]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
genearting field arrays
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         mem_d(self);
492         return NULL;
493     }
494
495     outtype = field->expression.next;
496     if (!outtype) {
497         mem_d(self);
498         /* Error: field has no type... */
499         return NULL;
500     }
501
502     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
503
504     self->entity = entity;
505     self->field  = field;
506
507     if (!ast_type_adopt(self, outtype)) {
508         ast_entfield_delete(self);
509         return NULL;
510     }
511
512     return self;
513 }
514
515 void ast_entfield_delete(ast_entfield *self)
516 {
517     ast_unref(self->entity);
518     ast_unref(self->field);
519     ast_expression_delete((ast_expression*)self);
520     mem_d(self);
521 }
522
523 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
524 {
525     ast_instantiate(ast_member, ctx, ast_member_delete);
526     if (field >= 3) {
527         mem_d(self);
528         return NULL;
529     }
530
531     if (owner->expression.vtype != TYPE_VECTOR &&
532         owner->expression.vtype != TYPE_FIELD) {
533         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
534         mem_d(self);
535         return NULL;
536     }
537
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
539     self->expression.node.keep = true; /* keep */
540
541     if (owner->expression.vtype == TYPE_VECTOR) {
542         self->expression.vtype = TYPE_FLOAT;
543         self->expression.next  = NULL;
544     } else {
545         self->expression.vtype = TYPE_FIELD;
546         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
547     }
548
549     self->owner = owner;
550     self->field = field;
551
552     return self;
553 }
554
555 void ast_member_delete(ast_member *self)
556 {
557     /* The owner is always an ast_value, which has .keep=true,
558      * also: ast_members are usually deleted after the owner, thus
559      * this will cause invalid access
560     ast_unref(self->owner);
561      * once we allow (expression).x to access a vector-member, we need
562      * to change this: preferably by creating an alternate ast node for this
563      * purpose that is not garbage-collected.
564     */
565     ast_expression_delete((ast_expression*)self);
566     mem_d(self);
567 }
568
569 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
570 {
571     const ast_expression *outtype;
572     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
573
574     outtype = array->expression.next;
575     if (!outtype) {
576         mem_d(self);
577         /* Error: field has no type... */
578         return NULL;
579     }
580
581     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
582
583     self->array = array;
584     self->index = index;
585
586     if (!ast_type_adopt(self, outtype)) {
587         ast_array_index_delete(self);
588         return NULL;
589     }
590
591     return self;
592 }
593
594 void ast_array_index_delete(ast_array_index *self)
595 {
596     ast_unref(self->array);
597     ast_unref(self->index);
598     ast_expression_delete((ast_expression*)self);
599     mem_d(self);
600 }
601
602 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
603 {
604     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
605     if (!ontrue && !onfalse) {
606         /* because it is invalid */
607         mem_d(self);
608         return NULL;
609     }
610     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
611
612     self->cond     = cond;
613     self->on_true  = ontrue;
614     self->on_false = onfalse;
615
616     return self;
617 }
618
619 void ast_ifthen_delete(ast_ifthen *self)
620 {
621     ast_unref(self->cond);
622     if (self->on_true)
623         ast_unref(self->on_true);
624     if (self->on_false)
625         ast_unref(self->on_false);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
631 {
632     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
633     /* This time NEITHER must be NULL */
634     if (!ontrue || !onfalse) {
635         mem_d(self);
636         return NULL;
637     }
638     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
639
640     self->cond     = cond;
641     self->on_true  = ontrue;
642     self->on_false = onfalse;
643     self->phi_out  = NULL;
644
645     return self;
646 }
647
648 void ast_ternary_delete(ast_ternary *self)
649 {
650     ast_unref(self->cond);
651     ast_unref(self->on_true);
652     ast_unref(self->on_false);
653     ast_expression_delete((ast_expression*)self);
654     mem_d(self);
655 }
656
657 ast_loop* ast_loop_new(lex_ctx ctx,
658                        ast_expression *initexpr,
659                        ast_expression *precond,
660                        ast_expression *postcond,
661                        ast_expression *increment,
662                        ast_expression *body)
663 {
664     ast_instantiate(ast_loop, ctx, ast_loop_delete);
665     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
666
667     self->initexpr  = initexpr;
668     self->precond   = precond;
669     self->postcond  = postcond;
670     self->increment = increment;
671     self->body      = body;
672
673     return self;
674 }
675
676 void ast_loop_delete(ast_loop *self)
677 {
678     if (self->initexpr)
679         ast_unref(self->initexpr);
680     if (self->precond)
681         ast_unref(self->precond);
682     if (self->postcond)
683         ast_unref(self->postcond);
684     if (self->increment)
685         ast_unref(self->increment);
686     if (self->body)
687         ast_unref(self->body);
688     ast_expression_delete((ast_expression*)self);
689     mem_d(self);
690 }
691
692 ast_call* ast_call_new(lex_ctx ctx,
693                        ast_expression *funcexpr)
694 {
695     ast_instantiate(ast_call, ctx, ast_call_delete);
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
697
698     MEM_VECTOR_INIT(self, params);
699
700     self->func = funcexpr;
701
702     self->expression.vtype = funcexpr->expression.next->expression.vtype;
703     if (funcexpr->expression.next->expression.next)
704         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
705
706     return self;
707 }
708 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
709
710 void ast_call_delete(ast_call *self)
711 {
712     size_t i;
713     for (i = 0; i < self->params_count; ++i)
714         ast_unref(self->params[i]);
715     MEM_VECTOR_CLEAR(self, params);
716
717     if (self->func)
718         ast_unref(self->func);
719
720     ast_expression_delete((ast_expression*)self);
721     mem_d(self);
722 }
723
724 bool ast_call_check_types(ast_call *self)
725 {
726     size_t i;
727     bool   retval = true;
728     const  ast_expression *func = self->func;
729     size_t count = self->params_count;
730     if (count > func->expression.params_count)
731         count = func->expression.params_count;
732
733     for (i = 0; i < count; ++i) {
734         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
735             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
736                      (unsigned int)(i+1));
737             /* we don't immediately return */
738             retval = false;
739         }
740     }
741     return retval;
742 }
743
744 ast_store* ast_store_new(lex_ctx ctx, int op,
745                          ast_expression *dest, ast_expression *source)
746 {
747     ast_instantiate(ast_store, ctx, ast_store_delete);
748     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
749
750     self->op = op;
751     self->dest = dest;
752     self->source = source;
753
754     self->expression.vtype = dest->expression.vtype;
755     if (dest->expression.next) {
756         self->expression.next = ast_type_copy(ctx, dest);
757         if (!self->expression.next) {
758             ast_delete(self);
759             return NULL;
760         }
761     }
762     else
763         self->expression.next = NULL;
764
765     return self;
766 }
767
768 void ast_store_delete(ast_store *self)
769 {
770     ast_unref(self->dest);
771     ast_unref(self->source);
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 ast_block* ast_block_new(lex_ctx ctx)
777 {
778     ast_instantiate(ast_block, ctx, ast_block_delete);
779     ast_expression_init((ast_expression*)self,
780                         (ast_expression_codegen*)&ast_block_codegen);
781
782     MEM_VECTOR_INIT(self, locals);
783     MEM_VECTOR_INIT(self, exprs);
784     MEM_VECTOR_INIT(self, collect);
785
786     return self;
787 }
788 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
789 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
791
792 bool ast_block_collect(ast_block *self, ast_expression *expr)
793 {
794     if (!ast_block_collect_add(self, expr))
795         return false;
796     expr->expression.node.keep = true;
797     return true;
798 }
799
800 void ast_block_delete(ast_block *self)
801 {
802     size_t i;
803     for (i = 0; i < self->exprs_count; ++i)
804         ast_unref(self->exprs[i]);
805     MEM_VECTOR_CLEAR(self, exprs);
806     for (i = 0; i < self->locals_count; ++i)
807         ast_delete(self->locals[i]);
808     MEM_VECTOR_CLEAR(self, locals);
809     for (i = 0; i < self->collect_count; ++i)
810         ast_delete(self->collect[i]);
811     MEM_VECTOR_CLEAR(self, collect);
812     ast_expression_delete((ast_expression*)self);
813     mem_d(self);
814 }
815
816 bool ast_block_set_type(ast_block *self, ast_expression *from)
817 {
818     if (self->expression.next)
819         ast_delete(self->expression.next);
820     self->expression.vtype = from->expression.vtype;
821     if (from->expression.next) {
822         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
823         if (!self->expression.next)
824             return false;
825     }
826     else
827         self->expression.next = NULL;
828     return true;
829 }
830
831 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
832 {
833     ast_instantiate(ast_function, ctx, ast_function_delete);
834
835     if (!vtype ||
836         vtype->isconst ||
837         vtype->expression.vtype != TYPE_FUNCTION)
838     {
839         mem_d(self);
840         return NULL;
841     }
842
843     self->vtype = vtype;
844     self->name = name ? util_strdup(name) : NULL;
845     MEM_VECTOR_INIT(self, blocks);
846
847     self->labelcount = 0;
848     self->builtin = 0;
849
850     self->ir_func = NULL;
851     self->curblock = NULL;
852
853     self->breakblock    = NULL;
854     self->continueblock = NULL;
855
856     vtype->isconst = true;
857     vtype->constval.vfunc = self;
858
859     return self;
860 }
861
862 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
863
864 void ast_function_delete(ast_function *self)
865 {
866     size_t i;
867     if (self->name)
868         mem_d((void*)self->name);
869     if (self->vtype) {
870         /* ast_value_delete(self->vtype); */
871         self->vtype->isconst = false;
872         self->vtype->constval.vfunc = NULL;
873         /* We use unref - if it was stored in a global table it is supposed
874          * to be deleted from *there*
875          */
876         ast_unref(self->vtype);
877     }
878     for (i = 0; i < self->blocks_count; ++i)
879         ast_delete(self->blocks[i]);
880     MEM_VECTOR_CLEAR(self, blocks);
881     mem_d(self);
882 }
883
884 const char* ast_function_label(ast_function *self, const char *prefix)
885 {
886     size_t id;
887     size_t len;
888     char  *from;
889
890     if (!opts_dump)
891         return NULL;
892
893     id  = (self->labelcount++);
894     len = strlen(prefix);
895
896     from = self->labelbuf + sizeof(self->labelbuf)-1;
897     *from-- = 0;
898     do {
899         unsigned int digit = id % 10;
900         *from = digit + '0';
901         id /= 10;
902     } while (id);
903     memcpy(from - len, prefix, len);
904     return from - len;
905 }
906
907 /*********************************************************************/
908 /* AST codegen part
909  * by convention you must never pass NULL to the 'ir_value **out'
910  * parameter. If you really don't care about the output, pass a dummy.
911  * But I can't imagine a pituation where the output is truly unnecessary.
912  */
913
914 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     /* NOTE: This is the codegen for a variable used in an expression.
917      * It is not the codegen to generate the value. For this purpose,
918      * ast_local_codegen and ast_global_codegen are to be used before this
919      * is executed. ast_function_codegen should take care of its locals,
920      * and the ast-user should take care of ast_global_codegen to be used
921      * on all the globals.
922      */
923     if (!self->ir_v) {
924         char typename[1024];
925         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
926         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
927         return false;
928     }
929     *out = self->ir_v;
930     return true;
931 }
932
933 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
934 {
935     ir_value *v = NULL;
936
937     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
938     {
939         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
940         if (!func)
941             return false;
942         func->context = ast_ctx(self);
943         func->value->context = ast_ctx(self);
944
945         self->constval.vfunc->ir_func = func;
946         self->ir_v = func->value;
947         /* The function is filled later on ast_function_codegen... */
948         return true;
949     }
950
951     if (isfield && self->expression.vtype == TYPE_FIELD) {
952         ast_expression *fieldtype = self->expression.next;
953
954         if (self->isconst) {
955             asterror(ast_ctx(self), "TODO: constant field pointers with value");
956             goto error;
957         }
958
959         if (fieldtype->expression.vtype == TYPE_ARRAY) {
960             size_t ai;
961             char   *name;
962             size_t  namelen;
963
964             ast_expression_common *elemtype;
965             int                    vtype;
966             ast_value             *array = (ast_value*)fieldtype;
967
968             if (!ast_istype(fieldtype, ast_value)) {
969                 asterror(ast_ctx(self), "internal error: ast_value required");
970                 return false;
971             }
972
973             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
974             if (!array->expression.count || array->expression.count > opts_max_array_size)
975                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
976
977             elemtype = &array->expression.next->expression;
978             vtype = elemtype->vtype;
979
980             v = ir_builder_create_field(ir, self->name, vtype);
981             if (!v) {
982                 asterror(ast_ctx(self), "ir_builder_create_global failed");
983                 return false;
984             }
985             if (vtype == TYPE_FIELD)
986                 v->fieldtype = elemtype->next->expression.vtype;
987             v->context = ast_ctx(self);
988             array->ir_v = self->ir_v = v;
989
990             namelen = strlen(self->name);
991             name    = (char*)mem_a(namelen + 16);
992             strcpy(name, self->name);
993
994             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
995             array->ir_values[0] = v;
996             for (ai = 1; ai < array->expression.count; ++ai) {
997                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
998                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
999                 if (!array->ir_values[ai]) {
1000                     mem_d(name);
1001                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1002                     return false;
1003                 }
1004                 if (vtype == TYPE_FIELD)
1005                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1006                 array->ir_values[ai]->context = ast_ctx(self);
1007             }
1008             mem_d(name);
1009         }
1010         else
1011         {
1012             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1013             if (!v)
1014                 return false;
1015             v->context = ast_ctx(self);
1016             self->ir_v = v;
1017         }
1018         return true;
1019     }
1020
1021     if (self->expression.vtype == TYPE_ARRAY) {
1022         size_t ai;
1023         char   *name;
1024         size_t  namelen;
1025
1026         ast_expression_common *elemtype = &self->expression.next->expression;
1027         int vtype = elemtype->vtype;
1028
1029         /* same as with field arrays */
1030         if (!self->expression.count || self->expression.count > opts_max_array_size)
1031             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1032
1033         v = ir_builder_create_global(ir, self->name, vtype);
1034         if (!v) {
1035             asterror(ast_ctx(self), "ir_builder_create_global failed");
1036             return false;
1037         }
1038         if (vtype == TYPE_FIELD)
1039             v->fieldtype = elemtype->next->expression.vtype;
1040         v->context = ast_ctx(self);
1041
1042         namelen = strlen(self->name);
1043         name    = (char*)mem_a(namelen + 16);
1044         strcpy(name, self->name);
1045
1046         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1047         self->ir_values[0] = v;
1048         for (ai = 1; ai < self->expression.count; ++ai) {
1049             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1050             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1051             if (!self->ir_values[ai]) {
1052                 mem_d(name);
1053                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1054                 return false;
1055             }
1056             if (vtype == TYPE_FIELD)
1057                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1058             self->ir_values[ai]->context = ast_ctx(self);
1059         }
1060         mem_d(name);
1061     }
1062     else
1063     {
1064         /* Arrays don't do this since there's no "array" value which spans across the
1065          * whole thing.
1066          */
1067         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1068         if (!v) {
1069             asterror(ast_ctx(self), "ir_builder_create_global failed");
1070             return false;
1071         }
1072         if (self->expression.vtype == TYPE_FIELD)
1073             v->fieldtype = self->expression.next->expression.vtype;
1074         v->context = ast_ctx(self);
1075     }
1076
1077     if (self->isconst) {
1078         switch (self->expression.vtype)
1079         {
1080             case TYPE_FLOAT:
1081                 if (!ir_value_set_float(v, self->constval.vfloat))
1082                     goto error;
1083                 break;
1084             case TYPE_VECTOR:
1085                 if (!ir_value_set_vector(v, self->constval.vvec))
1086                     goto error;
1087                 break;
1088             case TYPE_STRING:
1089                 if (!ir_value_set_string(v, self->constval.vstring))
1090                     goto error;
1091                 break;
1092             case TYPE_ARRAY:
1093                 asterror(ast_ctx(self), "TODO: global constant array");
1094                 break;
1095             case TYPE_FUNCTION:
1096                 asterror(ast_ctx(self), "global of type function not properly generated");
1097                 goto error;
1098                 /* Cannot generate an IR value for a function,
1099                  * need a pointer pointing to a function rather.
1100                  */
1101             default:
1102                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1103                 break;
1104         }
1105     }
1106
1107     /* link us to the ir_value */
1108     self->ir_v = v;
1109     return true;
1110
1111 error: /* clean up */
1112     ir_value_delete(v);
1113     return false;
1114 }
1115
1116 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1117 {
1118     ir_value *v = NULL;
1119     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1120     {
1121         /* Do we allow local functions? I think not...
1122          * this is NOT a function pointer atm.
1123          */
1124         return false;
1125     }
1126
1127     if (self->expression.vtype == TYPE_ARRAY) {
1128         size_t ai;
1129         char   *name;
1130         size_t  namelen;
1131
1132         ast_expression_common *elemtype = &self->expression.next->expression;
1133         int vtype = elemtype->vtype;
1134
1135         if (param) {
1136             asterror(ast_ctx(self), "array-parameters are not supported");
1137             return false;
1138         }
1139
1140         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1141         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1142             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1143         }
1144
1145         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1146         if (!self->ir_values) {
1147             asterror(ast_ctx(self), "failed to allocate array values");
1148             return false;
1149         }
1150
1151         v = ir_function_create_local(func, self->name, vtype, param);
1152         if (!v) {
1153             asterror(ast_ctx(self), "ir_function_create_local failed");
1154             return false;
1155         }
1156         if (vtype == TYPE_FIELD)
1157             v->fieldtype = elemtype->next->expression.vtype;
1158         v->context = ast_ctx(self);
1159
1160         namelen = strlen(self->name);
1161         name    = (char*)mem_a(namelen + 16);
1162         strcpy(name, self->name);
1163
1164         self->ir_values[0] = v;
1165         for (ai = 1; ai < self->expression.count; ++ai) {
1166             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1167             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1168             if (!self->ir_values[ai]) {
1169                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1170                 return false;
1171             }
1172             if (vtype == TYPE_FIELD)
1173                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1174             self->ir_values[ai]->context = ast_ctx(self);
1175         }
1176     }
1177     else
1178     {
1179         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1180         if (!v)
1181             return false;
1182         if (self->expression.vtype == TYPE_FIELD)
1183             v->fieldtype = self->expression.next->expression.vtype;
1184         v->context = ast_ctx(self);
1185     }
1186
1187     /* A constant local... hmmm...
1188      * I suppose the IR will have to deal with this
1189      */
1190     if (self->isconst) {
1191         switch (self->expression.vtype)
1192         {
1193             case TYPE_FLOAT:
1194                 if (!ir_value_set_float(v, self->constval.vfloat))
1195                     goto error;
1196                 break;
1197             case TYPE_VECTOR:
1198                 if (!ir_value_set_vector(v, self->constval.vvec))
1199                     goto error;
1200                 break;
1201             case TYPE_STRING:
1202                 if (!ir_value_set_string(v, self->constval.vstring))
1203                     goto error;
1204                 break;
1205             default:
1206                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1207                 break;
1208         }
1209     }
1210
1211     /* link us to the ir_value */
1212     self->ir_v = v;
1213
1214     if (self->setter) {
1215         if (!ast_global_codegen(self->setter, func->owner, false) ||
1216             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1217             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1218             return false;
1219     }
1220     if (self->getter) {
1221         if (!ast_global_codegen(self->getter, func->owner, false) ||
1222             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1223             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1224             return false;
1225     }
1226     return true;
1227
1228 error: /* clean up */
1229     ir_value_delete(v);
1230     return false;
1231 }
1232
1233 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1234 {
1235     ir_function *irf;
1236     ir_value    *dummy;
1237     ast_expression_common *ec;
1238     size_t    i;
1239
1240     irf = self->ir_func;
1241     if (!irf) {
1242         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1243         return false;
1244     }
1245
1246     /* fill the parameter list */
1247     ec = &self->vtype->expression;
1248     for (i = 0; i < ec->params_count; ++i)
1249     {
1250         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1251             return false;
1252         if (!self->builtin) {
1253             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1254                 return false;
1255         }
1256     }
1257
1258     if (self->builtin) {
1259         irf->builtin = self->builtin;
1260         return true;
1261     }
1262
1263     if (!self->blocks_count) {
1264         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1265         return false;
1266     }
1267
1268     self->curblock = ir_function_create_block(irf, "entry");
1269     if (!self->curblock) {
1270         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1271         return false;
1272     }
1273
1274     for (i = 0; i < self->blocks_count; ++i) {
1275         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1276         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1277             return false;
1278     }
1279
1280     /* TODO: check return types */
1281     if (!self->curblock->is_return)
1282     {
1283         return ir_block_create_return(self->curblock, NULL);
1284         /* From now on the parser has to handle this situation */
1285 #if 0
1286         if (!self->vtype->expression.next ||
1287             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1288         {
1289             return ir_block_create_return(self->curblock, NULL);
1290         }
1291         else
1292         {
1293             /* error("missing return"); */
1294             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1295             return false;
1296         }
1297 #endif
1298     }
1299     return true;
1300 }
1301
1302 /* Note, you will not see ast_block_codegen generate ir_blocks.
1303  * To the AST and the IR, blocks are 2 different things.
1304  * In the AST it represents a block of code, usually enclosed in
1305  * curly braces {...}.
1306  * While in the IR it represents a block in terms of control-flow.
1307  */
1308 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1309 {
1310     size_t i;
1311
1312     /* We don't use this
1313      * Note: an ast-representation using the comma-operator
1314      * of the form: (a, b, c) = x should not assign to c...
1315      */
1316     if (lvalue) {
1317         asterror(ast_ctx(self), "not an l-value (code-block)");
1318         return false;
1319     }
1320
1321     if (self->expression.outr) {
1322         *out = self->expression.outr;
1323         return true;
1324     }
1325
1326     /* output is NULL at first, we'll have each expression
1327      * assign to out output, thus, a comma-operator represention
1328      * using an ast_block will return the last generated value,
1329      * so: (b, c) + a  executed both b and c, and returns c,
1330      * which is then added to a.
1331      */
1332     *out = NULL;
1333
1334     /* generate locals */
1335     for (i = 0; i < self->locals_count; ++i)
1336     {
1337         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1338             if (opts_debug)
1339                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1340             return false;
1341         }
1342     }
1343
1344     for (i = 0; i < self->exprs_count; ++i)
1345     {
1346         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1347         if (!(*gen)(self->exprs[i], func, false, out))
1348             return false;
1349     }
1350
1351     self->expression.outr = *out;
1352
1353     return true;
1354 }
1355
1356 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1357 {
1358     ast_expression_codegen *cgen;
1359     ir_value *left, *right;
1360
1361     ast_value       *arr;
1362     ast_value       *idx;
1363     ast_array_index *ai = NULL;
1364
1365     if (lvalue && self->expression.outl) {
1366         *out = self->expression.outl;
1367         return true;
1368     }
1369
1370     if (!lvalue && self->expression.outr) {
1371         *out = self->expression.outr;
1372         return true;
1373     }
1374
1375     if (ast_istype(self->dest, ast_array_index))
1376     {
1377
1378         ai = (ast_array_index*)self->dest;
1379         idx = (ast_value*)ai->index;
1380
1381         if (ast_istype(ai->index, ast_value) && idx->isconst)
1382             ai = NULL;
1383     }
1384
1385     if (ai) {
1386         /* we need to call the setter */
1387         ir_value  *iridx, *funval;
1388         ir_instr  *call;
1389
1390         if (lvalue) {
1391             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1392             return false;
1393         }
1394
1395         arr = (ast_value*)ai->array;
1396         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1397             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1398             return false;
1399         }
1400
1401         cgen = idx->expression.codegen;
1402         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1403             return false;
1404
1405         cgen = arr->setter->expression.codegen;
1406         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1407             return false;
1408
1409         cgen = self->source->expression.codegen;
1410         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1411             return false;
1412
1413         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1414         if (!call)
1415             return false;
1416         if (!ir_call_param(call, iridx))
1417             return false;
1418         if (!ir_call_param(call, right))
1419             return false;
1420         self->expression.outr = right;
1421     }
1422     else
1423     {
1424         /* regular code */
1425
1426         cgen = self->dest->expression.codegen;
1427         /* lvalue! */
1428         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1429             return false;
1430         self->expression.outl = left;
1431
1432         cgen = self->source->expression.codegen;
1433         /* rvalue! */
1434         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1435             return false;
1436
1437         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1438             return false;
1439         self->expression.outr = right;
1440     }
1441
1442     /* Theoretically, an assinment returns its left side as an
1443      * lvalue, if we don't need an lvalue though, we return
1444      * the right side as an rvalue, otherwise we have to
1445      * somehow know whether or not we need to dereference the pointer
1446      * on the left side - that is: OP_LOAD if it was an address.
1447      * Also: in original QC we cannot OP_LOADP *anyway*.
1448      */
1449     *out = (lvalue ? left : right);
1450
1451     return true;
1452 }
1453
1454 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1455 {
1456     ast_expression_codegen *cgen;
1457     ir_value *left, *right;
1458
1459     /* A binary operation cannot yield an l-value */
1460     if (lvalue) {
1461         asterror(ast_ctx(self), "not an l-value (binop)");
1462         return false;
1463     }
1464
1465     if (self->expression.outr) {
1466         *out = self->expression.outr;
1467         return true;
1468     }
1469
1470     cgen = self->left->expression.codegen;
1471     /* lvalue! */
1472     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1473         return false;
1474
1475     cgen = self->right->expression.codegen;
1476     /* rvalue! */
1477     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1478         return false;
1479
1480     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1481                                  self->op, left, right);
1482     if (!*out)
1483         return false;
1484     self->expression.outr = *out;
1485
1486     return true;
1487 }
1488
1489 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1490 {
1491     ast_expression_codegen *cgen;
1492     ir_value *leftl, *leftr, *right, *bin;
1493
1494     if (lvalue && self->expression.outl) {
1495         *out = self->expression.outl;
1496         return true;
1497     }
1498
1499     if (!lvalue && self->expression.outr) {
1500         *out = self->expression.outr;
1501         return true;
1502     }
1503
1504     /* for a binstore we need both an lvalue and an rvalue for the left side */
1505     /* rvalue of destination! */
1506     cgen = self->dest->expression.codegen;
1507     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1508         return false;
1509
1510     /* source as rvalue only */
1511     cgen = self->source->expression.codegen;
1512     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1513         return false;
1514
1515     /* now the binary */
1516     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1517                                 self->opbin, leftr, right);
1518     self->expression.outr = bin;
1519
1520     /* now store them */
1521     cgen = self->dest->expression.codegen;
1522     /* lvalue of destination */
1523     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1524         return false;
1525     self->expression.outl = leftl;
1526
1527     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1528         return false;
1529     self->expression.outr = bin;
1530
1531     /* Theoretically, an assinment returns its left side as an
1532      * lvalue, if we don't need an lvalue though, we return
1533      * the right side as an rvalue, otherwise we have to
1534      * somehow know whether or not we need to dereference the pointer
1535      * on the left side - that is: OP_LOAD if it was an address.
1536      * Also: in original QC we cannot OP_LOADP *anyway*.
1537      */
1538     *out = (lvalue ? leftl : bin);
1539
1540     return true;
1541 }
1542
1543 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1544 {
1545     ast_expression_codegen *cgen;
1546     ir_value *operand;
1547
1548     /* An unary operation cannot yield an l-value */
1549     if (lvalue) {
1550         asterror(ast_ctx(self), "not an l-value (binop)");
1551         return false;
1552     }
1553
1554     if (self->expression.outr) {
1555         *out = self->expression.outr;
1556         return true;
1557     }
1558
1559     cgen = self->operand->expression.codegen;
1560     /* lvalue! */
1561     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1562         return false;
1563
1564     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1565                                  self->op, operand);
1566     if (!*out)
1567         return false;
1568     self->expression.outr = *out;
1569
1570     return true;
1571 }
1572
1573 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1574 {
1575     ast_expression_codegen *cgen;
1576     ir_value *operand;
1577
1578     /* In the context of a return operation, we don't actually return
1579      * anything...
1580      */
1581     if (lvalue) {
1582         asterror(ast_ctx(self), "return-expression is not an l-value");
1583         return false;
1584     }
1585
1586     if (self->expression.outr) {
1587         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1588         return false;
1589     }
1590     self->expression.outr = (ir_value*)1;
1591
1592     if (self->operand) {
1593         cgen = self->operand->expression.codegen;
1594         /* lvalue! */
1595         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1596             return false;
1597
1598         if (!ir_block_create_return(func->curblock, operand))
1599             return false;
1600     } else {
1601         if (!ir_block_create_return(func->curblock, NULL))
1602             return false;
1603     }
1604
1605     return true;
1606 }
1607
1608 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1609 {
1610     ast_expression_codegen *cgen;
1611     ir_value *ent, *field;
1612
1613     /* This function needs to take the 'lvalue' flag into account!
1614      * As lvalue we provide a field-pointer, as rvalue we provide the
1615      * value in a temp.
1616      */
1617
1618     if (lvalue && self->expression.outl) {
1619         *out = self->expression.outl;
1620         return true;
1621     }
1622
1623     if (!lvalue && self->expression.outr) {
1624         *out = self->expression.outr;
1625         return true;
1626     }
1627
1628     cgen = self->entity->expression.codegen;
1629     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1630         return false;
1631
1632     cgen = self->field->expression.codegen;
1633     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1634         return false;
1635
1636     if (lvalue) {
1637         /* address! */
1638         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1639                                             ent, field);
1640     } else {
1641         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1642                                              ent, field, self->expression.vtype);
1643     }
1644     if (!*out) {
1645         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1646                  (lvalue ? "ADDRESS" : "FIELD"),
1647                  type_name[self->expression.vtype]);
1648         return false;
1649     }
1650
1651     if (lvalue)
1652         self->expression.outl = *out;
1653     else
1654         self->expression.outr = *out;
1655
1656     /* Hm that should be it... */
1657     return true;
1658 }
1659
1660 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1661 {
1662     ast_expression_codegen *cgen;
1663     ir_value *vec;
1664
1665     /* in QC this is always an lvalue */
1666     (void)lvalue;
1667     if (self->expression.outl) {
1668         *out = self->expression.outl;
1669         return true;
1670     }
1671
1672     cgen = self->owner->expression.codegen;
1673     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1674         return false;
1675
1676     if (vec->vtype != TYPE_VECTOR &&
1677         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1678     {
1679         return false;
1680     }
1681
1682     *out = ir_value_vector_member(vec, self->field);
1683     self->expression.outl = *out;
1684
1685     return (*out != NULL);
1686 }
1687
1688 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1689 {
1690     ast_value *arr;
1691     ast_value *idx;
1692
1693     if (!lvalue && self->expression.outr) {
1694         *out = self->expression.outr;
1695     }
1696     if (lvalue && self->expression.outl) {
1697         *out = self->expression.outl;
1698     }
1699
1700     if (!ast_istype(self->array, ast_value)) {
1701         asterror(ast_ctx(self), "array indexing this way is not supported");
1702         /* note this would actually be pointer indexing because the left side is
1703          * not an actual array but (hopefully) an indexable expression.
1704          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1705          * support this path will be filled.
1706          */
1707         return false;
1708     }
1709
1710     arr = (ast_value*)self->array;
1711     idx = (ast_value*)self->index;
1712
1713     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1714         /* Time to use accessor functions */
1715         ast_expression_codegen *cgen;
1716         ir_value               *iridx, *funval;
1717         ir_instr               *call;
1718
1719         if (lvalue) {
1720             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1721             return false;
1722         }
1723
1724         if (!arr->getter) {
1725             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1726             return false;
1727         }
1728
1729         cgen = self->index->expression.codegen;
1730         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1731             return false;
1732
1733         cgen = arr->getter->expression.codegen;
1734         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1735             return false;
1736
1737         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1738         if (!call)
1739             return false;
1740         if (!ir_call_param(call, iridx))
1741             return false;
1742
1743         *out = ir_call_value(call);
1744         self->expression.outr = *out;
1745         return true;
1746     }
1747
1748     if (idx->expression.vtype == TYPE_FLOAT)
1749         *out = arr->ir_values[(int)idx->constval.vfloat];
1750     else if (idx->expression.vtype == TYPE_INTEGER)
1751         *out = arr->ir_values[idx->constval.vint];
1752     else {
1753         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1754         return false;
1755     }
1756     return true;
1757 }
1758
1759 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1760 {
1761     ast_expression_codegen *cgen;
1762
1763     ir_value *condval;
1764     ir_value *dummy;
1765
1766     ir_block *cond = func->curblock;
1767     ir_block *ontrue;
1768     ir_block *onfalse;
1769     ir_block *ontrue_endblock = NULL;
1770     ir_block *onfalse_endblock = NULL;
1771     ir_block *merge;
1772
1773     /* We don't output any value, thus also don't care about r/lvalue */
1774     (void)out;
1775     (void)lvalue;
1776
1777     if (self->expression.outr) {
1778         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1779         return false;
1780     }
1781     self->expression.outr = (ir_value*)1;
1782
1783     /* generate the condition */
1784     func->curblock = cond;
1785     cgen = self->cond->expression.codegen;
1786     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1787         return false;
1788
1789     /* on-true path */
1790
1791     if (self->on_true) {
1792         /* create on-true block */
1793         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1794         if (!ontrue)
1795             return false;
1796
1797         /* enter the block */
1798         func->curblock = ontrue;
1799
1800         /* generate */
1801         cgen = self->on_true->expression.codegen;
1802         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1803             return false;
1804
1805         /* we now need to work from the current endpoint */
1806         ontrue_endblock = func->curblock;
1807     } else
1808         ontrue = NULL;
1809
1810     /* on-false path */
1811     if (self->on_false) {
1812         /* create on-false block */
1813         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1814         if (!onfalse)
1815             return false;
1816
1817         /* enter the block */
1818         func->curblock = onfalse;
1819
1820         /* generate */
1821         cgen = self->on_false->expression.codegen;
1822         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1823             return false;
1824
1825         /* we now need to work from the current endpoint */
1826         onfalse_endblock = func->curblock;
1827     } else
1828         onfalse = NULL;
1829
1830     /* Merge block were they all merge in to */
1831     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1832     if (!merge)
1833         return false;
1834
1835     /* add jumps ot the merge block */
1836     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1837         return false;
1838     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1839         return false;
1840
1841     /* we create the if here, that way all blocks are ordered :)
1842      */
1843     if (!ir_block_create_if(cond, condval,
1844                             (ontrue  ? ontrue  : merge),
1845                             (onfalse ? onfalse : merge)))
1846     {
1847         return false;
1848     }
1849
1850     /* Now enter the merge block */
1851     func->curblock = merge;
1852
1853     return true;
1854 }
1855
1856 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1857 {
1858     ast_expression_codegen *cgen;
1859
1860     ir_value *condval;
1861     ir_value *trueval, *falseval;
1862     ir_instr *phi;
1863
1864     ir_block *cond = func->curblock;
1865     ir_block *ontrue;
1866     ir_block *onfalse;
1867     ir_block *merge;
1868
1869     /* Ternary can never create an lvalue... */
1870     if (lvalue)
1871         return false;
1872
1873     /* In theory it shouldn't be possible to pass through a node twice, but
1874      * in case we add any kind of optimization pass for the AST itself, it
1875      * may still happen, thus we remember a created ir_value and simply return one
1876      * if it already exists.
1877      */
1878     if (self->phi_out) {
1879         *out = self->phi_out;
1880         return true;
1881     }
1882
1883     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1884
1885     /* generate the condition */
1886     func->curblock = cond;
1887     cgen = self->cond->expression.codegen;
1888     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1889         return false;
1890
1891     /* create on-true block */
1892     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1893     if (!ontrue)
1894         return false;
1895     else
1896     {
1897         /* enter the block */
1898         func->curblock = ontrue;
1899
1900         /* generate */
1901         cgen = self->on_true->expression.codegen;
1902         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1903             return false;
1904     }
1905
1906     /* create on-false block */
1907     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1908     if (!onfalse)
1909         return false;
1910     else
1911     {
1912         /* enter the block */
1913         func->curblock = onfalse;
1914
1915         /* generate */
1916         cgen = self->on_false->expression.codegen;
1917         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1918             return false;
1919     }
1920
1921     /* create merge block */
1922     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1923     if (!merge)
1924         return false;
1925     /* jump to merge block */
1926     if (!ir_block_create_jump(ontrue, merge))
1927         return false;
1928     if (!ir_block_create_jump(onfalse, merge))
1929         return false;
1930
1931     /* create if instruction */
1932     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1933         return false;
1934
1935     /* Now enter the merge block */
1936     func->curblock = merge;
1937
1938     /* Here, now, we need a PHI node
1939      * but first some sanity checking...
1940      */
1941     if (trueval->vtype != falseval->vtype) {
1942         /* error("ternary with different types on the two sides"); */
1943         return false;
1944     }
1945
1946     /* create PHI */
1947     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1948     if (!phi ||
1949         !ir_phi_add(phi, ontrue,  trueval) ||
1950         !ir_phi_add(phi, onfalse, falseval))
1951     {
1952         return false;
1953     }
1954
1955     self->phi_out = ir_phi_value(phi);
1956     *out = self->phi_out;
1957
1958     return true;
1959 }
1960
1961 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1962 {
1963     ast_expression_codegen *cgen;
1964
1965     ir_value *dummy      = NULL;
1966     ir_value *precond    = NULL;
1967     ir_value *postcond   = NULL;
1968
1969     /* Since we insert some jumps "late" so we have blocks
1970      * ordered "nicely", we need to keep track of the actual end-blocks
1971      * of expressions to add the jumps to.
1972      */
1973     ir_block *bbody      = NULL, *end_bbody      = NULL;
1974     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1975     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1976     ir_block *bincrement = NULL, *end_bincrement = NULL;
1977     ir_block *bout       = NULL, *bin            = NULL;
1978
1979     /* let's at least move the outgoing block to the end */
1980     size_t    bout_id;
1981
1982     /* 'break' and 'continue' need to be able to find the right blocks */
1983     ir_block *bcontinue     = NULL;
1984     ir_block *bbreak        = NULL;
1985
1986     ir_block *old_bcontinue = NULL;
1987     ir_block *old_bbreak    = NULL;
1988
1989     ir_block *tmpblock      = NULL;
1990
1991     (void)lvalue;
1992     (void)out;
1993
1994     if (self->expression.outr) {
1995         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1996         return false;
1997     }
1998     self->expression.outr = (ir_value*)1;
1999
2000     /* NOTE:
2001      * Should we ever need some kind of block ordering, better make this function
2002      * move blocks around than write a block ordering algorithm later... after all
2003      * the ast and ir should work together, not against each other.
2004      */
2005
2006     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2007      * anyway if for example it contains a ternary.
2008      */
2009     if (self->initexpr)
2010     {
2011         cgen = self->initexpr->expression.codegen;
2012         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2013             return false;
2014     }
2015
2016     /* Store the block from which we enter this chaos */
2017     bin = func->curblock;
2018
2019     /* The pre-loop condition needs its own block since we
2020      * need to be able to jump to the start of that expression.
2021      */
2022     if (self->precond)
2023     {
2024         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2025         if (!bprecond)
2026             return false;
2027
2028         /* the pre-loop-condition the least important place to 'continue' at */
2029         bcontinue = bprecond;
2030
2031         /* enter */
2032         func->curblock = bprecond;
2033
2034         /* generate */
2035         cgen = self->precond->expression.codegen;
2036         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2037             return false;
2038
2039         end_bprecond = func->curblock;
2040     } else {
2041         bprecond = end_bprecond = NULL;
2042     }
2043
2044     /* Now the next blocks won't be ordered nicely, but we need to
2045      * generate them this early for 'break' and 'continue'.
2046      */
2047     if (self->increment) {
2048         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2049         if (!bincrement)
2050             return false;
2051         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2052     } else {
2053         bincrement = end_bincrement = NULL;
2054     }
2055
2056     if (self->postcond) {
2057         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2058         if (!bpostcond)
2059             return false;
2060         bcontinue = bpostcond; /* postcond comes before the increment */
2061     } else {
2062         bpostcond = end_bpostcond = NULL;
2063     }
2064
2065     bout_id = func->ir_func->blocks_count;
2066     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2067     if (!bout)
2068         return false;
2069     bbreak = bout;
2070
2071     /* The loop body... */
2072     if (self->body)
2073     {
2074         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2075         if (!bbody)
2076             return false;
2077
2078         /* enter */
2079         func->curblock = bbody;
2080
2081         old_bbreak          = func->breakblock;
2082         old_bcontinue       = func->continueblock;
2083         func->breakblock    = bbreak;
2084         func->continueblock = bcontinue;
2085
2086         /* generate */
2087         cgen = self->body->expression.codegen;
2088         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2089             return false;
2090
2091         end_bbody = func->curblock;
2092         func->breakblock    = old_bbreak;
2093         func->continueblock = old_bcontinue;
2094     }
2095
2096     /* post-loop-condition */
2097     if (self->postcond)
2098     {
2099         /* enter */
2100         func->curblock = bpostcond;
2101
2102         /* generate */
2103         cgen = self->postcond->expression.codegen;
2104         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2105             return false;
2106
2107         end_bpostcond = func->curblock;
2108     }
2109
2110     /* The incrementor */
2111     if (self->increment)
2112     {
2113         /* enter */
2114         func->curblock = bincrement;
2115
2116         /* generate */
2117         cgen = self->increment->expression.codegen;
2118         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2119             return false;
2120
2121         end_bincrement = func->curblock;
2122     }
2123
2124     /* In any case now, we continue from the outgoing block */
2125     func->curblock = bout;
2126
2127     /* Now all blocks are in place */
2128     /* From 'bin' we jump to whatever comes first */
2129     if      (bprecond)   tmpblock = bprecond;
2130     else if (bbody)      tmpblock = bbody;
2131     else if (bpostcond)  tmpblock = bpostcond;
2132     else                 tmpblock = bout;
2133     if (!ir_block_create_jump(bin, tmpblock))
2134         return false;
2135
2136     /* From precond */
2137     if (bprecond)
2138     {
2139         ir_block *ontrue, *onfalse;
2140         if      (bbody)      ontrue = bbody;
2141         else if (bincrement) ontrue = bincrement;
2142         else if (bpostcond)  ontrue = bpostcond;
2143         else                 ontrue = bprecond;
2144         onfalse = bout;
2145         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2146             return false;
2147     }
2148
2149     /* from body */
2150     if (bbody)
2151     {
2152         if      (bincrement) tmpblock = bincrement;
2153         else if (bpostcond)  tmpblock = bpostcond;
2154         else if (bprecond)   tmpblock = bprecond;
2155         else                 tmpblock = bout;
2156         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2157             return false;
2158     }
2159
2160     /* from increment */
2161     if (bincrement)
2162     {
2163         if      (bpostcond)  tmpblock = bpostcond;
2164         else if (bprecond)   tmpblock = bprecond;
2165         else if (bbody)      tmpblock = bbody;
2166         else                 tmpblock = bout;
2167         if (!ir_block_create_jump(end_bincrement, tmpblock))
2168             return false;
2169     }
2170
2171     /* from postcond */
2172     if (bpostcond)
2173     {
2174         ir_block *ontrue, *onfalse;
2175         if      (bprecond)   ontrue = bprecond;
2176         else if (bbody)      ontrue = bbody;
2177         else if (bincrement) ontrue = bincrement;
2178         else                 ontrue = bpostcond;
2179         onfalse = bout;
2180         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2181             return false;
2182     }
2183
2184     /* Move 'bout' to the end */
2185     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2186         !ir_function_blocks_add(func->ir_func, bout))
2187     {
2188         ir_block_delete(bout);
2189         return false;
2190     }
2191
2192     return true;
2193 }
2194
2195 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2196 {
2197     ast_expression_codegen *cgen;
2198     ir_value_vector         params;
2199     ir_instr               *callinstr;
2200     size_t i;
2201
2202     ir_value *funval = NULL;
2203
2204     /* return values are never lvalues */
2205     if (lvalue) {
2206         asterror(ast_ctx(self), "not an l-value (function call)");
2207         return false;
2208     }
2209
2210     if (self->expression.outr) {
2211         *out = self->expression.outr;
2212         return true;
2213     }
2214
2215     cgen = self->func->expression.codegen;
2216     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2217         return false;
2218     if (!funval)
2219         return false;
2220
2221     MEM_VECTOR_INIT(&params, v);
2222
2223     /* parameters */
2224     for (i = 0; i < self->params_count; ++i)
2225     {
2226         ir_value *param;
2227         ast_expression *expr = self->params[i];
2228
2229         cgen = expr->expression.codegen;
2230         if (!(*cgen)(expr, func, false, &param))
2231             goto error;
2232         if (!param)
2233             goto error;
2234         if (!ir_value_vector_v_add(&params, param))
2235             goto error;
2236     }
2237
2238     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2239     if (!callinstr)
2240         goto error;
2241
2242     for (i = 0; i < params.v_count; ++i) {
2243         if (!ir_call_param(callinstr, params.v[i]))
2244             goto error;
2245     }
2246
2247     *out = ir_call_value(callinstr);
2248     self->expression.outr = *out;
2249
2250     MEM_VECTOR_CLEAR(&params, v);
2251     return true;
2252 error:
2253     MEM_VECTOR_CLEAR(&params, v);
2254     return false;
2255 }