]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Merge branch 'master' into blub/bc3
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     if (op >= INSTR_EQ_F && op <= INSTR_GT)
174         self->expression.vtype = TYPE_FLOAT;
175     else if (op == INSTR_AND || op == INSTR_OR ||
176              op == INSTR_BITAND || op == INSTR_BITOR)
177         self->expression.vtype = TYPE_FLOAT;
178     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
179         self->expression.vtype = TYPE_VECTOR;
180     else if (op == INSTR_MUL_V)
181         self->expression.vtype = TYPE_FLOAT;
182     else
183         self->expression.vtype = left->expression.vtype;
184
185     return self;
186 }
187
188 void ast_binary_delete(ast_binary *self)
189 {
190     ast_unref(self->left);
191     ast_unref(self->right);
192     ast_expression_delete((ast_expression*)self);
193     mem_d(self);
194 }
195
196 ast_unary* ast_unary_new(lex_ctx ctx, int op,
197                          ast_expression *expr)
198 {
199     ast_instantiate(ast_unary, ctx, ast_unary_delete);
200     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
201
202     self->op = op;
203     self->operand = expr;
204
205     return self;
206 }
207
208 void ast_unary_delete(ast_unary *self)
209 {
210     ast_unref(self->operand);
211     ast_expression_delete((ast_expression*)self);
212     mem_d(self);
213 }
214
215 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
216 {
217     ast_instantiate(ast_return, ctx, ast_return_delete);
218     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
219
220     self->operand = expr;
221
222     return self;
223 }
224
225 void ast_return_delete(ast_return *self)
226 {
227     ast_unref(self->operand);
228     ast_expression_delete((ast_expression*)self);
229     mem_d(self);
230 }
231
232 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
233 {
234     const ast_expression *outtype;
235
236     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
237
238     if (field->expression.vtype != TYPE_FIELD) {
239         mem_d(self);
240         return NULL;
241     }
242
243     outtype = field->expression.next;
244     if (!outtype) {
245         mem_d(self);
246         /* Error: field has no type... */
247         return NULL;
248     }
249
250     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
251
252     self->expression.vtype = outtype->expression.vtype;
253     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
254
255     self->entity = entity;
256     self->field  = field;
257
258     return self;
259 }
260
261 void ast_entfield_delete(ast_entfield *self)
262 {
263     ast_unref(self->entity);
264     ast_unref(self->field);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
270 {
271     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
272     if (!ontrue && !onfalse) {
273         /* because it is invalid */
274         mem_d(self);
275         return NULL;
276     }
277     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
278
279     self->cond     = cond;
280     self->on_true  = ontrue;
281     self->on_false = onfalse;
282
283     return self;
284 }
285
286 void ast_ifthen_delete(ast_ifthen *self)
287 {
288     ast_unref(self->cond);
289     if (self->on_true)
290         ast_unref(self->on_true);
291     if (self->on_false)
292         ast_unref(self->on_false);
293     ast_expression_delete((ast_expression*)self);
294     mem_d(self);
295 }
296
297 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
298 {
299     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
300     /* This time NEITHER must be NULL */
301     if (!ontrue || !onfalse) {
302         mem_d(self);
303         return NULL;
304     }
305     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
306
307     self->cond     = cond;
308     self->on_true  = ontrue;
309     self->on_false = onfalse;
310     self->phi_out  = NULL;
311
312     return self;
313 }
314
315 void ast_ternary_delete(ast_ternary *self)
316 {
317     ast_unref(self->cond);
318     ast_unref(self->on_true);
319     ast_unref(self->on_false);
320     ast_expression_delete((ast_expression*)self);
321     mem_d(self);
322 }
323
324 ast_loop* ast_loop_new(lex_ctx ctx,
325                        ast_expression *initexpr,
326                        ast_expression *precond,
327                        ast_expression *postcond,
328                        ast_expression *increment,
329                        ast_expression *body)
330 {
331     ast_instantiate(ast_loop, ctx, ast_loop_delete);
332     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
333
334     self->initexpr  = initexpr;
335     self->precond   = precond;
336     self->postcond  = postcond;
337     self->increment = increment;
338     self->body      = body;
339
340     return self;
341 }
342
343 void ast_loop_delete(ast_loop *self)
344 {
345     if (self->initexpr)
346         ast_unref(self->initexpr);
347     if (self->precond)
348         ast_unref(self->precond);
349     if (self->postcond)
350         ast_unref(self->postcond);
351     if (self->increment)
352         ast_unref(self->increment);
353     if (self->body)
354         ast_unref(self->body);
355     ast_expression_delete((ast_expression*)self);
356     mem_d(self);
357 }
358
359 ast_call* ast_call_new(lex_ctx ctx,
360                        ast_expression *funcexpr)
361 {
362     ast_instantiate(ast_call, ctx, ast_call_delete);
363     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
364
365     MEM_VECTOR_INIT(self, params);
366
367     self->func = funcexpr;
368
369     return self;
370 }
371 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
372
373 void ast_call_delete(ast_call *self)
374 {
375     size_t i;
376     for (i = 0; i < self->params_count; ++i)
377         ast_unref(self->params[i]);
378     MEM_VECTOR_CLEAR(self, params);
379
380     if (self->func)
381         ast_unref(self->func);
382
383     ast_expression_delete((ast_expression*)self);
384     mem_d(self);
385 }
386
387 ast_store* ast_store_new(lex_ctx ctx, int op,
388                          ast_value *dest, ast_expression *source)
389 {
390     ast_instantiate(ast_store, ctx, ast_store_delete);
391     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
392
393     self->op = op;
394     self->dest = dest;
395     self->source = source;
396
397     return self;
398 }
399
400 void ast_store_delete(ast_store *self)
401 {
402     ast_unref(self->dest);
403     ast_unref(self->source);
404     ast_expression_delete((ast_expression*)self);
405     mem_d(self);
406 }
407
408 ast_block* ast_block_new(lex_ctx ctx)
409 {
410     ast_instantiate(ast_block, ctx, ast_block_delete);
411     ast_expression_init((ast_expression*)self,
412                         (ast_expression_codegen*)&ast_block_codegen);
413
414     MEM_VECTOR_INIT(self, locals);
415     MEM_VECTOR_INIT(self, exprs);
416
417     return self;
418 }
419 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
420 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
421
422 void ast_block_delete(ast_block *self)
423 {
424     size_t i;
425     for (i = 0; i < self->exprs_count; ++i)
426         ast_unref(self->exprs[i]);
427     MEM_VECTOR_CLEAR(self, exprs);
428     for (i = 0; i < self->locals_count; ++i)
429         ast_delete(self->locals[i]);
430     MEM_VECTOR_CLEAR(self, locals);
431     ast_expression_delete((ast_expression*)self);
432     mem_d(self);
433 }
434
435 bool ast_block_set_type(ast_block *self, ast_expression *from)
436 {
437     if (self->expression.next)
438         ast_delete(self->expression.next);
439     self->expression.vtype = from->expression.vtype;
440     if (from->expression.next) {
441         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
442         if (!self->expression.next)
443             return false;
444     }
445     return true;
446 }
447
448 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
449 {
450     ast_instantiate(ast_function, ctx, ast_function_delete);
451
452     if (!vtype ||
453         vtype->isconst ||
454         vtype->expression.vtype != TYPE_FUNCTION)
455     {
456         mem_d(self);
457         return NULL;
458     }
459
460     self->vtype = vtype;
461     self->name = name ? util_strdup(name) : NULL;
462     MEM_VECTOR_INIT(self, blocks);
463
464     self->labelcount = 0;
465     self->builtin = 0;
466
467     self->ir_func = NULL;
468     self->curblock = NULL;
469
470     self->breakblock    = NULL;
471     self->continueblock = NULL;
472
473     vtype->isconst = true;
474     vtype->constval.vfunc = self;
475
476     return self;
477 }
478
479 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
480
481 void ast_function_delete(ast_function *self)
482 {
483     size_t i;
484     if (self->name)
485         mem_d((void*)self->name);
486     if (self->vtype) {
487         /* ast_value_delete(self->vtype); */
488         self->vtype->isconst = false;
489         self->vtype->constval.vfunc = NULL;
490         /* We use unref - if it was stored in a global table it is supposed
491          * to be deleted from *there*
492          */
493         ast_unref(self->vtype);
494     }
495     for (i = 0; i < self->blocks_count; ++i)
496         ast_delete(self->blocks[i]);
497     MEM_VECTOR_CLEAR(self, blocks);
498     mem_d(self);
499 }
500
501 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
502 {
503     unsigned int base = 10;
504 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
505 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
506     if (size < 1)
507         return;
508     checknul();
509     if (!num)
510         addch('0');
511     else {
512         while (num)
513         {
514             int digit = num % base;
515             num /= base;
516             addch('0' + digit);
517         }
518     }
519
520     *buf = 0;
521 #undef addch
522 #undef checknul
523 }
524
525 const char* ast_function_label(ast_function *self, const char *prefix)
526 {
527     size_t id = (self->labelcount++);
528     size_t len = strlen(prefix);
529     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
530     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
531     return self->labelbuf;
532 }
533
534 /*********************************************************************/
535 /* AST codegen part
536  * by convention you must never pass NULL to the 'ir_value **out'
537  * parameter. If you really don't care about the output, pass a dummy.
538  * But I can't imagine a pituation where the output is truly unnecessary.
539  */
540
541 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
542 {
543     /* NOTE: This is the codegen for a variable used in an expression.
544      * It is not the codegen to generate the value. For this purpose,
545      * ast_local_codegen and ast_global_codegen are to be used before this
546      * is executed. ast_function_codegen should take care of its locals,
547      * and the ast-user should take care of ast_global_codegen to be used
548      * on all the globals.
549      */
550     if (!self->ir_v) {
551         printf("ast_value used before generated (%s)\n", self->name);
552         return false;
553     }
554     *out = self->ir_v;
555     return true;
556 }
557
558 bool ast_global_codegen(ast_value *self, ir_builder *ir)
559 {
560     ir_value *v = NULL;
561     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
562     {
563         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
564         if (!func)
565             return false;
566
567         self->constval.vfunc->ir_func = func;
568         self->ir_v = func->value;
569         /* The function is filled later on ast_function_codegen... */
570         return true;
571     }
572
573     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
574     if (!v) {
575         printf("ir_builder_create_global failed\n");
576         return false;
577     }
578
579     if (self->isconst) {
580         switch (self->expression.vtype)
581         {
582             case TYPE_FLOAT:
583                 if (!ir_value_set_float(v, self->constval.vfloat))
584                     goto error;
585                 break;
586             case TYPE_VECTOR:
587                 if (!ir_value_set_vector(v, self->constval.vvec))
588                     goto error;
589                 break;
590             case TYPE_STRING:
591                 if (!ir_value_set_string(v, self->constval.vstring))
592                     goto error;
593                 break;
594             case TYPE_FUNCTION:
595                 printf("global of type function not properly generated\n");
596                 goto error;
597                 /* Cannot generate an IR value for a function,
598                  * need a pointer pointing to a function rather.
599                  */
600             default:
601                 printf("TODO: global constant type %i\n", self->expression.vtype);
602                 break;
603         }
604     }
605
606     /* link us to the ir_value */
607     self->ir_v = v;
608     return true;
609
610 error: /* clean up */
611     ir_value_delete(v);
612     return false;
613 }
614
615 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
616 {
617     ir_value *v = NULL;
618     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
619     {
620         /* Do we allow local functions? I think not...
621          * this is NOT a function pointer atm.
622          */
623         return false;
624     }
625
626     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
627     if (!v)
628         return false;
629
630     /* A constant local... hmmm...
631      * I suppose the IR will have to deal with this
632      */
633     if (self->isconst) {
634         switch (self->expression.vtype)
635         {
636             case TYPE_FLOAT:
637                 if (!ir_value_set_float(v, self->constval.vfloat))
638                     goto error;
639                 break;
640             case TYPE_VECTOR:
641                 if (!ir_value_set_vector(v, self->constval.vvec))
642                     goto error;
643                 break;
644             case TYPE_STRING:
645                 if (!ir_value_set_string(v, self->constval.vstring))
646                     goto error;
647                 break;
648             default:
649                 printf("TODO: global constant type %i\n", self->expression.vtype);
650                 break;
651         }
652     }
653
654     /* link us to the ir_value */
655     self->ir_v = v;
656     return true;
657
658 error: /* clean up */
659     ir_value_delete(v);
660     return false;
661 }
662
663 bool ast_function_codegen(ast_function *self, ir_builder *ir)
664 {
665     ir_function *irf;
666     ir_value    *dummy;
667     size_t    i;
668
669     irf = self->ir_func;
670     if (!irf) {
671         printf("ast_function's related ast_value was not generated yet\n");
672         return false;
673     }
674
675     /* fill the parameter list */
676     for (i = 0; i < self->vtype->params_count; ++i)
677     {
678         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
679             return false;
680         if (!self->builtin) {
681             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
682                 return false;
683         }
684     }
685
686     if (self->builtin) {
687         irf->builtin = self->builtin;
688         return true;
689     }
690
691     self->curblock = ir_function_create_block(irf, "entry");
692     if (!self->curblock)
693         return false;
694
695     for (i = 0; i < self->blocks_count; ++i) {
696         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
697         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
698             return false;
699     }
700
701     /* TODO: check return types */
702     if (!self->curblock->is_return)
703     {
704         if (!self->vtype->expression.next ||
705             self->vtype->expression.next->expression.vtype == TYPE_VOID)
706         {
707             return ir_block_create_return(self->curblock, NULL);
708         }
709         else
710         {
711             /* error("missing return"); */
712             return false;
713         }
714     }
715     return true;
716 }
717
718 /* Note, you will not see ast_block_codegen generate ir_blocks.
719  * To the AST and the IR, blocks are 2 different things.
720  * In the AST it represents a block of code, usually enclosed in
721  * curly braces {...}.
722  * While in the IR it represents a block in terms of control-flow.
723  */
724 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
725 {
726     size_t i;
727
728     /* We don't use this
729      * Note: an ast-representation using the comma-operator
730      * of the form: (a, b, c) = x should not assign to c...
731      */
732     (void)lvalue;
733
734     /* output is NULL at first, we'll have each expression
735      * assign to out output, thus, a comma-operator represention
736      * using an ast_block will return the last generated value,
737      * so: (b, c) + a  executed both b and c, and returns c,
738      * which is then added to a.
739      */
740     *out = NULL;
741
742     /* generate locals */
743     for (i = 0; i < self->locals_count; ++i)
744     {
745         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
746             return false;
747     }
748
749     for (i = 0; i < self->exprs_count; ++i)
750     {
751         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
752         if (!(*gen)(self->exprs[i], func, false, out))
753             return false;
754     }
755
756     return true;
757 }
758
759 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
760 {
761     ast_expression_codegen *cgen;
762     ir_value *left, *right;
763
764     cgen = self->dest->expression.codegen;
765     /* lvalue! */
766     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
767         return false;
768
769     cgen = self->source->expression.codegen;
770     /* rvalue! */
771     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
772         return false;
773
774     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
775         return false;
776
777     /* Theoretically, an assinment returns its left side as an
778      * lvalue, if we don't need an lvalue though, we return
779      * the right side as an rvalue, otherwise we have to
780      * somehow know whether or not we need to dereference the pointer
781      * on the left side - that is: OP_LOAD if it was an address.
782      * Also: in original QC we cannot OP_LOADP *anyway*.
783      */
784     *out = (lvalue ? left : right);
785
786     return true;
787 }
788
789 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
790 {
791     ast_expression_codegen *cgen;
792     ir_value *left, *right;
793
794     /* In the context of a binary operation, we can disregard
795      * the lvalue flag.
796      */
797      (void)lvalue;
798
799     cgen = self->left->expression.codegen;
800     /* lvalue! */
801     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
802         return false;
803
804     cgen = self->right->expression.codegen;
805     /* rvalue! */
806     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
807         return false;
808
809     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
810                                  self->op, left, right);
811     if (!*out)
812         return false;
813
814     return true;
815 }
816
817 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
818 {
819     ast_expression_codegen *cgen;
820     ir_value *operand;
821
822     /* In the context of a unary operation, we can disregard
823      * the lvalue flag.
824      */
825     (void)lvalue;
826
827     cgen = self->operand->expression.codegen;
828     /* lvalue! */
829     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
830         return false;
831
832     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
833                                  self->op, operand);
834     if (!*out)
835         return false;
836
837     return true;
838 }
839
840 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
841 {
842     ast_expression_codegen *cgen;
843     ir_value *operand;
844
845     /* In the context of a return operation, we can disregard
846      * the lvalue flag.
847      */
848     (void)lvalue;
849
850     cgen = self->operand->expression.codegen;
851     /* lvalue! */
852     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
853         return false;
854
855     if (!ir_block_create_return(func->curblock, operand))
856         return false;
857
858     return true;
859 }
860
861 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
862 {
863     ast_expression_codegen *cgen;
864     ir_value *ent, *field;
865
866     /* This function needs to take the 'lvalue' flag into account!
867      * As lvalue we provide a field-pointer, as rvalue we provide the
868      * value in a temp.
869      */
870
871     cgen = self->entity->expression.codegen;
872     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
873         return false;
874
875     cgen = self->field->expression.codegen;
876     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
877         return false;
878
879     if (lvalue) {
880         /* address! */
881         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
882                                             ent, field);
883     } else {
884         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
885                                              ent, field, self->expression.vtype);
886     }
887     if (!*out)
888         return false;
889
890     /* Hm that should be it... */
891     return true;
892 }
893
894 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
895 {
896     ast_expression_codegen *cgen;
897
898     ir_value *condval;
899     ir_value *dummy;
900
901     ir_block *cond = func->curblock;
902     ir_block *ontrue;
903     ir_block *onfalse;
904     ir_block *merge;
905
906     /* We don't output any value, thus also don't care about r/lvalue */
907     (void)out;
908     (void)lvalue;
909
910     /* generate the condition */
911     func->curblock = cond;
912     cgen = self->cond->expression.codegen;
913     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
914         return false;
915
916     /* on-true path */
917
918     if (self->on_true) {
919         /* create on-true block */
920         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
921         if (!ontrue)
922             return false;
923
924         /* enter the block */
925         func->curblock = ontrue;
926
927         /* generate */
928         cgen = self->on_true->expression.codegen;
929         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
930             return false;
931     } else
932         ontrue = NULL;
933
934     /* on-false path */
935     if (self->on_false) {
936         /* create on-false block */
937         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
938         if (!onfalse)
939             return false;
940
941         /* enter the block */
942         func->curblock = onfalse;
943
944         /* generate */
945         cgen = self->on_false->expression.codegen;
946         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
947             return false;
948     } else
949         onfalse = NULL;
950
951     /* Merge block were they all merge in to */
952     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
953     if (!merge)
954         return false;
955
956     /* add jumps ot the merge block */
957     if (ontrue && !ir_block_create_jump(ontrue, merge))
958         return false;
959     if (onfalse && !ir_block_create_jump(onfalse, merge))
960         return false;
961
962     /* we create the if here, that way all blocks are ordered :)
963      */
964     if (!ir_block_create_if(cond, condval,
965                             (ontrue  ? ontrue  : merge),
966                             (onfalse ? onfalse : merge)))
967     {
968         return false;
969     }
970
971     /* Now enter the merge block */
972     func->curblock = merge;
973
974     return true;
975 }
976
977 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
978 {
979     ast_expression_codegen *cgen;
980
981     ir_value *condval;
982     ir_value *trueval, *falseval;
983     ir_instr *phi;
984
985     ir_block *cond = func->curblock;
986     ir_block *ontrue;
987     ir_block *onfalse;
988     ir_block *merge;
989
990     /* In theory it shouldn't be possible to pass through a node twice, but
991      * in case we add any kind of optimization pass for the AST itself, it
992      * may still happen, thus we remember a created ir_value and simply return one
993      * if it already exists.
994      */
995     if (self->phi_out) {
996         *out = self->phi_out;
997         return true;
998     }
999
1000     /* Ternary can never create an lvalue... */
1001     if (lvalue)
1002         return false;
1003
1004     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1005
1006     /* generate the condition */
1007     func->curblock = cond;
1008     cgen = self->cond->expression.codegen;
1009     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1010         return false;
1011
1012     /* create on-true block */
1013     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1014     if (!ontrue)
1015         return false;
1016     else
1017     {
1018         /* enter the block */
1019         func->curblock = ontrue;
1020
1021         /* generate */
1022         cgen = self->on_true->expression.codegen;
1023         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1024             return false;
1025     }
1026
1027     /* create on-false block */
1028     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1029     if (!onfalse)
1030         return false;
1031     else
1032     {
1033         /* enter the block */
1034         func->curblock = onfalse;
1035
1036         /* generate */
1037         cgen = self->on_false->expression.codegen;
1038         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1039             return false;
1040     }
1041
1042     /* create merge block */
1043     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1044     if (!merge)
1045         return false;
1046     /* jump to merge block */
1047     if (!ir_block_create_jump(ontrue, merge))
1048         return false;
1049     if (!ir_block_create_jump(onfalse, merge))
1050         return false;
1051
1052     /* create if instruction */
1053     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1054         return false;
1055
1056     /* Now enter the merge block */
1057     func->curblock = merge;
1058
1059     /* Here, now, we need a PHI node
1060      * but first some sanity checking...
1061      */
1062     if (trueval->vtype != falseval->vtype) {
1063         /* error("ternary with different types on the two sides"); */
1064         return false;
1065     }
1066
1067     /* create PHI */
1068     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1069     if (!phi ||
1070         !ir_phi_add(phi, ontrue,  trueval) ||
1071         !ir_phi_add(phi, onfalse, falseval))
1072     {
1073         return false;
1074     }
1075
1076     self->phi_out = ir_phi_value(phi);
1077     *out = self->phi_out;
1078
1079     return true;
1080 }
1081
1082 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1083 {
1084     ast_expression_codegen *cgen;
1085
1086     ir_value *dummy      = NULL;
1087     ir_value *precond    = NULL;
1088     ir_value *postcond   = NULL;
1089
1090     /* Since we insert some jumps "late" so we have blocks
1091      * ordered "nicely", we need to keep track of the actual end-blocks
1092      * of expressions to add the jumps to.
1093      */
1094     ir_block *bbody      = NULL, *end_bbody      = NULL;
1095     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1096     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1097     ir_block *bincrement = NULL, *end_bincrement = NULL;
1098     ir_block *bout       = NULL, *bin            = NULL;
1099
1100     /* let's at least move the outgoing block to the end */
1101     size_t    bout_id;
1102
1103     /* 'break' and 'continue' need to be able to find the right blocks */
1104     ir_block *bcontinue     = NULL;
1105     ir_block *bbreak        = NULL;
1106
1107     ir_block *old_bcontinue = NULL;
1108     ir_block *old_bbreak    = NULL;
1109
1110     ir_block *tmpblock      = NULL;
1111
1112     (void)lvalue;
1113     (void)out;
1114
1115     /* NOTE:
1116      * Should we ever need some kind of block ordering, better make this function
1117      * move blocks around than write a block ordering algorithm later... after all
1118      * the ast and ir should work together, not against each other.
1119      */
1120
1121     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1122      * anyway if for example it contains a ternary.
1123      */
1124     if (self->initexpr)
1125     {
1126         cgen = self->initexpr->expression.codegen;
1127         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1128             return false;
1129     }
1130
1131     /* Store the block from which we enter this chaos */
1132     bin = func->curblock;
1133
1134     /* The pre-loop condition needs its own block since we
1135      * need to be able to jump to the start of that expression.
1136      */
1137     if (self->precond)
1138     {
1139         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1140         if (!bprecond)
1141             return false;
1142
1143         /* the pre-loop-condition the least important place to 'continue' at */
1144         bcontinue = bprecond;
1145
1146         /* enter */
1147         func->curblock = bprecond;
1148
1149         /* generate */
1150         cgen = self->precond->expression.codegen;
1151         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1152             return false;
1153
1154         end_bprecond = func->curblock;
1155     } else {
1156         bprecond = end_bprecond = NULL;
1157     }
1158
1159     /* Now the next blocks won't be ordered nicely, but we need to
1160      * generate them this early for 'break' and 'continue'.
1161      */
1162     if (self->increment) {
1163         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1164         if (!bincrement)
1165             return false;
1166         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1167     } else {
1168         bincrement = end_bincrement = NULL;
1169     }
1170
1171     if (self->postcond) {
1172         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1173         if (!bpostcond)
1174             return false;
1175         bcontinue = bpostcond; /* postcond comes before the increment */
1176     } else {
1177         bpostcond = end_bpostcond = NULL;
1178     }
1179
1180     bout_id = func->ir_func->blocks_count;
1181     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1182     if (!bout)
1183         return false;
1184     bbreak = bout;
1185
1186     /* The loop body... */
1187     if (self->body)
1188     {
1189         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1190         if (!bbody)
1191             return false;
1192
1193         /* enter */
1194         func->curblock = bbody;
1195
1196         old_bbreak          = func->breakblock;
1197         old_bcontinue       = func->continueblock;
1198         func->breakblock    = bbreak;
1199         func->continueblock = bcontinue;
1200
1201         /* generate */
1202         cgen = self->body->expression.codegen;
1203         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1204             return false;
1205
1206         end_bbody = func->curblock;
1207         func->breakblock    = old_bbreak;
1208         func->continueblock = old_bcontinue;
1209     }
1210
1211     /* post-loop-condition */
1212     if (self->postcond)
1213     {
1214         /* enter */
1215         func->curblock = bpostcond;
1216
1217         /* generate */
1218         cgen = self->postcond->expression.codegen;
1219         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1220             return false;
1221
1222         end_bpostcond = func->curblock;
1223     }
1224
1225     /* The incrementor */
1226     if (self->increment)
1227     {
1228         /* enter */
1229         func->curblock = bincrement;
1230
1231         /* generate */
1232         cgen = self->increment->expression.codegen;
1233         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1234             return false;
1235
1236         end_bincrement = func->curblock;
1237     }
1238
1239     /* In any case now, we continue from the outgoing block */
1240     func->curblock = bout;
1241
1242     /* Now all blocks are in place */
1243     /* From 'bin' we jump to whatever comes first */
1244     if      (bprecond)   tmpblock = bprecond;
1245     else if (bbody)      tmpblock = bbody;
1246     else if (bpostcond)  tmpblock = bpostcond;
1247     else                 tmpblock = bout;
1248     if (!ir_block_create_jump(bin, tmpblock))
1249         return false;
1250
1251     /* From precond */
1252     if (bprecond)
1253     {
1254         ir_block *ontrue, *onfalse;
1255         if      (bbody)      ontrue = bbody;
1256         else if (bincrement) ontrue = bincrement;
1257         else if (bpostcond)  ontrue = bpostcond;
1258         else                 ontrue = bprecond;
1259         onfalse = bout;
1260         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1261             return false;
1262     }
1263
1264     /* from body */
1265     if (bbody)
1266     {
1267         if      (bincrement) tmpblock = bincrement;
1268         else if (bpostcond)  tmpblock = bpostcond;
1269         else if (bprecond)   tmpblock = bprecond;
1270         else                 tmpblock = bout;
1271         if (!ir_block_create_jump(end_bbody, tmpblock))
1272             return false;
1273     }
1274
1275     /* from increment */
1276     if (bincrement)
1277     {
1278         if      (bpostcond)  tmpblock = bpostcond;
1279         else if (bprecond)   tmpblock = bprecond;
1280         else if (bbody)      tmpblock = bbody;
1281         else                 tmpblock = bout;
1282         if (!ir_block_create_jump(end_bincrement, tmpblock))
1283             return false;
1284     }
1285
1286     /* from postcond */
1287     if (bpostcond)
1288     {
1289         ir_block *ontrue, *onfalse;
1290         if      (bprecond)   ontrue = bprecond;
1291         else if (bbody)      ontrue = bbody;
1292         else if (bincrement) ontrue = bincrement;
1293         else                 ontrue = bpostcond;
1294         onfalse = bout;
1295         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1296             return false;
1297     }
1298
1299     /* Move 'bout' to the end */
1300     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1301         !ir_function_blocks_add(func->ir_func, bout))
1302     {
1303         ir_block_delete(bout);
1304         return false;
1305     }
1306
1307     return true;
1308 }
1309
1310 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1311 {
1312     ast_expression_codegen *cgen;
1313     ir_value_vector         params;
1314     ir_instr               *callinstr;
1315     size_t i;
1316
1317     ir_value *funval = NULL;
1318
1319     /* return values are never rvalues */
1320     (void)lvalue;
1321
1322     cgen = self->func->expression.codegen;
1323     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1324         return false;
1325     if (!funval)
1326         return false;
1327
1328     MEM_VECTOR_INIT(&params, v);
1329
1330     /* parameters */
1331     for (i = 0; i < self->params_count; ++i)
1332     {
1333         ir_value *param;
1334         ast_expression *expr = self->params[i];
1335
1336         cgen = expr->expression.codegen;
1337         if (!(*cgen)(expr, func, false, &param))
1338             goto error;
1339         if (!param)
1340             goto error;
1341         if (!ir_value_vector_v_add(&params, param))
1342             goto error;
1343     }
1344
1345     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1346     if (!callinstr)
1347         goto error;
1348
1349     for (i = 0; i < params.v_count; ++i) {
1350         if (!ir_call_param(callinstr, params.v[i]))
1351             goto error;
1352     }
1353
1354     *out = ir_call_value(callinstr);
1355
1356     return true;
1357 error:
1358     MEM_VECTOR_CLEAR(&params, v);
1359     return false;
1360 }