]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast/ir support for unary instructions
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_unary* ast_unary_new(lex_ctx ctx, int op,
185                          ast_expression *expr)
186 {
187     ast_instantiate(ast_unary, ctx, ast_unary_delete);
188     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
189
190     self->op = op;
191     self->operand = expr;
192
193     return self;
194 }
195
196 void ast_unary_delete(ast_unary *self)
197 {
198     ast_unref(self->operand);
199     ast_expression_delete((ast_expression*)self);
200     mem_d(self);
201 }
202
203 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
204 {
205     const ast_expression *outtype;
206
207     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
208
209     if (field->expression.vtype != TYPE_FIELD) {
210         mem_d(self);
211         return NULL;
212     }
213
214     outtype = field->expression.next;
215     if (!outtype) {
216         mem_d(self);
217         /* Error: field has no type... */
218         return NULL;
219     }
220
221     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
222
223     self->expression.vtype = outtype->expression.vtype;
224     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
225
226     self->entity = entity;
227     self->field  = field;
228
229     return self;
230 }
231
232 void ast_entfield_delete(ast_entfield *self)
233 {
234     ast_unref(self->entity);
235     ast_unref(self->field);
236     ast_expression_delete((ast_expression*)self);
237     mem_d(self);
238 }
239
240 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
241 {
242     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
243     if (!ontrue && !onfalse) {
244         /* because it is invalid */
245         mem_d(self);
246         return NULL;
247     }
248     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
249
250     self->cond     = cond;
251     self->on_true  = ontrue;
252     self->on_false = onfalse;
253
254     return self;
255 }
256
257 void ast_ifthen_delete(ast_ifthen *self)
258 {
259     ast_unref(self->cond);
260     if (self->on_true)
261         ast_unref(self->on_true);
262     if (self->on_false)
263         ast_unref(self->on_false);
264     ast_expression_delete((ast_expression*)self);
265     mem_d(self);
266 }
267
268 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
269 {
270     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
271     /* This time NEITHER must be NULL */
272     if (!ontrue || !onfalse) {
273         mem_d(self);
274         return NULL;
275     }
276     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
277
278     self->cond     = cond;
279     self->on_true  = ontrue;
280     self->on_false = onfalse;
281     self->phi_out  = NULL;
282
283     return self;
284 }
285
286 void ast_ternary_delete(ast_ternary *self)
287 {
288     ast_unref(self->cond);
289     ast_unref(self->on_true);
290     ast_unref(self->on_false);
291     ast_expression_delete((ast_expression*)self);
292     mem_d(self);
293 }
294
295 ast_loop* ast_loop_new(lex_ctx ctx,
296                        ast_expression *initexpr,
297                        ast_expression *precond,
298                        ast_expression *postcond,
299                        ast_expression *increment,
300                        ast_expression *body)
301 {
302     ast_instantiate(ast_loop, ctx, ast_loop_delete);
303     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
304
305     self->initexpr  = initexpr;
306     self->precond   = precond;
307     self->postcond  = postcond;
308     self->increment = increment;
309     self->body      = body;
310
311     return self;
312 }
313
314 void ast_loop_delete(ast_loop *self)
315 {
316     if (self->initexpr)
317         ast_unref(self->initexpr);
318     if (self->precond)
319         ast_unref(self->precond);
320     if (self->postcond)
321         ast_unref(self->postcond);
322     if (self->increment)
323         ast_unref(self->increment);
324     if (self->body)
325         ast_unref(self->body);
326     ast_expression_delete((ast_expression*)self);
327     mem_d(self);
328 }
329
330 ast_call* ast_call_new(lex_ctx ctx,
331                        ast_expression *funcexpr)
332 {
333     ast_instantiate(ast_call, ctx, ast_call_delete);
334     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
335
336     MEM_VECTOR_INIT(self, params);
337
338     self->func = funcexpr;
339
340     return self;
341 }
342 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
343
344 void ast_call_delete(ast_call *self)
345 {
346     size_t i;
347     for (i = 0; i < self->params_count; ++i)
348         ast_unref(self->params[i]);
349     MEM_VECTOR_CLEAR(self, params);
350
351     if (self->func)
352         ast_unref(self->func);
353
354     ast_expression_delete((ast_expression*)self);
355     mem_d(self);
356 }
357
358 ast_store* ast_store_new(lex_ctx ctx, int op,
359                          ast_value *dest, ast_expression *source)
360 {
361     ast_instantiate(ast_store, ctx, ast_store_delete);
362     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
363
364     self->op = op;
365     self->dest = dest;
366     self->source = source;
367
368     return self;
369 }
370
371 void ast_store_delete(ast_store *self)
372 {
373     ast_unref(self->dest);
374     ast_unref(self->source);
375     ast_expression_delete((ast_expression*)self);
376     mem_d(self);
377 }
378
379 ast_block* ast_block_new(lex_ctx ctx)
380 {
381     ast_instantiate(ast_block, ctx, ast_block_delete);
382     ast_expression_init((ast_expression*)self,
383                         (ast_expression_codegen*)&ast_block_codegen);
384
385     MEM_VECTOR_INIT(self, locals);
386     MEM_VECTOR_INIT(self, exprs);
387
388     return self;
389 }
390 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
391 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
392
393 void ast_block_delete(ast_block *self)
394 {
395     size_t i;
396     for (i = 0; i < self->exprs_count; ++i)
397         ast_unref(self->exprs[i]);
398     MEM_VECTOR_CLEAR(self, exprs);
399     for (i = 0; i < self->locals_count; ++i)
400         ast_delete(self->locals[i]);
401     MEM_VECTOR_CLEAR(self, locals);
402     ast_expression_delete((ast_expression*)self);
403     mem_d(self);
404 }
405
406 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
407 {
408     ast_instantiate(ast_function, ctx, ast_function_delete);
409
410     if (!vtype ||
411         vtype->isconst ||
412         vtype->expression.vtype != TYPE_FUNCTION)
413     {
414         mem_d(self);
415         return NULL;
416     }
417
418     self->vtype = vtype;
419     self->name = name ? util_strdup(name) : NULL;
420     MEM_VECTOR_INIT(self, blocks);
421
422     self->labelcount = 0;
423     self->builtin = 0;
424
425     self->ir_func = NULL;
426     self->curblock = NULL;
427
428     self->breakblock    = NULL;
429     self->continueblock = NULL;
430
431     vtype->isconst = true;
432     vtype->constval.vfunc = self;
433
434     return self;
435 }
436
437 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
438
439 void ast_function_delete(ast_function *self)
440 {
441     size_t i;
442     if (self->name)
443         mem_d((void*)self->name);
444     if (self->vtype) {
445         /* ast_value_delete(self->vtype); */
446         self->vtype->isconst = false;
447         self->vtype->constval.vfunc = NULL;
448         /* We use unref - if it was stored in a global table it is supposed
449          * to be deleted from *there*
450          */
451         ast_unref(self->vtype);
452     }
453     for (i = 0; i < self->blocks_count; ++i)
454         ast_delete(self->blocks[i]);
455     MEM_VECTOR_CLEAR(self, blocks);
456     mem_d(self);
457 }
458
459 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
460 {
461     unsigned int base = 10;
462 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
463 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
464     if (size < 1)
465         return;
466     checknul();
467     if (!num)
468         addch('0');
469     else {
470         while (num)
471         {
472             int digit = num % base;
473             num /= base;
474             addch('0' + digit);
475         }
476     }
477
478     *buf = 0;
479 #undef addch
480 #undef checknul
481 }
482
483 const char* ast_function_label(ast_function *self, const char *prefix)
484 {
485     size_t id = (self->labelcount++);
486     size_t len = strlen(prefix);
487     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
488     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
489     return self->labelbuf;
490 }
491
492 /*********************************************************************/
493 /* AST codegen part
494  * by convention you must never pass NULL to the 'ir_value **out'
495  * parameter. If you really don't care about the output, pass a dummy.
496  * But I can't imagine a pituation where the output is truly unnecessary.
497  */
498
499 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
500 {
501     /* NOTE: This is the codegen for a variable used in an expression.
502      * It is not the codegen to generate the value. For this purpose,
503      * ast_local_codegen and ast_global_codegen are to be used before this
504      * is executed. ast_function_codegen should take care of its locals,
505      * and the ast-user should take care of ast_global_codegen to be used
506      * on all the globals.
507      */
508     if (!self->ir_v) {
509         printf("ast_value used before generated (%s)\n", self->name);
510         return false;
511     }
512     *out = self->ir_v;
513     return true;
514 }
515
516 bool ast_global_codegen(ast_value *self, ir_builder *ir)
517 {
518     ir_value *v = NULL;
519     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
520     {
521         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
522         if (!func)
523             return false;
524
525         self->constval.vfunc->ir_func = func;
526         self->ir_v = func->value;
527         /* The function is filled later on ast_function_codegen... */
528         return true;
529     }
530
531     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
532     if (!v)
533         return false;
534
535     if (self->isconst) {
536         switch (self->expression.vtype)
537         {
538             case TYPE_FLOAT:
539                 if (!ir_value_set_float(v, self->constval.vfloat))
540                     goto error;
541                 break;
542             case TYPE_VECTOR:
543                 if (!ir_value_set_vector(v, self->constval.vvec))
544                     goto error;
545                 break;
546             case TYPE_STRING:
547                 if (!ir_value_set_string(v, self->constval.vstring))
548                     goto error;
549                 break;
550             case TYPE_FUNCTION:
551                 printf("global of type function not properly generated\n");
552                 goto error;
553                 /* Cannot generate an IR value for a function,
554                  * need a pointer pointing to a function rather.
555                  */
556             default:
557                 printf("TODO: global constant type %i\n", self->expression.vtype);
558                 break;
559         }
560     }
561
562     /* link us to the ir_value */
563     self->ir_v = v;
564     return true;
565
566 error: /* clean up */
567     ir_value_delete(v);
568     return false;
569 }
570
571 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
572 {
573     ir_value *v = NULL;
574     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
575     {
576         /* Do we allow local functions? I think not...
577          * this is NOT a function pointer atm.
578          */
579         return false;
580     }
581
582     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
583     if (!v)
584         return false;
585
586     /* A constant local... hmmm...
587      * I suppose the IR will have to deal with this
588      */
589     if (self->isconst) {
590         switch (self->expression.vtype)
591         {
592             case TYPE_FLOAT:
593                 if (!ir_value_set_float(v, self->constval.vfloat))
594                     goto error;
595                 break;
596             case TYPE_VECTOR:
597                 if (!ir_value_set_vector(v, self->constval.vvec))
598                     goto error;
599                 break;
600             case TYPE_STRING:
601                 if (!ir_value_set_string(v, self->constval.vstring))
602                     goto error;
603                 break;
604             default:
605                 printf("TODO: global constant type %i\n", self->expression.vtype);
606                 break;
607         }
608     }
609
610     /* link us to the ir_value */
611     self->ir_v = v;
612     return true;
613
614 error: /* clean up */
615     ir_value_delete(v);
616     return false;
617 }
618
619 bool ast_function_codegen(ast_function *self, ir_builder *ir)
620 {
621     ir_function *irf;
622     ir_value    *dummy;
623     size_t    i;
624
625     irf = self->ir_func;
626     if (!irf) {
627         printf("ast_function's related ast_value was not generated yet\n");
628         return false;
629     }
630
631     /* fill the parameter list */
632     for (i = 0; i < self->vtype->params_count; ++i)
633     {
634         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
635             return false;
636         if (!self->builtin) {
637             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
638                 return false;
639         }
640     }
641
642     if (self->builtin) {
643         irf->builtin = self->builtin;
644         return true;
645     }
646
647     self->curblock = ir_function_create_block(irf, "entry");
648     if (!self->curblock)
649         return false;
650
651     for (i = 0; i < self->blocks_count; ++i) {
652         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
653         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
654             return false;
655     }
656
657     /* TODO: check return types */
658     if (!self->curblock->is_return)
659     {
660         if (!self->vtype->expression.next ||
661             self->vtype->expression.next->expression.vtype == TYPE_VOID)
662         {
663             return ir_block_create_return(self->curblock, NULL);
664         }
665         else
666         {
667             /* error("missing return"); */
668             return false;
669         }
670     }
671     return true;
672 }
673
674 /* Note, you will not see ast_block_codegen generate ir_blocks.
675  * To the AST and the IR, blocks are 2 different things.
676  * In the AST it represents a block of code, usually enclosed in
677  * curly braces {...}.
678  * While in the IR it represents a block in terms of control-flow.
679  */
680 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
681 {
682     size_t i;
683
684     /* We don't use this
685      * Note: an ast-representation using the comma-operator
686      * of the form: (a, b, c) = x should not assign to c...
687      */
688     (void)lvalue;
689
690     /* output is NULL at first, we'll have each expression
691      * assign to out output, thus, a comma-operator represention
692      * using an ast_block will return the last generated value,
693      * so: (b, c) + a  executed both b and c, and returns c,
694      * which is then added to a.
695      */
696     *out = NULL;
697
698     /* generate locals */
699     for (i = 0; i < self->locals_count; ++i)
700     {
701         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
702             return false;
703     }
704
705     for (i = 0; i < self->exprs_count; ++i)
706     {
707         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
708         if (!(*gen)(self->exprs[i], func, false, out))
709             return false;
710     }
711
712     return true;
713 }
714
715 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
716 {
717     ast_expression_codegen *cgen;
718     ir_value *left, *right;
719
720     cgen = self->dest->expression.codegen;
721     /* lvalue! */
722     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
723         return false;
724
725     cgen = self->source->expression.codegen;
726     /* rvalue! */
727     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
728         return false;
729
730     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
731         return false;
732
733     /* Theoretically, an assinment returns its left side as an
734      * lvalue, if we don't need an lvalue though, we return
735      * the right side as an rvalue, otherwise we have to
736      * somehow know whether or not we need to dereference the pointer
737      * on the left side - that is: OP_LOAD if it was an address.
738      * Also: in original QC we cannot OP_LOADP *anyway*.
739      */
740     *out = (lvalue ? left : right);
741
742     return true;
743 }
744
745 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
746 {
747     ast_expression_codegen *cgen;
748     ir_value *left, *right;
749
750     /* In the context of a binary operation, we can disregard
751      * the lvalue flag.
752      */
753      (void)lvalue;
754
755     cgen = self->left->expression.codegen;
756     /* lvalue! */
757     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
758         return false;
759
760     cgen = self->right->expression.codegen;
761     /* rvalue! */
762     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
763         return false;
764
765     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
766                                  self->op, left, right);
767     if (!*out)
768         return false;
769
770     return true;
771 }
772
773 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
774 {
775     ast_expression_codegen *cgen;
776     ir_value *operand;
777
778     /* In the context of a unary operation, we can disregard
779      * the lvalue flag.
780      */
781     (void)lvalue;
782
783     cgen = self->operand->expression.codegen;
784     /* lvalue! */
785     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
786         return false;
787
788     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "bin"),
789                                  self->op, operand);
790     if (!*out)
791         return false;
792
793     return true;
794 }
795
796 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
797 {
798     ast_expression_codegen *cgen;
799     ir_value *ent, *field;
800
801     /* This function needs to take the 'lvalue' flag into account!
802      * As lvalue we provide a field-pointer, as rvalue we provide the
803      * value in a temp.
804      */
805
806     cgen = self->entity->expression.codegen;
807     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
808         return false;
809
810     cgen = self->field->expression.codegen;
811     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
812         return false;
813
814     if (lvalue) {
815         /* address! */
816         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
817                                             ent, field);
818     } else {
819         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
820                                              ent, field, self->expression.vtype);
821     }
822     if (!*out)
823         return false;
824
825     /* Hm that should be it... */
826     return true;
827 }
828
829 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
830 {
831     ast_expression_codegen *cgen;
832
833     ir_value *condval;
834     ir_value *dummy;
835
836     ir_block *cond = func->curblock;
837     ir_block *ontrue;
838     ir_block *onfalse;
839     ir_block *merge;
840
841     /* We don't output any value, thus also don't care about r/lvalue */
842     (void)out;
843     (void)lvalue;
844
845     /* generate the condition */
846     func->curblock = cond;
847     cgen = self->cond->expression.codegen;
848     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
849         return false;
850
851     /* on-true path */
852
853     if (self->on_true) {
854         /* create on-true block */
855         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
856         if (!ontrue)
857             return false;
858
859         /* enter the block */
860         func->curblock = ontrue;
861
862         /* generate */
863         cgen = self->on_true->expression.codegen;
864         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
865             return false;
866     } else
867         ontrue = NULL;
868
869     /* on-false path */
870     if (self->on_false) {
871         /* create on-false block */
872         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
873         if (!onfalse)
874             return false;
875
876         /* enter the block */
877         func->curblock = onfalse;
878
879         /* generate */
880         cgen = self->on_false->expression.codegen;
881         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
882             return false;
883     } else
884         onfalse = NULL;
885
886     /* Merge block were they all merge in to */
887     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
888     if (!merge)
889         return false;
890
891     /* add jumps ot the merge block */
892     if (ontrue && !ir_block_create_jump(ontrue, merge))
893         return false;
894     if (onfalse && !ir_block_create_jump(onfalse, merge))
895         return false;
896
897     /* we create the if here, that way all blocks are ordered :)
898      */
899     if (!ir_block_create_if(cond, condval,
900                             (ontrue  ? ontrue  : merge),
901                             (onfalse ? onfalse : merge)))
902     {
903         return false;
904     }
905
906     /* Now enter the merge block */
907     func->curblock = merge;
908
909     return true;
910 }
911
912 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
913 {
914     ast_expression_codegen *cgen;
915
916     ir_value *condval;
917     ir_value *trueval, *falseval;
918     ir_instr *phi;
919
920     ir_block *cond = func->curblock;
921     ir_block *ontrue;
922     ir_block *onfalse;
923     ir_block *merge;
924
925     /* In theory it shouldn't be possible to pass through a node twice, but
926      * in case we add any kind of optimization pass for the AST itself, it
927      * may still happen, thus we remember a created ir_value and simply return one
928      * if it already exists.
929      */
930     if (self->phi_out) {
931         *out = self->phi_out;
932         return true;
933     }
934
935     /* Ternary can never create an lvalue... */
936     if (lvalue)
937         return false;
938
939     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
940
941     /* generate the condition */
942     func->curblock = cond;
943     cgen = self->cond->expression.codegen;
944     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
945         return false;
946
947     /* create on-true block */
948     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
949     if (!ontrue)
950         return false;
951     else
952     {
953         /* enter the block */
954         func->curblock = ontrue;
955
956         /* generate */
957         cgen = self->on_true->expression.codegen;
958         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
959             return false;
960     }
961
962     /* create on-false block */
963     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
964     if (!onfalse)
965         return false;
966     else
967     {
968         /* enter the block */
969         func->curblock = onfalse;
970
971         /* generate */
972         cgen = self->on_false->expression.codegen;
973         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
974             return false;
975     }
976
977     /* create merge block */
978     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
979     if (!merge)
980         return false;
981     /* jump to merge block */
982     if (!ir_block_create_jump(ontrue, merge))
983         return false;
984     if (!ir_block_create_jump(onfalse, merge))
985         return false;
986
987     /* create if instruction */
988     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
989         return false;
990
991     /* Now enter the merge block */
992     func->curblock = merge;
993
994     /* Here, now, we need a PHI node
995      * but first some sanity checking...
996      */
997     if (trueval->vtype != falseval->vtype) {
998         /* error("ternary with different types on the two sides"); */
999         return false;
1000     }
1001
1002     /* create PHI */
1003     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1004     if (!phi ||
1005         !ir_phi_add(phi, ontrue,  trueval) ||
1006         !ir_phi_add(phi, onfalse, falseval))
1007     {
1008         return false;
1009     }
1010
1011     self->phi_out = ir_phi_value(phi);
1012     *out = self->phi_out;
1013
1014     return true;
1015 }
1016
1017 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1018 {
1019     ast_expression_codegen *cgen;
1020
1021     ir_value *dummy      = NULL;
1022     ir_value *precond    = NULL;
1023     ir_value *postcond   = NULL;
1024
1025     /* Since we insert some jumps "late" so we have blocks
1026      * ordered "nicely", we need to keep track of the actual end-blocks
1027      * of expressions to add the jumps to.
1028      */
1029     ir_block *bbody      = NULL, *end_bbody      = NULL;
1030     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1031     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1032     ir_block *bincrement = NULL, *end_bincrement = NULL;
1033     ir_block *bout       = NULL, *bin            = NULL;
1034
1035     /* let's at least move the outgoing block to the end */
1036     size_t    bout_id;
1037
1038     /* 'break' and 'continue' need to be able to find the right blocks */
1039     ir_block *bcontinue     = NULL;
1040     ir_block *bbreak        = NULL;
1041
1042     ir_block *old_bcontinue = NULL;
1043     ir_block *old_bbreak    = NULL;
1044
1045     ir_block *tmpblock      = NULL;
1046
1047     (void)lvalue;
1048     (void)out;
1049
1050     /* NOTE:
1051      * Should we ever need some kind of block ordering, better make this function
1052      * move blocks around than write a block ordering algorithm later... after all
1053      * the ast and ir should work together, not against each other.
1054      */
1055
1056     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1057      * anyway if for example it contains a ternary.
1058      */
1059     if (self->initexpr)
1060     {
1061         cgen = self->initexpr->expression.codegen;
1062         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1063             return false;
1064     }
1065
1066     /* Store the block from which we enter this chaos */
1067     bin = func->curblock;
1068
1069     /* The pre-loop condition needs its own block since we
1070      * need to be able to jump to the start of that expression.
1071      */
1072     if (self->precond)
1073     {
1074         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1075         if (!bprecond)
1076             return false;
1077
1078         /* the pre-loop-condition the least important place to 'continue' at */
1079         bcontinue = bprecond;
1080
1081         /* enter */
1082         func->curblock = bprecond;
1083
1084         /* generate */
1085         cgen = self->precond->expression.codegen;
1086         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1087             return false;
1088
1089         end_bprecond = func->curblock;
1090     } else {
1091         bprecond = end_bprecond = NULL;
1092     }
1093
1094     /* Now the next blocks won't be ordered nicely, but we need to
1095      * generate them this early for 'break' and 'continue'.
1096      */
1097     if (self->increment) {
1098         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1099         if (!bincrement)
1100             return false;
1101         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1102     } else {
1103         bincrement = end_bincrement = NULL;
1104     }
1105
1106     if (self->postcond) {
1107         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1108         if (!bpostcond)
1109             return false;
1110         bcontinue = bpostcond; /* postcond comes before the increment */
1111     } else {
1112         bpostcond = end_bpostcond = NULL;
1113     }
1114
1115     bout_id = func->ir_func->blocks_count;
1116     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1117     if (!bout)
1118         return false;
1119     bbreak = bout;
1120
1121     /* The loop body... */
1122     if (self->body)
1123     {
1124         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1125         if (!bbody)
1126             return false;
1127
1128         /* enter */
1129         func->curblock = bbody;
1130
1131         old_bbreak          = func->breakblock;
1132         old_bcontinue       = func->continueblock;
1133         func->breakblock    = bbreak;
1134         func->continueblock = bcontinue;
1135
1136         /* generate */
1137         cgen = self->body->expression.codegen;
1138         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1139             return false;
1140
1141         end_bbody = func->curblock;
1142         func->breakblock    = old_bbreak;
1143         func->continueblock = old_bcontinue;
1144     }
1145
1146     /* post-loop-condition */
1147     if (self->postcond)
1148     {
1149         /* enter */
1150         func->curblock = bpostcond;
1151
1152         /* generate */
1153         cgen = self->postcond->expression.codegen;
1154         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1155             return false;
1156
1157         end_bpostcond = func->curblock;
1158     }
1159
1160     /* The incrementor */
1161     if (self->increment)
1162     {
1163         /* enter */
1164         func->curblock = bincrement;
1165
1166         /* generate */
1167         cgen = self->increment->expression.codegen;
1168         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1169             return false;
1170
1171         end_bincrement = func->curblock;
1172     }
1173
1174     /* In any case now, we continue from the outgoing block */
1175     func->curblock = bout;
1176
1177     /* Now all blocks are in place */
1178     /* From 'bin' we jump to whatever comes first */
1179     if      (bprecond)   tmpblock = bprecond;
1180     else if (bbody)      tmpblock = bbody;
1181     else if (bpostcond)  tmpblock = bpostcond;
1182     else                 tmpblock = bout;
1183     if (!ir_block_create_jump(bin, tmpblock))
1184         return false;
1185
1186     /* From precond */
1187     if (bprecond)
1188     {
1189         ir_block *ontrue, *onfalse;
1190         if      (bbody)      ontrue = bbody;
1191         else if (bincrement) ontrue = bincrement;
1192         else if (bpostcond)  ontrue = bpostcond;
1193         else                 ontrue = bprecond;
1194         onfalse = bout;
1195         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1196             return false;
1197     }
1198
1199     /* from body */
1200     if (bbody)
1201     {
1202         if      (bincrement) tmpblock = bincrement;
1203         else if (bpostcond)  tmpblock = bpostcond;
1204         else if (bprecond)   tmpblock = bprecond;
1205         else                 tmpblock = bout;
1206         if (!ir_block_create_jump(end_bbody, tmpblock))
1207             return false;
1208     }
1209
1210     /* from increment */
1211     if (bincrement)
1212     {
1213         if      (bpostcond)  tmpblock = bpostcond;
1214         else if (bprecond)   tmpblock = bprecond;
1215         else if (bbody)      tmpblock = bbody;
1216         else                 tmpblock = bout;
1217         if (!ir_block_create_jump(end_bincrement, tmpblock))
1218             return false;
1219     }
1220
1221     /* from postcond */
1222     if (bpostcond)
1223     {
1224         ir_block *ontrue, *onfalse;
1225         if      (bprecond)   ontrue = bprecond;
1226         else if (bbody)      ontrue = bbody;
1227         else if (bincrement) ontrue = bincrement;
1228         else                 ontrue = bpostcond;
1229         onfalse = bout;
1230         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1231             return false;
1232     }
1233
1234     /* Move 'bout' to the end */
1235     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1236         !ir_function_blocks_add(func->ir_func, bout))
1237     {
1238         ir_block_delete(bout);
1239         return false;
1240     }
1241
1242     return true;
1243 }
1244
1245 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1246 {
1247     ast_expression_codegen *cgen;
1248     ir_value_vector         params;
1249     ir_instr               *callinstr;
1250     size_t i;
1251
1252     ir_value *funval = NULL;
1253
1254     /* return values are never rvalues */
1255     (void)lvalue;
1256
1257     cgen = self->func->expression.codegen;
1258     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1259         return false;
1260     if (!funval)
1261         return false;
1262
1263     MEM_VECTOR_INIT(&params, v);
1264
1265     /* parameters */
1266     for (i = 0; i < self->params_count; ++i)
1267     {
1268         ir_value *param;
1269         ast_expression *expr = self->params[i];
1270
1271         cgen = expr->expression.codegen;
1272         if (!(*cgen)(expr, func, false, &param))
1273             goto error;
1274         if (!param)
1275             goto error;
1276         if (!ir_value_vector_v_add(&params, param))
1277             goto error;
1278     }
1279
1280     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1281     if (!callinstr)
1282         goto error;
1283
1284     for (i = 0; i < params.v_count; ++i) {
1285         if (!ir_call_param(callinstr, params.v[i]))
1286             goto error;
1287     }
1288
1289     *out = ir_call_value(callinstr);
1290
1291     return true;
1292 error:
1293     MEM_VECTOR_CLEAR(&params, v);
1294     return false;
1295 }