]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
creating and generating builtin functions, ast-macros for builtins, todo: params
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     if (self->on_true)
242         ast_unref(self->on_true);
243     if (self->on_false)
244         ast_unref(self->on_false);
245     ast_expression_delete((ast_expression*)self);
246     mem_d(self);
247 }
248
249 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
250 {
251     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
252     /* This time NEITHER must be NULL */
253     if (!ontrue || !onfalse) {
254         mem_d(self);
255         return NULL;
256     }
257     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
258
259     self->cond     = cond;
260     self->on_true  = ontrue;
261     self->on_false = onfalse;
262     self->phi_out  = NULL;
263
264     return self;
265 }
266
267 void ast_ternary_delete(ast_ternary *self)
268 {
269     ast_unref(self->cond);
270     ast_unref(self->on_true);
271     ast_unref(self->on_false);
272     ast_expression_delete((ast_expression*)self);
273     mem_d(self);
274 }
275
276 ast_loop* ast_loop_new(lex_ctx ctx,
277                        ast_expression *initexpr,
278                        ast_expression *precond,
279                        ast_expression *postcond,
280                        ast_expression *increment,
281                        ast_expression *body)
282 {
283     ast_instantiate(ast_loop, ctx, ast_loop_delete);
284     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
285
286     self->initexpr  = initexpr;
287     self->precond   = precond;
288     self->postcond  = postcond;
289     self->increment = increment;
290     self->body      = body;
291
292     return self;
293 }
294
295 void ast_loop_delete(ast_loop *self)
296 {
297     if (self->initexpr)
298         ast_unref(self->initexpr);
299     if (self->precond)
300         ast_unref(self->precond);
301     if (self->postcond)
302         ast_unref(self->postcond);
303     if (self->increment)
304         ast_unref(self->increment);
305     if (self->body)
306         ast_unref(self->body);
307     ast_expression_delete((ast_expression*)self);
308     mem_d(self);
309 }
310
311 ast_call* ast_call_new(lex_ctx ctx,
312                        ast_expression *funcexpr)
313 {
314     ast_instantiate(ast_call, ctx, ast_call_delete);
315     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
316
317     MEM_VECTOR_INIT(self, params);
318
319     return self;
320 }
321
322 void ast_call_delete(ast_call *self)
323 {
324     size_t i;
325     for (i = 0; i < self->params_count; ++i)
326         ast_unref(self->params[i]);
327     MEM_VECTOR_CLEAR(self, params);
328
329     if (self->func)
330         ast_unref(self->func);
331
332     ast_expression_delete((ast_expression*)self);
333     mem_d(self);
334 }
335
336 ast_store* ast_store_new(lex_ctx ctx, int op,
337                          ast_value *dest, ast_expression *source)
338 {
339     ast_instantiate(ast_store, ctx, ast_store_delete);
340     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
341
342     self->op = op;
343     self->dest = dest;
344     self->source = source;
345
346     return self;
347 }
348
349 void ast_store_delete(ast_store *self)
350 {
351     ast_unref(self->dest);
352     ast_unref(self->source);
353     ast_expression_delete((ast_expression*)self);
354     mem_d(self);
355 }
356
357 ast_block* ast_block_new(lex_ctx ctx)
358 {
359     ast_instantiate(ast_block, ctx, ast_block_delete);
360     ast_expression_init((ast_expression*)self,
361                         (ast_expression_codegen*)&ast_block_codegen);
362
363     MEM_VECTOR_INIT(self, locals);
364     MEM_VECTOR_INIT(self, exprs);
365
366     return self;
367 }
368 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
369 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
370
371 void ast_block_delete(ast_block *self)
372 {
373     size_t i;
374     for (i = 0; i < self->exprs_count; ++i)
375         ast_unref(self->exprs[i]);
376     MEM_VECTOR_CLEAR(self, exprs);
377     for (i = 0; i < self->locals_count; ++i)
378         ast_delete(self->locals[i]);
379     MEM_VECTOR_CLEAR(self, locals);
380     ast_expression_delete((ast_expression*)self);
381     mem_d(self);
382 }
383
384 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
385 {
386     ast_instantiate(ast_function, ctx, ast_function_delete);
387
388     if (!vtype ||
389         vtype->isconst ||
390         vtype->expression.vtype != TYPE_FUNCTION)
391     {
392         mem_d(self);
393         return NULL;
394     }
395
396     self->vtype = vtype;
397     self->name = name ? util_strdup(name) : NULL;
398     MEM_VECTOR_INIT(self, blocks);
399     MEM_VECTOR_INIT(self, params);
400
401     self->labelcount = 0;
402     self->builtin = 0;
403
404     self->ir_func = NULL;
405     self->curblock = NULL;
406
407     self->breakblock    = NULL;
408     self->continueblock = NULL;
409
410     vtype->isconst = true;
411     vtype->constval.vfunc = self;
412
413     return self;
414 }
415
416 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
417 MEM_VEC_FUNCTIONS(ast_function, ast_value*, params)
418
419 void ast_function_delete(ast_function *self)
420 {
421     size_t i;
422     if (self->name)
423         mem_d((void*)self->name);
424     if (self->vtype) {
425         /* ast_value_delete(self->vtype); */
426         self->vtype->isconst = false;
427         self->vtype->constval.vfunc = NULL;
428         /* We use unref - if it was stored in a global table it is supposed
429          * to be deleted from *there*
430          */
431         ast_unref(self->vtype);
432     }
433     for (i = 0; i < self->blocks_count; ++i)
434         ast_delete(self->blocks[i]);
435     MEM_VECTOR_CLEAR(self, blocks);
436     for (i = 0; i < self->params_count; ++i)
437         ast_delete(self->params[i]);
438     MEM_VECTOR_CLEAR(self, params);
439     mem_d(self);
440 }
441
442 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
443 {
444     unsigned int base = 10;
445 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
446 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
447     if (size < 1)
448         return;
449     checknul();
450     if (!num)
451         addch('0');
452     else {
453         while (num)
454         {
455             int digit = num % base;
456             num /= base;
457             addch('0' + digit);
458         }
459     }
460
461     *buf = 0;
462 #undef addch
463 #undef checknul
464 }
465
466 const char* ast_function_label(ast_function *self, const char *prefix)
467 {
468     size_t id = (self->labelcount++);
469     size_t len = strlen(prefix);
470     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
471     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
472     return self->labelbuf;
473 }
474
475 /*********************************************************************/
476 /* AST codegen part
477  * by convention you must never pass NULL to the 'ir_value **out'
478  * parameter. If you really don't care about the output, pass a dummy.
479  * But I can't imagine a pituation where the output is truly unnecessary.
480  */
481
482 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
483 {
484     /* NOTE: This is the codegen for a variable used in an expression.
485      * It is not the codegen to generate the value. For this purpose,
486      * ast_local_codegen and ast_global_codegen are to be used before this
487      * is executed. ast_function_codegen should take care of its locals,
488      * and the ast-user should take care of ast_global_codegen to be used
489      * on all the globals.
490      */
491     if (!self->ir_v)
492         return false;
493     *out = self->ir_v;
494     return true;
495 }
496
497 bool ast_global_codegen(ast_value *self, ir_builder *ir)
498 {
499     ir_value *v = NULL;
500     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
501     {
502         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
503         if (!func)
504             return false;
505
506         self->constval.vfunc->ir_func = func;
507         /* The function is filled later on ast_function_codegen... */
508         return true;
509     }
510
511     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
512     if (!v)
513         return false;
514
515     if (self->isconst) {
516         switch (self->expression.vtype)
517         {
518             case TYPE_FLOAT:
519                 if (!ir_value_set_float(v, self->constval.vfloat))
520                     goto error;
521                 break;
522             case TYPE_VECTOR:
523                 if (!ir_value_set_vector(v, self->constval.vvec))
524                     goto error;
525                 break;
526             case TYPE_STRING:
527                 if (!ir_value_set_string(v, self->constval.vstring))
528                     goto error;
529                 break;
530             case TYPE_FUNCTION:
531                 printf("global of type function not properly generated\n");
532                 goto error;
533                 /* Cannot generate an IR value for a function,
534                  * need a pointer pointing to a function rather.
535                  */
536             default:
537                 printf("TODO: global constant type %i\n", self->expression.vtype);
538                 break;
539         }
540     }
541
542     /* link us to the ir_value */
543     self->ir_v = v;
544     return true;
545
546 error: /* clean up */
547     ir_value_delete(v);
548     return false;
549 }
550
551 bool ast_local_codegen(ast_value *self, ir_function *func)
552 {
553     ir_value *v = NULL;
554     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
555     {
556         /* Do we allow local functions? I think not...
557          * this is NOT a function pointer atm.
558          */
559         return false;
560     }
561
562     v = ir_function_create_local(func, self->name, self->expression.vtype);
563     if (!v)
564         return false;
565
566     /* A constant local... hmmm...
567      * I suppose the IR will have to deal with this
568      */
569     if (self->isconst) {
570         switch (self->expression.vtype)
571         {
572             case TYPE_FLOAT:
573                 if (!ir_value_set_float(v, self->constval.vfloat))
574                     goto error;
575                 break;
576             case TYPE_VECTOR:
577                 if (!ir_value_set_vector(v, self->constval.vvec))
578                     goto error;
579                 break;
580             case TYPE_STRING:
581                 if (!ir_value_set_string(v, self->constval.vstring))
582                     goto error;
583                 break;
584             default:
585                 printf("TODO: global constant type %i\n", self->expression.vtype);
586                 break;
587         }
588     }
589
590     /* link us to the ir_value */
591     self->ir_v = v;
592     return true;
593
594 error: /* clean up */
595     ir_value_delete(v);
596     return false;
597 }
598
599 bool ast_function_codegen(ast_function *self, ir_builder *ir)
600 {
601     ir_function *irf;
602     ir_value    *dummy;
603     size_t    i;
604
605     irf = self->ir_func;
606     if (!irf) {
607         printf("ast_function's related ast_value was not generated yet\n");
608         return false;
609     }
610
611     for (i = 0; i < self->params_count; ++i)
612     {
613         if (!ir_function_params_add(irf, self->params[i]->expression.vtype))
614             return false;
615     }
616
617     if (self->builtin) {
618         irf->builtin = self->builtin;
619         return true;
620     }
621
622     self->curblock = ir_function_create_block(irf, "entry");
623     if (!self->curblock)
624         return false;
625
626     for (i = 0; i < self->blocks_count; ++i) {
627         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
628         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
629             return false;
630     }
631
632     /* TODO: check return types */
633     if (!self->curblock->is_return)
634     {
635         if (!self->vtype->expression.next ||
636             self->vtype->expression.next->expression.vtype == TYPE_VOID)
637             return ir_block_create_return(self->curblock, NULL);
638         else
639         {
640             /* error("missing return"); */
641             return false;
642         }
643     }
644     return true;
645 }
646
647 /* Note, you will not see ast_block_codegen generate ir_blocks.
648  * To the AST and the IR, blocks are 2 different things.
649  * In the AST it represents a block of code, usually enclosed in
650  * curly braces {...}.
651  * While in the IR it represents a block in terms of control-flow.
652  */
653 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
654 {
655     size_t i;
656
657     /* We don't use this
658      * Note: an ast-representation using the comma-operator
659      * of the form: (a, b, c) = x should not assign to c...
660      */
661     (void)lvalue;
662
663     /* output is NULL at first, we'll have each expression
664      * assign to out output, thus, a comma-operator represention
665      * using an ast_block will return the last generated value,
666      * so: (b, c) + a  executed both b and c, and returns c,
667      * which is then added to a.
668      */
669     *out = NULL;
670
671     /* generate locals */
672     for (i = 0; i < self->locals_count; ++i)
673     {
674         if (!ast_local_codegen(self->locals[i], func->ir_func))
675             return false;
676     }
677
678     for (i = 0; i < self->exprs_count; ++i)
679     {
680         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
681         if (!(*gen)(self->exprs[i], func, false, out))
682             return false;
683     }
684
685     return true;
686 }
687
688 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
689 {
690     ast_expression_codegen *cgen;
691     ir_value *left, *right;
692
693     cgen = self->dest->expression.codegen;
694     /* lvalue! */
695     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
696         return false;
697
698     cgen = self->source->expression.codegen;
699     /* rvalue! */
700     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
701         return false;
702
703     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
704         return false;
705
706     /* Theoretically, an assinment returns its left side as an
707      * lvalue, if we don't need an lvalue though, we return
708      * the right side as an rvalue, otherwise we have to
709      * somehow know whether or not we need to dereference the pointer
710      * on the left side - that is: OP_LOAD if it was an address.
711      * Also: in original QC we cannot OP_LOADP *anyway*.
712      */
713     *out = (lvalue ? left : right);
714
715     return true;
716 }
717
718 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
719 {
720     ast_expression_codegen *cgen;
721     ir_value *left, *right;
722
723     /* In the context of a binary operation, we can disregard
724      * the lvalue flag.
725      */
726      (void)lvalue;
727
728     cgen = self->left->expression.codegen;
729     /* lvalue! */
730     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
731         return false;
732
733     cgen = self->right->expression.codegen;
734     /* rvalue! */
735     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
736         return false;
737
738     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
739                                  self->op, left, right);
740     if (!*out)
741         return false;
742
743     return true;
744 }
745
746 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
747 {
748     ast_expression_codegen *cgen;
749     ir_value *ent, *field;
750
751     /* This function needs to take the 'lvalue' flag into account!
752      * As lvalue we provide a field-pointer, as rvalue we provide the
753      * value in a temp.
754      */
755
756     cgen = self->entity->expression.codegen;
757     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
758         return false;
759
760     cgen = self->field->expression.codegen;
761     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
762         return false;
763
764     if (lvalue) {
765         /* address! */
766         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
767                                             ent, field);
768     } else {
769         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
770                                              ent, field, self->expression.vtype);
771     }
772     if (!*out)
773         return false;
774
775     /* Hm that should be it... */
776     return true;
777 }
778
779 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
780 {
781     ast_expression_codegen *cgen;
782
783     ir_value *condval;
784     ir_value *dummy;
785
786     ir_block *cond = func->curblock;
787     ir_block *ontrue;
788     ir_block *onfalse;
789     ir_block *merge;
790
791     /* We don't output any value, thus also don't care about r/lvalue */
792     (void)out;
793     (void)lvalue;
794
795     /* generate the condition */
796     func->curblock = cond;
797     cgen = self->cond->expression.codegen;
798     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
799         return false;
800
801     /* on-true path */
802
803     if (self->on_true) {
804         /* create on-true block */
805         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
806         if (!ontrue)
807             return false;
808
809         /* enter the block */
810         func->curblock = ontrue;
811
812         /* generate */
813         cgen = self->on_true->expression.codegen;
814         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
815             return false;
816     } else
817         ontrue = NULL;
818
819     /* on-false path */
820     if (self->on_false) {
821         /* create on-false block */
822         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
823         if (!onfalse)
824             return false;
825
826         /* enter the block */
827         func->curblock = onfalse;
828
829         /* generate */
830         cgen = self->on_false->expression.codegen;
831         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
832             return false;
833     } else
834         onfalse = NULL;
835
836     /* Merge block were they all merge in to */
837     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
838     if (!merge)
839         return false;
840
841     /* add jumps ot the merge block */
842     if (ontrue && !ir_block_create_jump(ontrue, merge))
843         return false;
844     if (onfalse && !ir_block_create_jump(onfalse, merge))
845         return false;
846
847     /* we create the if here, that way all blocks are ordered :)
848      */
849     if (!ir_block_create_if(cond, condval,
850                             (ontrue  ? ontrue  : merge),
851                             (onfalse ? onfalse : merge)))
852     {
853         return false;
854     }
855
856     /* Now enter the merge block */
857     func->curblock = merge;
858
859     return true;
860 }
861
862 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
863 {
864     ast_expression_codegen *cgen;
865
866     ir_value *condval;
867     ir_value *trueval, *falseval;
868     ir_instr *phi;
869
870     ir_block *cond = func->curblock;
871     ir_block *ontrue;
872     ir_block *onfalse;
873     ir_block *merge;
874
875     /* In theory it shouldn't be possible to pass through a node twice, but
876      * in case we add any kind of optimization pass for the AST itself, it
877      * may still happen, thus we remember a created ir_value and simply return one
878      * if it already exists.
879      */
880     if (self->phi_out) {
881         *out = self->phi_out;
882         return true;
883     }
884
885     /* Ternary can never create an lvalue... */
886     if (lvalue)
887         return false;
888
889     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
890
891     /* generate the condition */
892     func->curblock = cond;
893     cgen = self->cond->expression.codegen;
894     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
895         return false;
896
897     /* create on-true block */
898     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
899     if (!ontrue)
900         return false;
901     else
902     {
903         /* enter the block */
904         func->curblock = ontrue;
905
906         /* generate */
907         cgen = self->on_true->expression.codegen;
908         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
909             return false;
910     }
911
912     /* create on-false block */
913     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
914     if (!onfalse)
915         return false;
916     else
917     {
918         /* enter the block */
919         func->curblock = onfalse;
920
921         /* generate */
922         cgen = self->on_false->expression.codegen;
923         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
924             return false;
925     }
926
927     /* create merge block */
928     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
929     if (!merge)
930         return false;
931     /* jump to merge block */
932     if (!ir_block_create_jump(ontrue, merge))
933         return false;
934     if (!ir_block_create_jump(onfalse, merge))
935         return false;
936
937     /* create if instruction */
938     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
939         return false;
940
941     /* Now enter the merge block */
942     func->curblock = merge;
943
944     /* Here, now, we need a PHI node
945      * but first some sanity checking...
946      */
947     if (trueval->vtype != falseval->vtype) {
948         /* error("ternary with different types on the two sides"); */
949         return false;
950     }
951
952     /* create PHI */
953     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
954     if (!phi ||
955         !ir_phi_add(phi, ontrue,  trueval) ||
956         !ir_phi_add(phi, onfalse, falseval))
957     {
958         return false;
959     }
960
961     self->phi_out = ir_phi_value(phi);
962     *out = self->phi_out;
963
964     return true;
965 }
966
967 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
968 {
969     ast_expression_codegen *cgen;
970
971     ir_value *dummy      = NULL;
972     ir_value *precond    = NULL;
973     ir_value *postcond   = NULL;
974
975     /* Since we insert some jumps "late" so we have blocks
976      * ordered "nicely", we need to keep track of the actual end-blocks
977      * of expressions to add the jumps to.
978      */
979     ir_block *bbody      = NULL, *end_bbody      = NULL;
980     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
981     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
982     ir_block *bincrement = NULL, *end_bincrement = NULL;
983     ir_block *bout       = NULL, *bin            = NULL;
984
985     /* let's at least move the outgoing block to the end */
986     size_t    bout_id;
987
988     /* 'break' and 'continue' need to be able to find the right blocks */
989     ir_block *bcontinue     = NULL;
990     ir_block *bbreak        = NULL;
991
992     ir_block *old_bcontinue = NULL;
993     ir_block *old_bbreak    = NULL;
994
995     ir_block *tmpblock      = NULL;
996
997     (void)lvalue;
998     (void)out;
999
1000     /* NOTE:
1001      * Should we ever need some kind of block ordering, better make this function
1002      * move blocks around than write a block ordering algorithm later... after all
1003      * the ast and ir should work together, not against each other.
1004      */
1005
1006     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1007      * anyway if for example it contains a ternary.
1008      */
1009     if (self->initexpr)
1010     {
1011         cgen = self->initexpr->expression.codegen;
1012         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1013             return false;
1014     }
1015
1016     /* Store the block from which we enter this chaos */
1017     bin = func->curblock;
1018
1019     /* The pre-loop condition needs its own block since we
1020      * need to be able to jump to the start of that expression.
1021      */
1022     if (self->precond)
1023     {
1024         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1025         if (!bprecond)
1026             return false;
1027
1028         /* the pre-loop-condition the least important place to 'continue' at */
1029         bcontinue = bprecond;
1030
1031         /* enter */
1032         func->curblock = bprecond;
1033
1034         /* generate */
1035         cgen = self->precond->expression.codegen;
1036         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1037             return false;
1038
1039         end_bprecond = func->curblock;
1040     } else {
1041         bprecond = end_bprecond = NULL;
1042     }
1043
1044     /* Now the next blocks won't be ordered nicely, but we need to
1045      * generate them this early for 'break' and 'continue'.
1046      */
1047     if (self->increment) {
1048         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1049         if (!bincrement)
1050             return false;
1051         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1052     } else {
1053         bincrement = end_bincrement = NULL;
1054     }
1055
1056     if (self->postcond) {
1057         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1058         if (!bpostcond)
1059             return false;
1060         bcontinue = bpostcond; /* postcond comes before the increment */
1061     } else {
1062         bpostcond = end_bpostcond = NULL;
1063     }
1064
1065     bout_id = func->ir_func->blocks_count;
1066     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1067     if (!bout)
1068         return false;
1069     bbreak = bout;
1070
1071     /* The loop body... */
1072     if (self->body)
1073     {
1074         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1075         if (!bbody)
1076             return false;
1077
1078         /* enter */
1079         func->curblock = bbody;
1080
1081         old_bbreak          = func->breakblock;
1082         old_bcontinue       = func->continueblock;
1083         func->breakblock    = bbreak;
1084         func->continueblock = bcontinue;
1085
1086         /* generate */
1087         cgen = self->body->expression.codegen;
1088         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1089             return false;
1090
1091         end_bbody = func->curblock;
1092         func->breakblock    = old_bbreak;
1093         func->continueblock = old_bcontinue;
1094     }
1095
1096     /* post-loop-condition */
1097     if (self->postcond)
1098     {
1099         /* enter */
1100         func->curblock = bpostcond;
1101
1102         /* generate */
1103         cgen = self->postcond->expression.codegen;
1104         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1105             return false;
1106
1107         end_bpostcond = func->curblock;
1108     }
1109
1110     /* The incrementor */
1111     if (self->increment)
1112     {
1113         /* enter */
1114         func->curblock = bincrement;
1115
1116         /* generate */
1117         cgen = self->increment->expression.codegen;
1118         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1119             return false;
1120
1121         end_bincrement = func->curblock;
1122     }
1123
1124     /* In any case now, we continue from the outgoing block */
1125     func->curblock = bout;
1126
1127     /* Now all blocks are in place */
1128     /* From 'bin' we jump to whatever comes first */
1129     if      (bprecond)   tmpblock = bprecond;
1130     else if (bbody)      tmpblock = bbody;
1131     else if (bpostcond)  tmpblock = bpostcond;
1132     else                 tmpblock = bout;
1133     if (!ir_block_create_jump(bin, tmpblock))
1134         return false;
1135
1136     /* From precond */
1137     if (bprecond)
1138     {
1139         ir_block *ontrue, *onfalse;
1140         if      (bbody)      ontrue = bbody;
1141         else if (bincrement) ontrue = bincrement;
1142         else if (bpostcond)  ontrue = bpostcond;
1143         else                 ontrue = bprecond;
1144         onfalse = bout;
1145         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1146             return false;
1147     }
1148
1149     /* from body */
1150     if (bbody)
1151     {
1152         if      (bincrement) tmpblock = bincrement;
1153         else if (bpostcond)  tmpblock = bpostcond;
1154         else if (bprecond)   tmpblock = bprecond;
1155         else                 tmpblock = bout;
1156         if (!ir_block_create_jump(end_bbody, tmpblock))
1157             return false;
1158     }
1159
1160     /* from increment */
1161     if (bincrement)
1162     {
1163         if      (bpostcond)  tmpblock = bpostcond;
1164         else if (bprecond)   tmpblock = bprecond;
1165         else if (bbody)      tmpblock = bbody;
1166         else                 tmpblock = bout;
1167         if (!ir_block_create_jump(end_bincrement, tmpblock))
1168             return false;
1169     }
1170
1171     /* from postcond */
1172     if (bpostcond)
1173     {
1174         ir_block *ontrue, *onfalse;
1175         if      (bprecond)   ontrue = bprecond;
1176         else if (bbody)      ontrue = bbody;
1177         else if (bincrement) ontrue = bincrement;
1178         else                 ontrue = bpostcond;
1179         onfalse = bout;
1180         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1181             return false;
1182     }
1183
1184     /* Move 'bout' to the end */
1185     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1186         !ir_function_blocks_add(func->ir_func, bout))
1187     {
1188         ir_block_delete(bout);
1189         return false;
1190     }
1191
1192     return true;
1193 }
1194
1195 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1196 {
1197     /* TODO: call ir codegen */
1198     ast_expression_codegen *cgen;
1199     ir_value_vector         params;
1200     ir_instr               *callinstr;
1201     size_t i;
1202
1203     ir_value *funval = NULL;
1204
1205     /* return values are never rvalues */
1206     (void)lvalue;
1207
1208     cgen = self->func->expression.codegen;
1209     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1210         return false;
1211     if (!funval)
1212         return false;
1213
1214     MEM_VECTOR_INIT(&params, v);
1215
1216     /* parameters */
1217     for (i = 0; i < self->params_count; ++i)
1218     {
1219         ir_value *param;
1220         ast_expression *expr = self->params[i];
1221
1222         cgen = expr->expression.codegen;
1223         if (!(*cgen)(expr, func, false, &param))
1224             goto error;
1225         if (!param)
1226             goto error;
1227         if (!ir_value_vector_v_add(&params, param))
1228             goto error;
1229     }
1230
1231     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1232     if (!callinstr)
1233         goto error;
1234
1235     for (i = 0; i < params.v_count; ++i) {
1236         if (!ir_call_param(callinstr, params.v[i]))
1237             goto error;
1238     }
1239
1240     *out = ir_call_value(callinstr);
1241
1242     return true;
1243 error:
1244     MEM_VECTOR_CLEAR(&params, v);
1245     return false;
1246 }