1177     (void)lvalue;
1178     if (self->expression.outr) {
1179         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1180         return false;
1181     }
1182     self->expression.outr = (ir_value*)1;
1183
1184     if (self->operand) {
1185         cgen = self->operand->expression.codegen;
1186         /* lvalue! */
1187         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1188             return false;
1189
1190         if (!ir_block_create_return(func->curblock, operand))
1191             return false;
1192     } else {
1193         if (!ir_block_create_return(func->curblock, NULL))
1194             return false;
1195     }
1196
1197     return true;
1198 }
1199
1200 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1201 {
1202     ast_expression_codegen *cgen;
1203     ir_value *ent, *field;
1204
1205     /* This function needs to take the 'lvalue' flag into account!
1206      * As lvalue we provide a field-pointer, as rvalue we provide the
1207      * value in a temp.
1208      */
1209
1210     if (lvalue && self->expression.outl) {
1211         *out = self->expression.outl;
1212         return true;
1213     }
1214
1215     if (!lvalue && self->expression.outr) {
1216         *out = self->expression.outr;
1217         return true;
1218     }
1219
1220     cgen = self->entity->expression.codegen;
1221     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1222         return false;
1223
1224     cgen = self->field->expression.codegen;
1225     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1226         return false;
1227
1228     if (lvalue) {
1229         /* address! */
1230         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1231                                             ent, field);
1232     } else {
1233         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1234                                              ent, field, self->expression.vtype);
1235     }
1236     if (!*out) {
1237         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1238                  (lvalue ? "ADDRESS" : "FIELD"),
1239                  type_name[self->expression.vtype]);
1240         return false;
1241     }
1242
1243     if (lvalue)
1244         self->expression.outl = *out;
1245     else
1246         self->expression.outr = *out;
1247
1248     /* Hm that should be it... */
1249     return true;
1250 }
1251
1252 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1253 {
1254     ast_expression_codegen *cgen;
1255     ir_value *vec;
1256
1257     /* in QC this is always an lvalue */
1258     (void)lvalue;
1259     if (self->expression.outl) {
1260         *out = self->expression.outl;
1261         return true;
1262     }
1263
1264     cgen = self->owner->expression.codegen;
1265     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1266         return false;
1267
1268     if (vec->vtype != TYPE_VECTOR &&
1269         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1270     {
1271         return false;
1272     }
1273
1274     *out = ir_value_vector_member(vec, self->field);
1275     self->expression.outl = *out;
1276
1277     return (*out != NULL);
1278 }
1279
1280 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1281 {
1282     ast_expression_codegen *cgen;
1283
1284     ir_value *condval;
1285     ir_value *dummy;
1286
1287     ir_block *cond = func->curblock;
1288     ir_block *ontrue;
1289     ir_block *onfalse;
1290     ir_block *ontrue_endblock;
1291     ir_block *onfalse_endblock;
1292     ir_block *merge;
1293
1294     /* We don't output any value, thus also don't care about r/lvalue */
1295     (void)out;
1296     (void)lvalue;
1297
1298     if (self->expression.outr) {
1299         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1300         return false;
1301     }
1302     self->expression.outr = (ir_value*)1;
1303
1304     /* generate the condition */
1305     func->curblock = cond;
1306     cgen = self->cond->expression.codegen;
1307     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1308         return false;
1309
1310     /* on-true path */
1311
1312     if (self->on_true) {
1313         /* create on-true block */
1314         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1315         if (!ontrue)
1316             return false;
1317
1318         /* enter the block */
1319         func->curblock = ontrue;
1320
1321         /* generate */
1322         cgen = self->on_true->expression.codegen;
1323         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1324             return false;
1325
1326         /* we now need to work from the current endpoint */
1327         ontrue_endblock = func->curblock;
1328     } else
1329         ontrue = NULL;
1330
1331     /* on-false path */
1332     if (self->on_false) {
1333         /* create on-false block */
1334         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1335         if (!onfalse)
1336             return false;
1337
1338         /* enter the block */
1339         func->curblock = onfalse;
1340
1341         /* generate */
1342         cgen = self->on_false->expression.codegen;
1343         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1344             return false;
1345
1346         /* we now need to work from the current endpoint */
1347         onfalse_endblock = func->curblock;
1348     } else
1349         onfalse = NULL;
1350
1351     /* Merge block were they all merge in to */
1352     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1353     if (!merge)
1354         return false;
1355
1356     /* add jumps ot the merge block */
1357     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1358         return false;
1359     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1360         return false;
1361
1362     /* we create the if here, that way all blocks are ordered :)
1363      */
1364     if (!ir_block_create_if(cond, condval,
1365                             (ontrue  ? ontrue  : merge),
1366                             (onfalse ? onfalse : merge)))
1367     {
1368         return false;
1369     }
1370
1371     /* Now enter the merge block */
1372     func->curblock = merge;
1373
1374     return true;
1375 }
1376
1377 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1378 {
1379     ast_expression_codegen *cgen;
1380
1381     ir_value *condval;
1382     ir_value *trueval, *falseval;
1383     ir_instr *phi;
1384
1385     ir_block *cond = func->curblock;
1386     ir_block *ontrue;
1387     ir_block *onfalse;
1388     ir_block *merge;
1389
1390     /* Ternary can never create an lvalue... */
1391     if (lvalue)
1392         return false;
1393
1394     /* In theory it shouldn't be possible to pass through a node twice, but
1395      * in case we add any kind of optimization pass for the AST itself, it
1396      * may still happen, thus we remember a created ir_value and simply return one
1397      * if it already exists.
1398      */
1399     if (self->phi_out) {
1400         *out = self->phi_out;
1401         return true;
1402     }
1403
1404     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1405
1406     /* generate the condition */
1407     func->curblock = cond;
1408     cgen = self->cond->expression.codegen;
1409     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1410         return false;
1411
1412     /* create on-true block */
1413     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1414     if (!ontrue)
1415         return false;
1416     else
1417     {
1418         /* enter the block */
1419         func->curblock = ontrue;
1420
1421         /* generate */
1422         cgen = self->on_true->expression.codegen;
1423         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1424             return false;
1425     }
1426
1427     /* create on-false block */
1428     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1429     if (!onfalse)
1430         return false;
1431     else
1432     {
1433         /* enter the block */
1434         func->curblock = onfalse;
1435
1436         /* generate */
1437         cgen = self->on_false->expression.codegen;
1438         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1439             return false;
1440     }
1441
1442     /* create merge block */
1443     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1444     if (!merge)
1445         return false;
1446     /* jump to merge block */
1447     if (!ir_block_create_jump(ontrue, merge))
1448         return false;
1449     if (!ir_block_create_jump(onfalse, merge))
1450         return false;
1451
1452     /* create if instruction */
1453     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1454         return false;
1455
1456     /* Now enter the merge block */
1457     func->curblock = merge;
1458
1459     /* Here, now, we need a PHI node
1460      * but first some sanity checking...
1461      */
1462     if (trueval->vtype != falseval->vtype) {
1463         /* error("ternary with different types on the two sides"); */
1464         return false;
1465     }
1466
1467     /* create PHI */
1468     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1469     if (!phi ||
1470         !ir_phi_add(phi, ontrue,  trueval) ||
1471         !ir_phi_add(phi, onfalse, falseval))
1472     {
1473         return false;
1474     }
1475
1476     self->phi_out = ir_phi_value(phi);
1477     *out = self->phi_out;
1478
1479     return true;
1480 }
1481
1482 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1483 {
1484     ast_expression_codegen *cgen;
1485
1486     ir_value *dummy      = NULL;
1487     ir_value *precond    = NULL;
1488     ir_value *postcond   = NULL;
1489
1490     /* Since we insert some jumps "late" so we have blocks
1491      * ordered "nicely", we need to keep track of the actual end-blocks
1492      * of expressions to add the jumps to.
1493      */
1494     ir_block *bbody      = NULL, *end_bbody      = NULL;
1495     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1496     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1497     ir_block *bincrement = NULL, *end_bincrement = NULL;
1498     ir_block *bout       = NULL, *bin            = NULL;
1499
1500     /* let's at least move the outgoing block to the end */
1501     size_t    bout_id;
1502
1503     /* 'break' and 'continue' need to be able to find the right blocks */
1504     ir_block *bcontinue     = NULL;
1505     ir_block *bbreak        = NULL;
1506
1507     ir_block *old_bcontinue = NULL;
1508     ir_block *old_bbreak    = NULL;
1509
1510     ir_block *tmpblock      = NULL;
1511
1512     (void)lvalue;
1513     (void)out;
1514
1515     if (self->expression.outr) {
1516         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1517         return false;
1518     }
1519     self->expression.outr = (ir_value*)1;
1520
1521     /* NOTE:
1522      * Should we ever need some kind of block ordering, better make this function
1523      * move blocks around than write a block ordering algorithm later... after all
1524      * the ast and ir should work together, not against each other.
1525      */
1526
1527     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1528      * anyway if for example it contains a ternary.
1529      */
1530     if (self->initexpr)
1531     {
1532         cgen = self->initexpr->expression.codegen;
1533         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1534             return false;
1535     }
1536
1537     /* Store the block from which we enter this chaos */
1538     bin = func->curblock;
1539
1540     /* The pre-loop condition needs its own block since we
1541      * need to be able to jump to the start of that expression.
1542      */
1543     if (self->precond)
1544     {
1545         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1546         if (!bprecond)
1547             return false;
1548
1549         /* the pre-loop-condition the least important place to 'continue' at */
1550         bcontinue = bprecond;
1551
1552         /* enter */
1553         func->curblock = bprecond;
1554
1555         /* generate */
1556         cgen = self->precond->expression.codegen;
1557         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1558             return false;
1559
1560         end_bprecond = func->curblock;
1561     } else {
1562         bprecond = end_bprecond = NULL;
1563     }
1564
1565     /* Now the next blocks won't be ordered nicely, but we need to
1566      * generate them this early for 'break' and 'continue'.
1567      */
1568     if (self->increment) {
1569         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1570         if (!bincrement)
1571             return false;
1572         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1573     } else {
1574         bincrement = end_bincrement = NULL;
1575     }
1576
1577     if (self->postcond) {
1578         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1579         if (!bpostcond)
1580             return false;
1581         bcontinue = bpostcond; /* postcond comes before the increment */
1582     } else {
1583         bpostcond = end_bpostcond = NULL;
1584     }
1585
1586     bout_id = func->ir_func->blocks_count;
1587     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1588     if (!bout)
1589         return false;
1590     bbreak = bout;
1591
1592     /* The loop body... */
1593     if (self->body)
1594     {
1595         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1596         if (!bbody)
1597             return false;
1598
1599         /* enter */
1600         func->curblock = bbody;
1601
1602         old_bbreak          = func->breakblock;
1603         old_bcontinue       = func->continueblock;
1604         func->breakblock    = bbreak;
1605         func->continueblock = bcontinue;
1606
1607         /* generate */
1608         cgen = self->body->expression.codegen;
1609         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1610             return false;
1611
1612         end_bbody = func->curblock;
1613         func->breakblock    = old_bbreak;
1614         func->continueblock = old_bcontinue;
1615     }
1616
1617     /* post-loop-condition */
1618     if (self->postcond)
1619     {
1620         /* enter */
1621         func->curblock = bpostcond;
1622
1623         /* generate */
1624         cgen = self->postcond->expression.codegen;
1625         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1626             return false;
1627
1628         end_bpostcond = func->curblock;
1629     }
1630
1631     /* The incrementor */
1632     if (self->increment)
1633     {
1634         /* enter */
1635         func->curblock = bincrement;
1636
1637         /* generate */
1638         cgen = self->increment->expression.codegen;
1639         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1640             return false;
1641
1642         end_bincrement = func->curblock;
1643     }
1644
1645     /* In any case now, we continue from the outgoing block */
1646     func->curblock = bout;
1647
1648     /* Now all blocks are in place */
1649     /* From 'bin' we jump to whatever comes first */
1650     if      (bprecond)   tmpblock = bprecond;
1651     else if (bbody)      tmpblock = bbody;
1652     else if (bpostcond)  tmpblock = bpostcond;
1653     else                 tmpblock = bout;
1654     if (!ir_block_create_jump(bin, tmpblock))
1655         return false;
1656
1657     /* From precond */
1658     if (bprecond)
1659     {
1660         ir_block *ontrue, *onfalse;
1661         if      (bbody)      ontrue = bbody;
1662         else if (bincrement) ontrue = bincrement;
1663         else if (bpostcond)  ontrue = bpostcond;
1664         else                 ontrue = bprecond;
1665         onfalse = bout;
1666         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1667             return false;
1668     }
1669
1670     /* from body */
1671     if (bbody)
1672     {
1673         if      (bincrement) tmpblock = bincrement;
1674         else if (bpostcond)  tmpblock = bpostcond;
1675         else if (bprecond)   tmpblock = bprecond;
1676         else                 tmpblock = bout;
1677         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1678             return false;
1679     }
1680
1681     /* from increment */
1682     if (bincrement)
1683     {
1684         if      (bpostcond)  tmpblock = bpostcond;
1685         else if (bprecond)   tmpblock = bprecond;
1686         else if (bbody)      tmpblock = bbody;
1687         else                 tmpblock = bout;
1688         if (!ir_block_create_jump(end_bincrement, tmpblock))
1689             return false;
1690     }
1691
1692     /* from postcond */
1693     if (bpostcond)
1694     {
1695         ir_block *ontrue, *onfalse;
1696         if      (bprecond)   ontrue = bprecond;
1697         else if (bbody)      ontrue = bbody;
1698         else if (bincrement) ontrue = bincrement;
1699         else                 ontrue = bpostcond;
1700         onfalse = bout;
1701         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1702             return false;
1703     }
1704
1705     /* Move 'bout' to the end */
1706     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1707         !ir_function_blocks_add(func->ir_func, bout))
1708     {
1709         ir_block_delete(bout);
1710         return false;
1711     }
1712
1713     return true;
1714 }
1715
1716 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1717 {
1718     ast_expression_codegen *cgen;
1719     ir_value_vector         params;
1720     ir_instr               *callinstr;
1721     size_t i;
1722
1723     ir_value *funval = NULL;
1724
1725     /* return values are never lvalues */
1726     (void)lvalue;
1727
1728     if (self->expression.outr) {
1729         *out = self->expression.outr;
1730         return true;
1731     }
1732
1733     cgen = self->func->expression.codegen;
1734     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1735         return false;
1736     if (!funval)
1737         return false;
1738
1739     MEM_VECTOR_INIT(&params, v);
1740
1741     /* parameters */
1742     for (i = 0; i < self->params_count; ++i)
1743     {
1744         ir_value *param;
1745         ast_expression *expr = self->params[i];
1746
1747         cgen = expr->expression.codegen;
1748         if (!(*cgen)(expr, func, false, &param))
1749             goto error;
1750         if (!param)
1751             goto error;
1752         if (!ir_value_vector_v_add(&params, param))
1753             goto error;
1754     }
1755
1756     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1757     if (!callinstr)
1758         goto error;
1759
1760     for (i = 0; i < params.v_count; ++i) {
1761         if (!ir_call_param(callinstr, params.v[i]))
1762             goto error;
1763     }
1764
1765     *out = ir_call_value(callinstr);
1766     self->expression.outr = *out;
1767
1768     MEM_VECTOR_CLEAR(&params, v);
1769     return true;
1770 error:
1771     MEM_VECTOR_CLEAR(&params, v);
1772     return false;
1773 }