]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_call node; codegen dummy
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     if (self->on_true)
242         ast_unref(self->on_true);
243     if (self->on_false)
244         ast_unref(self->on_false);
245     ast_expression_delete((ast_expression*)self);
246     mem_d(self);
247 }
248
249 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
250 {
251     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
252     /* This time NEITHER must be NULL */
253     if (!ontrue || !onfalse) {
254         mem_d(self);
255         return NULL;
256     }
257     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
258
259     self->cond     = cond;
260     self->on_true  = ontrue;
261     self->on_false = onfalse;
262     self->phi_out  = NULL;
263
264     return self;
265 }
266
267 void ast_ternary_delete(ast_ternary *self)
268 {
269     ast_unref(self->cond);
270     ast_unref(self->on_true);
271     ast_unref(self->on_false);
272     ast_expression_delete((ast_expression*)self);
273     mem_d(self);
274 }
275
276 ast_loop* ast_loop_new(lex_ctx ctx,
277                        ast_expression *initexpr,
278                        ast_expression *precond,
279                        ast_expression *postcond,
280                        ast_expression *increment,
281                        ast_expression *body)
282 {
283     ast_instantiate(ast_loop, ctx, ast_loop_delete);
284     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
285
286     self->initexpr  = initexpr;
287     self->precond   = precond;
288     self->postcond  = postcond;
289     self->increment = increment;
290     self->body      = body;
291
292     return self;
293 }
294
295 void ast_loop_delete(ast_loop *self)
296 {
297     if (self->initexpr)
298         ast_unref(self->initexpr);
299     if (self->precond)
300         ast_unref(self->precond);
301     if (self->postcond)
302         ast_unref(self->postcond);
303     if (self->increment)
304         ast_unref(self->increment);
305     if (self->body)
306         ast_unref(self->body);
307     ast_expression_delete((ast_expression*)self);
308     mem_d(self);
309 }
310
311 ast_call* ast_call_new(lex_ctx ctx,
312                        ast_expression *funcexpr)
313 {
314     ast_instantiate(ast_call, ctx, ast_call_delete);
315     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
316
317     MEM_VECTOR_INIT(self, params);
318
319     return self;
320 }
321
322 void ast_call_delete(ast_call *self)
323 {
324     size_t i;
325     for (i = 0; i < self->params_count; ++i)
326         ast_unref(self->params[i]);
327     MEM_VECTOR_CLEAR(self, params);
328
329     if (self->func)
330         ast_unref(self->func);
331
332     ast_expression_delete((ast_expression*)self);
333     mem_d(self);
334 }
335
336 ast_store* ast_store_new(lex_ctx ctx, int op,
337                          ast_value *dest, ast_expression *source)
338 {
339     ast_instantiate(ast_store, ctx, ast_store_delete);
340     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
341
342     self->op = op;
343     self->dest = dest;
344     self->source = source;
345
346     return self;
347 }
348
349 void ast_store_delete(ast_store *self)
350 {
351     ast_unref(self->dest);
352     ast_unref(self->source);
353     ast_expression_delete((ast_expression*)self);
354     mem_d(self);
355 }
356
357 ast_block* ast_block_new(lex_ctx ctx)
358 {
359     ast_instantiate(ast_block, ctx, ast_block_delete);
360     ast_expression_init((ast_expression*)self,
361                         (ast_expression_codegen*)&ast_block_codegen);
362
363     MEM_VECTOR_INIT(self, locals);
364     MEM_VECTOR_INIT(self, exprs);
365
366     return self;
367 }
368 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
369 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
370
371 void ast_block_delete(ast_block *self)
372 {
373     size_t i;
374     for (i = 0; i < self->exprs_count; ++i)
375         ast_unref(self->exprs[i]);
376     MEM_VECTOR_CLEAR(self, exprs);
377     for (i = 0; i < self->locals_count; ++i)
378         ast_delete(self->locals[i]);
379     MEM_VECTOR_CLEAR(self, locals);
380     ast_expression_delete((ast_expression*)self);
381     mem_d(self);
382 }
383
384 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
385 {
386     ast_instantiate(ast_function, ctx, ast_function_delete);
387
388     if (!vtype ||
389         vtype->isconst ||
390         vtype->expression.vtype != TYPE_FUNCTION)
391     {
392         mem_d(self);
393         return NULL;
394     }
395
396     self->vtype = vtype;
397     self->name = name ? util_strdup(name) : NULL;
398     MEM_VECTOR_INIT(self, blocks);
399
400     self->labelcount = 0;
401
402     self->ir_func = NULL;
403     self->curblock = NULL;
404
405     self->breakblock    = NULL;
406     self->continueblock = NULL;
407
408     vtype->isconst = true;
409     vtype->constval.vfunc = self;
410
411     return self;
412 }
413
414 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
415
416 void ast_function_delete(ast_function *self)
417 {
418     size_t i;
419     if (self->name)
420         mem_d((void*)self->name);
421     if (self->vtype) {
422         /* ast_value_delete(self->vtype); */
423         self->vtype->isconst = false;
424         self->vtype->constval.vfunc = NULL;
425         /* We use unref - if it was stored in a global table it is supposed
426          * to be deleted from *there*
427          */
428         ast_unref(self->vtype);
429     }
430     for (i = 0; i < self->blocks_count; ++i)
431         ast_delete(self->blocks[i]);
432     MEM_VECTOR_CLEAR(self, blocks);
433     mem_d(self);
434 }
435
436 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
437 {
438     unsigned int base = 10;
439 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
440 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
441     if (size < 1)
442         return;
443     checknul();
444     if (!num)
445         addch('0');
446     else {
447         while (num)
448         {
449             int digit = num % base;
450             num /= base;
451             addch('0' + digit);
452         }
453     }
454
455     *buf = 0;
456 #undef addch
457 #undef checknul
458 }
459
460 const char* ast_function_label(ast_function *self, const char *prefix)
461 {
462     size_t id = (self->labelcount++);
463     size_t len = strlen(prefix);
464     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
465     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
466     return self->labelbuf;
467 }
468
469 /*********************************************************************/
470 /* AST codegen part
471  * by convention you must never pass NULL to the 'ir_value **out'
472  * parameter. If you really don't care about the output, pass a dummy.
473  * But I can't imagine a pituation where the output is truly unnecessary.
474  */
475
476 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
477 {
478     /* NOTE: This is the codegen for a variable used in an expression.
479      * It is not the codegen to generate the value. For this purpose,
480      * ast_local_codegen and ast_global_codegen are to be used before this
481      * is executed. ast_function_codegen should take care of its locals,
482      * and the ast-user should take care of ast_global_codegen to be used
483      * on all the globals.
484      */
485     if (!self->ir_v)
486         return false;
487     *out = self->ir_v;
488     return true;
489 }
490
491 bool ast_global_codegen(ast_value *self, ir_builder *ir)
492 {
493     ir_value *v = NULL;
494     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
495     {
496         ir_function *func = ir_builder_create_function(ir, self->name);
497         if (!func)
498             return false;
499
500         self->constval.vfunc->ir_func = func;
501         /* The function is filled later on ast_function_codegen... */
502         return true;
503     }
504
505     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
506     if (!v)
507         return false;
508
509     if (self->isconst) {
510         switch (self->expression.vtype)
511         {
512             case TYPE_FLOAT:
513                 if (!ir_value_set_float(v, self->constval.vfloat))
514                     goto error;
515                 break;
516             case TYPE_VECTOR:
517                 if (!ir_value_set_vector(v, self->constval.vvec))
518                     goto error;
519                 break;
520             case TYPE_STRING:
521                 if (!ir_value_set_string(v, self->constval.vstring))
522                     goto error;
523                 break;
524             case TYPE_FUNCTION:
525                 /* Cannot generate an IR value for a function,
526                  * need a pointer pointing to a function rather.
527                  */
528                 goto error;
529             default:
530                 printf("TODO: global constant type %i\n", self->expression.vtype);
531                 break;
532         }
533     }
534
535     /* link us to the ir_value */
536     self->ir_v = v;
537     return true;
538
539 error: /* clean up */
540     ir_value_delete(v);
541     return false;
542 }
543
544 bool ast_local_codegen(ast_value *self, ir_function *func)
545 {
546     ir_value *v = NULL;
547     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
548     {
549         /* Do we allow local functions? I think not...
550          * this is NOT a function pointer atm.
551          */
552         return false;
553     }
554
555     v = ir_function_create_local(func, self->name, self->expression.vtype);
556     if (!v)
557         return false;
558
559     /* A constant local... hmmm...
560      * I suppose the IR will have to deal with this
561      */
562     if (self->isconst) {
563         switch (self->expression.vtype)
564         {
565             case TYPE_FLOAT:
566                 if (!ir_value_set_float(v, self->constval.vfloat))
567                     goto error;
568                 break;
569             case TYPE_VECTOR:
570                 if (!ir_value_set_vector(v, self->constval.vvec))
571                     goto error;
572                 break;
573             case TYPE_STRING:
574                 if (!ir_value_set_string(v, self->constval.vstring))
575                     goto error;
576                 break;
577             default:
578                 printf("TODO: global constant type %i\n", self->expression.vtype);
579                 break;
580         }
581     }
582
583     /* link us to the ir_value */
584     self->ir_v = v;
585     return true;
586
587 error: /* clean up */
588     ir_value_delete(v);
589     return false;
590 }
591
592 bool ast_function_codegen(ast_function *self, ir_builder *ir)
593 {
594     ir_function *irf;
595     ir_value    *dummy;
596     size_t    i;
597
598     irf = self->ir_func;
599     if (!irf) {
600         printf("ast_function's related ast_value was not generated yet\n");
601         return false;
602     }
603
604     self->curblock = ir_function_create_block(irf, "entry");
605     if (!self->curblock)
606         return false;
607
608     for (i = 0; i < self->blocks_count; ++i) {
609         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
610         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
611             return false;
612     }
613
614     /* TODO: check return types */
615     if (!self->curblock->is_return)
616     {
617         if (!self->vtype->expression.next ||
618             self->vtype->expression.next->expression.vtype == TYPE_VOID)
619             return ir_block_create_return(self->curblock, NULL);
620         else
621         {
622             /* error("missing return"); */
623             return false;
624         }
625     }
626     return true;
627 }
628
629 /* Note, you will not see ast_block_codegen generate ir_blocks.
630  * To the AST and the IR, blocks are 2 different things.
631  * In the AST it represents a block of code, usually enclosed in
632  * curly braces {...}.
633  * While in the IR it represents a block in terms of control-flow.
634  */
635 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
636 {
637     size_t i;
638
639     /* We don't use this
640      * Note: an ast-representation using the comma-operator
641      * of the form: (a, b, c) = x should not assign to c...
642      */
643     (void)lvalue;
644
645     /* output is NULL at first, we'll have each expression
646      * assign to out output, thus, a comma-operator represention
647      * using an ast_block will return the last generated value,
648      * so: (b, c) + a  executed both b and c, and returns c,
649      * which is then added to a.
650      */
651     *out = NULL;
652
653     /* generate locals */
654     for (i = 0; i < self->locals_count; ++i)
655     {
656         if (!ast_local_codegen(self->locals[i], func->ir_func))
657             return false;
658     }
659
660     for (i = 0; i < self->exprs_count; ++i)
661     {
662         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
663         if (!(*gen)(self->exprs[i], func, false, out))
664             return false;
665     }
666
667     return true;
668 }
669
670 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
671 {
672     ast_expression_codegen *cgen;
673     ir_value *left, *right;
674
675     cgen = self->dest->expression.codegen;
676     /* lvalue! */
677     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
678         return false;
679
680     cgen = self->source->expression.codegen;
681     /* rvalue! */
682     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
683         return false;
684
685     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
686         return false;
687
688     /* Theoretically, an assinment returns its left side as an
689      * lvalue, if we don't need an lvalue though, we return
690      * the right side as an rvalue, otherwise we have to
691      * somehow know whether or not we need to dereference the pointer
692      * on the left side - that is: OP_LOAD if it was an address.
693      * Also: in original QC we cannot OP_LOADP *anyway*.
694      */
695     *out = (lvalue ? left : right);
696
697     return true;
698 }
699
700 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
701 {
702     ast_expression_codegen *cgen;
703     ir_value *left, *right;
704
705     /* In the context of a binary operation, we can disregard
706      * the lvalue flag.
707      */
708      (void)lvalue;
709
710     cgen = self->left->expression.codegen;
711     /* lvalue! */
712     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
713         return false;
714
715     cgen = self->right->expression.codegen;
716     /* rvalue! */
717     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
718         return false;
719
720     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
721                                  self->op, left, right);
722     if (!*out)
723         return false;
724
725     return true;
726 }
727
728 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
729 {
730     ast_expression_codegen *cgen;
731     ir_value *ent, *field;
732
733     /* This function needs to take the 'lvalue' flag into account!
734      * As lvalue we provide a field-pointer, as rvalue we provide the
735      * value in a temp.
736      */
737
738     cgen = self->entity->expression.codegen;
739     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
740         return false;
741
742     cgen = self->field->expression.codegen;
743     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
744         return false;
745
746     if (lvalue) {
747         /* address! */
748         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
749                                             ent, field);
750     } else {
751         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
752                                              ent, field, self->expression.vtype);
753     }
754     if (!*out)
755         return false;
756
757     /* Hm that should be it... */
758     return true;
759 }
760
761 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
762 {
763     ast_expression_codegen *cgen;
764
765     ir_value *condval;
766     ir_value *dummy;
767
768     ir_block *cond = func->curblock;
769     ir_block *ontrue;
770     ir_block *onfalse;
771     ir_block *merge;
772
773     /* We don't output any value, thus also don't care about r/lvalue */
774     (void)out;
775     (void)lvalue;
776
777     /* generate the condition */
778     func->curblock = cond;
779     cgen = self->cond->expression.codegen;
780     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
781         return false;
782
783     /* on-true path */
784
785     if (self->on_true) {
786         /* create on-true block */
787         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
788         if (!ontrue)
789             return false;
790
791         /* enter the block */
792         func->curblock = ontrue;
793
794         /* generate */
795         cgen = self->on_true->expression.codegen;
796         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
797             return false;
798     } else
799         ontrue = NULL;
800
801     /* on-false path */
802     if (self->on_false) {
803         /* create on-false block */
804         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
805         if (!onfalse)
806             return false;
807
808         /* enter the block */
809         func->curblock = onfalse;
810
811         /* generate */
812         cgen = self->on_false->expression.codegen;
813         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
814             return false;
815     } else
816         onfalse = NULL;
817
818     /* Merge block were they all merge in to */
819     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
820     if (!merge)
821         return false;
822
823     /* add jumps ot the merge block */
824     if (ontrue && !ir_block_create_jump(ontrue, merge))
825         return false;
826     if (onfalse && !ir_block_create_jump(onfalse, merge))
827         return false;
828
829     /* we create the if here, that way all blocks are ordered :)
830      */
831     if (!ir_block_create_if(cond, condval,
832                             (ontrue  ? ontrue  : merge),
833                             (onfalse ? onfalse : merge)))
834     {
835         return false;
836     }
837
838     /* Now enter the merge block */
839     func->curblock = merge;
840
841     return true;
842 }
843
844 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
845 {
846     ast_expression_codegen *cgen;
847
848     ir_value *condval;
849     ir_value *trueval, *falseval;
850     ir_instr *phi;
851
852     ir_block *cond = func->curblock;
853     ir_block *ontrue;
854     ir_block *onfalse;
855     ir_block *merge;
856
857     /* In theory it shouldn't be possible to pass through a node twice, but
858      * in case we add any kind of optimization pass for the AST itself, it
859      * may still happen, thus we remember a created ir_value and simply return one
860      * if it already exists.
861      */
862     if (self->phi_out) {
863         *out = self->phi_out;
864         return true;
865     }
866
867     /* Ternary can never create an lvalue... */
868     if (lvalue)
869         return false;
870
871     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
872
873     /* generate the condition */
874     func->curblock = cond;
875     cgen = self->cond->expression.codegen;
876     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
877         return false;
878
879     /* create on-true block */
880     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
881     if (!ontrue)
882         return false;
883     else
884     {
885         /* enter the block */
886         func->curblock = ontrue;
887
888         /* generate */
889         cgen = self->on_true->expression.codegen;
890         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
891             return false;
892     }
893
894     /* create on-false block */
895     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
896     if (!onfalse)
897         return false;
898     else
899     {
900         /* enter the block */
901         func->curblock = onfalse;
902
903         /* generate */
904         cgen = self->on_false->expression.codegen;
905         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
906             return false;
907     }
908
909     /* create merge block */
910     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
911     if (!merge)
912         return false;
913     /* jump to merge block */
914     if (!ir_block_create_jump(ontrue, merge))
915         return false;
916     if (!ir_block_create_jump(onfalse, merge))
917         return false;
918
919     /* create if instruction */
920     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
921         return false;
922
923     /* Now enter the merge block */
924     func->curblock = merge;
925
926     /* Here, now, we need a PHI node
927      * but first some sanity checking...
928      */
929     if (trueval->vtype != falseval->vtype) {
930         /* error("ternary with different types on the two sides"); */
931         return false;
932     }
933
934     /* create PHI */
935     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
936     if (!phi ||
937         !ir_phi_add(phi, ontrue,  trueval) ||
938         !ir_phi_add(phi, onfalse, falseval))
939     {
940         return false;
941     }
942
943     self->phi_out = ir_phi_value(phi);
944     *out = self->phi_out;
945
946     return true;
947 }
948
949 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
950 {
951     ast_expression_codegen *cgen;
952
953     ir_value *dummy      = NULL;
954     ir_value *precond    = NULL;
955     ir_value *postcond   = NULL;
956
957     /* Since we insert some jumps "late" so we have blocks
958      * ordered "nicely", we need to keep track of the actual end-blocks
959      * of expressions to add the jumps to.
960      */
961     ir_block *bbody      = NULL, *end_bbody      = NULL;
962     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
963     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
964     ir_block *bincrement = NULL, *end_bincrement = NULL;
965     ir_block *bout       = NULL, *bin            = NULL;
966
967     /* let's at least move the outgoing block to the end */
968     size_t    bout_id;
969
970     /* 'break' and 'continue' need to be able to find the right blocks */
971     ir_block *bcontinue     = NULL;
972     ir_block *bbreak        = NULL;
973
974     ir_block *old_bcontinue = NULL;
975     ir_block *old_bbreak    = NULL;
976
977     ir_block *tmpblock      = NULL;
978
979     (void)lvalue;
980     (void)out;
981
982     /* NOTE:
983      * Should we ever need some kind of block ordering, better make this function
984      * move blocks around than write a block ordering algorithm later... after all
985      * the ast and ir should work together, not against each other.
986      */
987
988     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
989      * anyway if for example it contains a ternary.
990      */
991     if (self->initexpr)
992     {
993         cgen = self->initexpr->expression.codegen;
994         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
995             return false;
996     }
997
998     /* Store the block from which we enter this chaos */
999     bin = func->curblock;
1000
1001     /* The pre-loop condition needs its own block since we
1002      * need to be able to jump to the start of that expression.
1003      */
1004     if (self->precond)
1005     {
1006         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1007         if (!bprecond)
1008             return false;
1009
1010         /* the pre-loop-condition the least important place to 'continue' at */
1011         bcontinue = bprecond;
1012
1013         /* enter */
1014         func->curblock = bprecond;
1015
1016         /* generate */
1017         cgen = self->precond->expression.codegen;
1018         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1019             return false;
1020
1021         end_bprecond = func->curblock;
1022     } else {
1023         bprecond = end_bprecond = NULL;
1024     }
1025
1026     /* Now the next blocks won't be ordered nicely, but we need to
1027      * generate them this early for 'break' and 'continue'.
1028      */
1029     if (self->increment) {
1030         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1031         if (!bincrement)
1032             return false;
1033         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1034     } else {
1035         bincrement = end_bincrement = NULL;
1036     }
1037
1038     if (self->postcond) {
1039         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1040         if (!bpostcond)
1041             return false;
1042         bcontinue = bpostcond; /* postcond comes before the increment */
1043     } else {
1044         bpostcond = end_bpostcond = NULL;
1045     }
1046
1047     bout_id = func->ir_func->blocks_count;
1048     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1049     if (!bout)
1050         return false;
1051     bbreak = bout;
1052
1053     /* The loop body... */
1054     if (self->body)
1055     {
1056         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1057         if (!bbody)
1058             return false;
1059
1060         /* enter */
1061         func->curblock = bbody;
1062
1063         old_bbreak          = func->breakblock;
1064         old_bcontinue       = func->continueblock;
1065         func->breakblock    = bbreak;
1066         func->continueblock = bcontinue;
1067
1068         /* generate */
1069         cgen = self->body->expression.codegen;
1070         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1071             return false;
1072
1073         end_bbody = func->curblock;
1074         func->breakblock    = old_bbreak;
1075         func->continueblock = old_bcontinue;
1076     }
1077
1078     /* post-loop-condition */
1079     if (self->postcond)
1080     {
1081         /* enter */
1082         func->curblock = bpostcond;
1083
1084         /* generate */
1085         cgen = self->postcond->expression.codegen;
1086         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1087             return false;
1088
1089         end_bpostcond = func->curblock;
1090     }
1091
1092     /* The incrementor */
1093     if (self->increment)
1094     {
1095         /* enter */
1096         func->curblock = bincrement;
1097
1098         /* generate */
1099         cgen = self->increment->expression.codegen;
1100         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1101             return false;
1102
1103         end_bincrement = func->curblock;
1104     }
1105
1106     /* In any case now, we continue from the outgoing block */
1107     func->curblock = bout;
1108
1109     /* Now all blocks are in place */
1110     /* From 'bin' we jump to whatever comes first */
1111     if      (bprecond)   tmpblock = bprecond;
1112     else if (bbody)      tmpblock = bbody;
1113     else if (bpostcond)  tmpblock = bpostcond;
1114     else                 tmpblock = bout;
1115     if (!ir_block_create_jump(bin, tmpblock))
1116         return false;
1117
1118     /* From precond */
1119     if (bprecond)
1120     {
1121         ir_block *ontrue, *onfalse;
1122         if      (bbody)      ontrue = bbody;
1123         else if (bincrement) ontrue = bincrement;
1124         else if (bpostcond)  ontrue = bpostcond;
1125         else                 ontrue = bprecond;
1126         onfalse = bout;
1127         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1128             return false;
1129     }
1130
1131     /* from body */
1132     if (bbody)
1133     {
1134         if      (bincrement) tmpblock = bincrement;
1135         else if (bpostcond)  tmpblock = bpostcond;
1136         else if (bprecond)   tmpblock = bprecond;
1137         else                 tmpblock = bout;
1138         if (!ir_block_create_jump(end_bbody, tmpblock))
1139             return false;
1140     }
1141
1142     /* from increment */
1143     if (bincrement)
1144     {
1145         if      (bpostcond)  tmpblock = bpostcond;
1146         else if (bprecond)   tmpblock = bprecond;
1147         else if (bbody)      tmpblock = bbody;
1148         else                 tmpblock = bout;
1149         if (!ir_block_create_jump(end_bincrement, tmpblock))
1150             return false;
1151     }
1152
1153     /* from postcond */
1154     if (bpostcond)
1155     {
1156         ir_block *ontrue, *onfalse;
1157         if      (bprecond)   ontrue = bprecond;
1158         else if (bbody)      ontrue = bbody;
1159         else if (bincrement) ontrue = bincrement;
1160         else                 ontrue = bpostcond;
1161         onfalse = bout;
1162         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1163             return false;
1164     }
1165
1166     /* Move 'bout' to the end */
1167     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1168         !ir_function_blocks_add(func->ir_func, bout))
1169     {
1170         ir_block_delete(bout);
1171         return false;
1172     }
1173
1174     return true;
1175 }
1176
1177 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1178 {
1179     /* TODO: call ir codegen */
1180     return false;
1181 }