]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Warna bout unused variables - -Wunused-variable, on by default
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 ast_store* ast_store_new(lex_ctx ctx, int op,
593                          ast_expression *dest, ast_expression *source)
594 {
595     ast_instantiate(ast_store, ctx, ast_store_delete);
596     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
597
598     self->op = op;
599     self->dest = dest;
600     self->source = source;
601
602     return self;
603 }
604
605 void ast_store_delete(ast_store *self)
606 {
607     ast_unref(self->dest);
608     ast_unref(self->source);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_block* ast_block_new(lex_ctx ctx)
614 {
615     ast_instantiate(ast_block, ctx, ast_block_delete);
616     ast_expression_init((ast_expression*)self,
617                         (ast_expression_codegen*)&ast_block_codegen);
618
619     MEM_VECTOR_INIT(self, locals);
620     MEM_VECTOR_INIT(self, exprs);
621     MEM_VECTOR_INIT(self, collect);
622
623     return self;
624 }
625 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
627 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
628
629 bool ast_block_collect(ast_block *self, ast_expression *expr)
630 {
631     if (!ast_block_collect_add(self, expr))
632         return false;
633     expr->expression.node.keep = true;
634     return true;
635 }
636
637 void ast_block_delete(ast_block *self)
638 {
639     size_t i;
640     for (i = 0; i < self->exprs_count; ++i)
641         ast_unref(self->exprs[i]);
642     MEM_VECTOR_CLEAR(self, exprs);
643     for (i = 0; i < self->locals_count; ++i)
644         ast_delete(self->locals[i]);
645     MEM_VECTOR_CLEAR(self, locals);
646     for (i = 0; i < self->collect_count; ++i)
647         ast_delete(self->collect[i]);
648     MEM_VECTOR_CLEAR(self, collect);
649     ast_expression_delete((ast_expression*)self);
650     mem_d(self);
651 }
652
653 bool ast_block_set_type(ast_block *self, ast_expression *from)
654 {
655     if (self->expression.next)
656         ast_delete(self->expression.next);
657     self->expression.vtype = from->expression.vtype;
658     if (from->expression.next) {
659         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
660         if (!self->expression.next)
661             return false;
662     }
663     else
664         self->expression.next = NULL;
665     return true;
666 }
667
668 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
669 {
670     ast_instantiate(ast_function, ctx, ast_function_delete);
671
672     if (!vtype ||
673         vtype->isconst ||
674         vtype->expression.vtype != TYPE_FUNCTION)
675     {
676         mem_d(self);
677         return NULL;
678     }
679
680     self->vtype = vtype;
681     self->name = name ? util_strdup(name) : NULL;
682     MEM_VECTOR_INIT(self, blocks);
683
684     self->labelcount = 0;
685     self->builtin = 0;
686
687     self->ir_func = NULL;
688     self->curblock = NULL;
689
690     self->breakblock    = NULL;
691     self->continueblock = NULL;
692
693     vtype->isconst = true;
694     vtype->constval.vfunc = self;
695
696     return self;
697 }
698
699 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
700
701 void ast_function_delete(ast_function *self)
702 {
703     size_t i;
704     if (self->name)
705         mem_d((void*)self->name);
706     if (self->vtype) {
707         /* ast_value_delete(self->vtype); */
708         self->vtype->isconst = false;
709         self->vtype->constval.vfunc = NULL;
710         /* We use unref - if it was stored in a global table it is supposed
711          * to be deleted from *there*
712          */
713         ast_unref(self->vtype);
714     }
715     for (i = 0; i < self->blocks_count; ++i)
716         ast_delete(self->blocks[i]);
717     MEM_VECTOR_CLEAR(self, blocks);
718     mem_d(self);
719 }
720
721 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
722 {
723     unsigned int base = 10;
724 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
725 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
726     if (size < 1)
727         return;
728     checknul();
729     if (!num)
730         addch('0');
731     else {
732         while (num)
733         {
734             int digit = num % base;
735             num /= base;
736             addch('0' + digit);
737         }
738     }
739
740     *buf = 0;
741 #undef addch
742 #undef checknul
743 }
744
745 const char* ast_function_label(ast_function *self, const char *prefix)
746 {
747     size_t id = (self->labelcount++);
748     size_t len = strlen(prefix);
749     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
750     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
751     return self->labelbuf;
752 }
753
754 /*********************************************************************/
755 /* AST codegen part
756  * by convention you must never pass NULL to the 'ir_value **out'
757  * parameter. If you really don't care about the output, pass a dummy.
758  * But I can't imagine a pituation where the output is truly unnecessary.
759  */
760
761 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
762 {
763     /* NOTE: This is the codegen for a variable used in an expression.
764      * It is not the codegen to generate the value. For this purpose,
765      * ast_local_codegen and ast_global_codegen are to be used before this
766      * is executed. ast_function_codegen should take care of its locals,
767      * and the ast-user should take care of ast_global_codegen to be used
768      * on all the globals.
769      */
770     if (!self->ir_v) {
771         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
772         return false;
773     }
774     *out = self->ir_v;
775     return true;
776 }
777
778 bool ast_global_codegen(ast_value *self, ir_builder *ir)
779 {
780     ir_value *v = NULL;
781     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
782     {
783         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
784         if (!func)
785             return false;
786         func->context = ast_ctx(self);
787
788         self->constval.vfunc->ir_func = func;
789         self->ir_v = func->value;
790         /* The function is filled later on ast_function_codegen... */
791         return true;
792     }
793
794     if (self->expression.vtype == TYPE_FIELD) {
795         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
796         if (!v)
797             return false;
798         v->context = ast_ctx(self);
799         if (self->isconst) {
800             asterror(ast_ctx(self), "TODO: constant field pointers with value");
801             goto error;
802         }
803         self->ir_v = v;
804         return true;
805     }
806
807     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
808     if (!v) {
809         asterror(ast_ctx(self), "ir_builder_create_global failed");
810         return false;
811     }
812     v->context = ast_ctx(self);
813
814     if (self->isconst) {
815         switch (self->expression.vtype)
816         {
817             case TYPE_FLOAT:
818                 if (!ir_value_set_float(v, self->constval.vfloat))
819                     goto error;
820                 break;
821             case TYPE_VECTOR:
822                 if (!ir_value_set_vector(v, self->constval.vvec))
823                     goto error;
824                 break;
825             case TYPE_STRING:
826                 if (!ir_value_set_string(v, self->constval.vstring))
827                     goto error;
828                 break;
829             case TYPE_FUNCTION:
830                 asterror(ast_ctx(self), "global of type function not properly generated");
831                 goto error;
832                 /* Cannot generate an IR value for a function,
833                  * need a pointer pointing to a function rather.
834                  */
835             default:
836                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
837                 break;
838         }
839     }
840
841     /* link us to the ir_value */
842     self->ir_v = v;
843     return true;
844
845 error: /* clean up */
846     ir_value_delete(v);
847     return false;
848 }
849
850 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
851 {
852     ir_value *v = NULL;
853     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
854     {
855         /* Do we allow local functions? I think not...
856          * this is NOT a function pointer atm.
857          */
858         return false;
859     }
860
861     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
862     if (!v)
863         return false;
864     v->context = ast_ctx(self);
865
866     /* A constant local... hmmm...
867      * I suppose the IR will have to deal with this
868      */
869     if (self->isconst) {
870         switch (self->expression.vtype)
871         {
872             case TYPE_FLOAT:
873                 if (!ir_value_set_float(v, self->constval.vfloat))
874                     goto error;
875                 break;
876             case TYPE_VECTOR:
877                 if (!ir_value_set_vector(v, self->constval.vvec))
878                     goto error;
879                 break;
880             case TYPE_STRING:
881                 if (!ir_value_set_string(v, self->constval.vstring))
882                     goto error;
883                 break;
884             default:
885                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
886                 break;
887         }
888     }
889
890     /* link us to the ir_value */
891     self->ir_v = v;
892     return true;
893
894 error: /* clean up */
895     ir_value_delete(v);
896     return false;
897 }
898
899 bool ast_function_codegen(ast_function *self, ir_builder *ir)
900 {
901     ir_function *irf;
902     ir_value    *dummy;
903     ast_expression_common *ec;
904     size_t    i;
905
906     irf = self->ir_func;
907     if (!irf) {
908         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
909         return false;
910     }
911
912     /* fill the parameter list */
913     ec = &self->vtype->expression;
914     for (i = 0; i < ec->params_count; ++i)
915     {
916         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
917             return false;
918         if (!self->builtin) {
919             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
920                 return false;
921         }
922     }
923
924     if (self->builtin) {
925         irf->builtin = self->builtin;
926         return true;
927     }
928
929     if (!self->blocks_count) {
930         asterror(ast_ctx(self), "function `%s` has no body", self->name);
931         return false;
932     }
933
934     self->curblock = ir_function_create_block(irf, "entry");
935     if (!self->curblock) {
936         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
937         return false;
938     }
939
940     for (i = 0; i < self->blocks_count; ++i) {
941         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
942         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
943             return false;
944     }
945
946     /* TODO: check return types */
947     if (!self->curblock->is_return)
948     {
949         return ir_block_create_return(self->curblock, NULL);
950         /* From now on the parser has to handle this situation */
951 #if 0
952         if (!self->vtype->expression.next ||
953             self->vtype->expression.next->expression.vtype == TYPE_VOID)
954         {
955             return ir_block_create_return(self->curblock, NULL);
956         }
957         else
958         {
959             /* error("missing return"); */
960             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
961             return false;
962         }
963 #endif
964     }
965     return true;
966 }
967
968 /* Note, you will not see ast_block_codegen generate ir_blocks.
969  * To the AST and the IR, blocks are 2 different things.
970  * In the AST it represents a block of code, usually enclosed in
971  * curly braces {...}.
972  * While in the IR it represents a block in terms of control-flow.
973  */
974 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
975 {
976     size_t i;
977
978     /* We don't use this
979      * Note: an ast-representation using the comma-operator
980      * of the form: (a, b, c) = x should not assign to c...
981      */
982     (void)lvalue;
983     if (self->expression.outr) {
984         *out = self->expression.outr;
985         return true;
986     }
987
988     /* output is NULL at first, we'll have each expression
989      * assign to out output, thus, a comma-operator represention
990      * using an ast_block will return the last generated value,
991      * so: (b, c) + a  executed both b and c, and returns c,
992      * which is then added to a.
993      */
994     *out = NULL;
995
996     /* generate locals */
997     for (i = 0; i < self->locals_count; ++i)
998     {
999         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1000             if (opts_debug)
1001                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1002             return false;
1003         }
1004     }
1005
1006     for (i = 0; i < self->exprs_count; ++i)
1007     {
1008         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1009         if (!(*gen)(self->exprs[i], func, false, out))
1010             return false;
1011     }
1012
1013     self->expression.outr = *out;
1014
1015     return true;
1016 }
1017
1018 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1019 {
1020     ast_expression_codegen *cgen;
1021     ir_value *left, *right;
1022
1023     if (lvalue && self->expression.outl) {
1024         *out = self->expression.outl;
1025         return true;
1026     }
1027
1028     if (!lvalue && self->expression.outr) {
1029         *out = self->expression.outr;
1030         return true;
1031     }
1032
1033     cgen = self->dest->expression.codegen;
1034     /* lvalue! */
1035     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1036         return false;
1037     self->expression.outl = left;
1038
1039     cgen = self->source->expression.codegen;
1040     /* rvalue! */
1041     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1042         return false;
1043
1044     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1045         return false;
1046     self->expression.outr = right;
1047
1048     /* Theoretically, an assinment returns its left side as an
1049      * lvalue, if we don't need an lvalue though, we return
1050      * the right side as an rvalue, otherwise we have to
1051      * somehow know whether or not we need to dereference the pointer
1052      * on the left side - that is: OP_LOAD if it was an address.
1053      * Also: in original QC we cannot OP_LOADP *anyway*.
1054      */
1055     *out = (lvalue ? left : right);
1056
1057     return true;
1058 }
1059
1060 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1061 {
1062     ast_expression_codegen *cgen;
1063     ir_value *left, *right;
1064
1065     /* In the context of a binary operation, we can disregard
1066      * the lvalue flag.
1067      */
1068     (void)lvalue;
1069     if (self->expression.outr) {
1070         *out = self->expression.outr;
1071         return true;
1072     }
1073
1074     cgen = self->left->expression.codegen;
1075     /* lvalue! */
1076     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1077         return false;
1078
1079     cgen = self->right->expression.codegen;
1080     /* rvalue! */
1081     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1082         return false;
1083
1084     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1085                                  self->op, left, right);
1086     if (!*out)
1087         return false;
1088     self->expression.outr = *out;
1089
1090     return true;
1091 }
1092
1093 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1094 {
1095     ast_expression_codegen *cgen;
1096     ir_value *leftl, *leftr, *right, *bin;
1097
1098     if (lvalue && self->expression.outl) {
1099         *out = self->expression.outl;
1100         return true;
1101     }
1102
1103     if (!lvalue && self->expression.outr) {
1104         *out = self->expression.outr;
1105         return true;
1106     }
1107
1108     /* for a binstore we need both an lvalue and an rvalue for the left side */
1109     /* rvalue of destination! */
1110     cgen = self->dest->expression.codegen;
1111     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1112         return false;
1113
1114     /* source as rvalue only */
1115     cgen = self->source->expression.codegen;
1116     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1117         return false;
1118
1119     /* now the binary */
1120     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1121                                 self->opbin, leftr, right);
1122     self->expression.outr = bin;
1123
1124     /* now store them */
1125     cgen = self->dest->expression.codegen;
1126     /* lvalue of destination */
1127     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1128         return false;
1129     self->expression.outl = leftl;
1130
1131     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1132         return false;
1133     self->expression.outr = bin;
1134
1135     /* Theoretically, an assinment returns its left side as an
1136      * lvalue, if we don't need an lvalue though, we return
1137      * the right side as an rvalue, otherwise we have to
1138      * somehow know whether or not we need to dereference the pointer
1139      * on the left side - that is: OP_LOAD if it was an address.
1140      * Also: in original QC we cannot OP_LOADP *anyway*.
1141      */
1142     *out = (lvalue ? leftl : bin);
1143
1144     return true;
1145 }
1146
1147 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1148 {
1149     ast_expression_codegen *cgen;
1150     ir_value *operand;
1151
1152     /* In the context of a unary operation, we can disregard
1153      * the lvalue flag.
1154      */
1155     (void)lvalue;
1156     if (self->expression.outr) {
1157         *out = self->expression.outr;
1158         return true;
1159     }
1160
1161     cgen = self->operand->expression.codegen;
1162     /* lvalue! */
1163     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1164         return false;
1165
1166     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1167                                  self->op, operand);
1168     if (!*out)
1169         return false;
1170     self->expression.outr = *out;
1171
1172     return true;
1173 }
1174
1175 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1176 {
1177     ast_expression_codegen *cgen;
1178     ir_value *operand;
1179
1180     /* In the context of a return operation, we can disregard
1181      * the lvalue flag.
1182      */
1183     (void)lvalue;
1184     if (self->expression.outr) {
1185         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1186         return false;
1187     }
1188     self->expression.outr = (ir_value*)1;
1189
1190     if (self->operand) {
1191         cgen = self->operand->expression.codegen;
1192         /* lvalue! */
1193         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1194             return false;
1195
1196         if (!ir_block_create_return(func->curblock, operand))
1197             return false;
1198     } else {
1199         if (!ir_block_create_return(func->curblock, NULL))
1200             return false;
1201     }
1202
1203     return true;
1204 }
1205
1206 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1207 {
1208     ast_expression_codegen *cgen;
1209     ir_value *ent, *field;
1210
1211     /* This function needs to take the 'lvalue' flag into account!
1212      * As lvalue we provide a field-pointer, as rvalue we provide the
1213      * value in a temp.
1214      */
1215
1216     if (lvalue && self->expression.outl) {
1217         *out = self->expression.outl;
1218         return true;
1219     }
1220
1221     if (!lvalue && self->expression.outr) {
1222         *out = self->expression.outr;
1223         return true;
1224     }
1225
1226     cgen = self->entity->expression.codegen;
1227     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1228         return false;
1229
1230     cgen = self->field->expression.codegen;
1231     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1232         return false;
1233
1234     if (lvalue) {
1235         /* address! */
1236         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1237                                             ent, field);
1238     } else {
1239         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1240                                              ent, field, self->expression.vtype);
1241     }
1242     if (!*out) {
1243         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1244                  (lvalue ? "ADDRESS" : "FIELD"),
1245                  type_name[self->expression.vtype]);
1246         return false;
1247     }
1248
1249     if (lvalue)
1250         self->expression.outl = *out;
1251     else
1252         self->expression.outr = *out;
1253
1254     /* Hm that should be it... */
1255     return true;
1256 }
1257
1258 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1259 {
1260     ast_expression_codegen *cgen;
1261     ir_value *vec;
1262
1263     /* in QC this is always an lvalue */
1264     (void)lvalue;
1265     if (self->expression.outl) {
1266         *out = self->expression.outl;
1267         return true;
1268     }
1269
1270     cgen = self->owner->expression.codegen;
1271     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1272         return false;
1273
1274     if (vec->vtype != TYPE_VECTOR &&
1275         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1276     {
1277         return false;
1278     }
1279
1280     *out = ir_value_vector_member(vec, self->field);
1281     self->expression.outl = *out;
1282
1283     return (*out != NULL);
1284 }
1285
1286 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1287 {
1288     ast_expression_codegen *cgen;
1289
1290     ir_value *condval;
1291     ir_value *dummy;
1292
1293     ir_block *cond = func->curblock;
1294     ir_block *ontrue;
1295     ir_block *onfalse;
1296     ir_block *ontrue_endblock;
1297     ir_block *onfalse_endblock;
1298     ir_block *merge;
1299
1300     /* We don't output any value, thus also don't care about r/lvalue */
1301     (void)out;
1302     (void)lvalue;
1303
1304     if (self->expression.outr) {
1305         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1306         return false;
1307     }
1308     self->expression.outr = (ir_value*)1;
1309
1310     /* generate the condition */
1311     func->curblock = cond;
1312     cgen = self->cond->expression.codegen;
1313     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1314         return false;
1315
1316     /* on-true path */
1317
1318     if (self->on_true) {
1319         /* create on-true block */
1320         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1321         if (!ontrue)
1322             return false;
1323
1324         /* enter the block */
1325         func->curblock = ontrue;
1326
1327         /* generate */
1328         cgen = self->on_true->expression.codegen;
1329         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1330             return false;
1331
1332         /* we now need to work from the current endpoint */
1333         ontrue_endblock = func->curblock;
1334     } else
1335         ontrue = NULL;
1336
1337     /* on-false path */
1338     if (self->on_false) {
1339         /* create on-false block */
1340         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1341         if (!onfalse)
1342             return false;
1343
1344         /* enter the block */
1345         func->curblock = onfalse;
1346
1347         /* generate */
1348         cgen = self->on_false->expression.codegen;
1349         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1350             return false;
1351
1352         /* we now need to work from the current endpoint */
1353         onfalse_endblock = func->curblock;
1354     } else
1355         onfalse = NULL;
1356
1357     /* Merge block were they all merge in to */
1358     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1359     if (!merge)
1360         return false;
1361
1362     /* add jumps ot the merge block */
1363     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1364         return false;
1365     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1366         return false;
1367
1368     /* we create the if here, that way all blocks are ordered :)
1369      */
1370     if (!ir_block_create_if(cond, condval,
1371                             (ontrue  ? ontrue  : merge),
1372                             (onfalse ? onfalse : merge)))
1373     {
1374         return false;
1375     }
1376
1377     /* Now enter the merge block */
1378     func->curblock = merge;
1379
1380     return true;
1381 }
1382
1383 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1384 {
1385     ast_expression_codegen *cgen;
1386
1387     ir_value *condval;
1388     ir_value *trueval, *falseval;
1389     ir_instr *phi;
1390
1391     ir_block *cond = func->curblock;
1392     ir_block *ontrue;
1393     ir_block *onfalse;
1394     ir_block *merge;
1395
1396     /* Ternary can never create an lvalue... */
1397     if (lvalue)
1398         return false;
1399
1400     /* In theory it shouldn't be possible to pass through a node twice, but
1401      * in case we add any kind of optimization pass for the AST itself, it
1402      * may still happen, thus we remember a created ir_value and simply return one
1403      * if it already exists.
1404      */
1405     if (self->phi_out) {
1406         *out = self->phi_out;
1407         return true;
1408     }
1409
1410     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1411
1412     /* generate the condition */
1413     func->curblock = cond;
1414     cgen = self->cond->expression.codegen;
1415     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1416         return false;
1417
1418     /* create on-true block */
1419     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1420     if (!ontrue)
1421         return false;
1422     else
1423     {
1424         /* enter the block */
1425         func->curblock = ontrue;
1426
1427         /* generate */
1428         cgen = self->on_true->expression.codegen;
1429         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1430             return false;
1431     }
1432
1433     /* create on-false block */
1434     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1435     if (!onfalse)
1436         return false;
1437     else
1438     {
1439         /* enter the block */
1440         func->curblock = onfalse;
1441
1442         /* generate */
1443         cgen = self->on_false->expression.codegen;
1444         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1445             return false;
1446     }
1447
1448     /* create merge block */
1449     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1450     if (!merge)
1451         return false;
1452     /* jump to merge block */
1453     if (!ir_block_create_jump(ontrue, merge))
1454         return false;
1455     if (!ir_block_create_jump(onfalse, merge))
1456         return false;
1457
1458     /* create if instruction */
1459     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1460         return false;
1461
1462     /* Now enter the merge block */
1463     func->curblock = merge;
1464
1465     /* Here, now, we need a PHI node
1466      * but first some sanity checking...
1467      */
1468     if (trueval->vtype != falseval->vtype) {
1469         /* error("ternary with different types on the two sides"); */
1470         return false;
1471     }
1472
1473     /* create PHI */
1474     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1475     if (!phi ||
1476         !ir_phi_add(phi, ontrue,  trueval) ||
1477         !ir_phi_add(phi, onfalse, falseval))
1478     {
1479         return false;
1480     }
1481
1482     self->phi_out = ir_phi_value(phi);
1483     *out = self->phi_out;
1484
1485     return true;
1486 }
1487
1488 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1489 {
1490     ast_expression_codegen *cgen;
1491
1492     ir_value *dummy      = NULL;
1493     ir_value *precond    = NULL;
1494     ir_value *postcond   = NULL;
1495
1496     /* Since we insert some jumps "late" so we have blocks
1497      * ordered "nicely", we need to keep track of the actual end-blocks
1498      * of expressions to add the jumps to.
1499      */
1500     ir_block *bbody      = NULL, *end_bbody      = NULL;
1501     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1502     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1503     ir_block *bincrement = NULL, *end_bincrement = NULL;
1504     ir_block *bout       = NULL, *bin            = NULL;
1505
1506     /* let's at least move the outgoing block to the end */
1507     size_t    bout_id;
1508
1509     /* 'break' and 'continue' need to be able to find the right blocks */
1510     ir_block *bcontinue     = NULL;
1511     ir_block *bbreak        = NULL;
1512
1513     ir_block *old_bcontinue = NULL;
1514     ir_block *old_bbreak    = NULL;
1515
1516     ir_block *tmpblock      = NULL;
1517
1518     (void)lvalue;
1519     (void)out;
1520
1521     if (self->expression.outr) {
1522         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1523         return false;
1524     }
1525     self->expression.outr = (ir_value*)1;
1526
1527     /* NOTE:
1528      * Should we ever need some kind of block ordering, better make this function
1529      * move blocks around than write a block ordering algorithm later... after all
1530      * the ast and ir should work together, not against each other.
1531      */
1532
1533     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1534      * anyway if for example it contains a ternary.
1535      */
1536     if (self->initexpr)
1537     {
1538         cgen = self->initexpr->expression.codegen;
1539         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1540             return false;
1541     }
1542
1543     /* Store the block from which we enter this chaos */
1544     bin = func->curblock;
1545
1546     /* The pre-loop condition needs its own block since we
1547      * need to be able to jump to the start of that expression.
1548      */
1549     if (self->precond)
1550     {
1551         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1552         if (!bprecond)
1553             return false;
1554
1555         /* the pre-loop-condition the least important place to 'continue' at */
1556         bcontinue = bprecond;
1557
1558         /* enter */
1559         func->curblock = bprecond;
1560
1561         /* generate */
1562         cgen = self->precond->expression.codegen;
1563         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1564             return false;
1565
1566         end_bprecond = func->curblock;
1567     } else {
1568         bprecond = end_bprecond = NULL;
1569     }
1570
1571     /* Now the next blocks won't be ordered nicely, but we need to
1572      * generate them this early for 'break' and 'continue'.
1573      */
1574     if (self->increment) {
1575         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1576         if (!bincrement)
1577             return false;
1578         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1579     } else {
1580         bincrement = end_bincrement = NULL;
1581     }
1582
1583     if (self->postcond) {
1584         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1585         if (!bpostcond)
1586             return false;
1587         bcontinue = bpostcond; /* postcond comes before the increment */
1588     } else {
1589         bpostcond = end_bpostcond = NULL;
1590     }
1591
1592     bout_id = func->ir_func->blocks_count;
1593     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1594     if (!bout)
1595         return false;
1596     bbreak = bout;
1597
1598     /* The loop body... */
1599     if (self->body)
1600     {
1601         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1602         if (!bbody)
1603             return false;
1604
1605         /* enter */
1606         func->curblock = bbody;
1607
1608         old_bbreak          = func->breakblock;
1609         old_bcontinue       = func->continueblock;
1610         func->breakblock    = bbreak;
1611         func->continueblock = bcontinue;
1612
1613         /* generate */
1614         cgen = self->body->expression.codegen;
1615         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1616             return false;
1617
1618         end_bbody = func->curblock;
1619         func->breakblock    = old_bbreak;
1620         func->continueblock = old_bcontinue;
1621     }
1622
1623     /* post-loop-condition */
1624     if (self->postcond)
1625     {
1626         /* enter */
1627         func->curblock = bpostcond;
1628
1629         /* generate */
1630         cgen = self->postcond->expression.codegen;
1631         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1632             return false;
1633
1634         end_bpostcond = func->curblock;
1635     }
1636
1637     /* The incrementor */
1638     if (self->increment)
1639     {
1640         /* enter */
1641         func->curblock = bincrement;
1642
1643         /* generate */
1644         cgen = self->increment->expression.codegen;
1645         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1646             return false;
1647
1648         end_bincrement = func->curblock;
1649     }
1650
1651     /* In any case now, we continue from the outgoing block */
1652     func->curblock = bout;
1653
1654     /* Now all blocks are in place */
1655     /* From 'bin' we jump to whatever comes first */
1656     if      (bprecond)   tmpblock = bprecond;
1657     else if (bbody)      tmpblock = bbody;
1658     else if (bpostcond)  tmpblock = bpostcond;
1659     else                 tmpblock = bout;
1660     if (!ir_block_create_jump(bin, tmpblock))
1661         return false;
1662
1663     /* From precond */
1664     if (bprecond)
1665     {
1666         ir_block *ontrue, *onfalse;
1667         if      (bbody)      ontrue = bbody;
1668         else if (bincrement) ontrue = bincrement;
1669         else if (bpostcond)  ontrue = bpostcond;
1670         else                 ontrue = bprecond;
1671         onfalse = bout;
1672         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1673             return false;
1674     }
1675
1676     /* from body */
1677     if (bbody)
1678     {
1679         if      (bincrement) tmpblock = bincrement;
1680         else if (bpostcond)  tmpblock = bpostcond;
1681         else if (bprecond)   tmpblock = bprecond;
1682         else                 tmpblock = bout;
1683         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1684             return false;
1685     }
1686
1687     /* from increment */
1688     if (bincrement)
1689     {
1690         if      (bpostcond)  tmpblock = bpostcond;
1691         else if (bprecond)   tmpblock = bprecond;
1692         else if (bbody)      tmpblock = bbody;
1693         else                 tmpblock = bout;
1694         if (!ir_block_create_jump(end_bincrement, tmpblock))
1695             return false;
1696     }
1697
1698     /* from postcond */
1699     if (bpostcond)
1700     {
1701         ir_block *ontrue, *onfalse;
1702         if      (bprecond)   ontrue = bprecond;
1703         else if (bbody)      ontrue = bbody;
1704         else if (bincrement) ontrue = bincrement;
1705         else                 ontrue = bpostcond;
1706         onfalse = bout;
1707         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1708             return false;
1709     }
1710
1711     /* Move 'bout' to the end */
1712     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1713         !ir_function_blocks_add(func->ir_func, bout))
1714     {
1715         ir_block_delete(bout);
1716         return false;
1717     }
1718
1719     return true;
1720 }
1721
1722 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1723 {
1724     ast_expression_codegen *cgen;
1725     ir_value_vector         params;
1726     ir_instr               *callinstr;
1727     size_t i;
1728
1729     ir_value *funval = NULL;
1730
1731     /* return values are never lvalues */
1732     (void)lvalue;
1733
1734     if (self->expression.outr) {
1735         *out = self->expression.outr;
1736         return true;
1737     }
1738
1739     cgen = self->func->expression.codegen;
1740     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1741         return false;
1742     if (!funval)
1743         return false;
1744
1745     MEM_VECTOR_INIT(&params, v);
1746
1747     /* parameters */
1748     for (i = 0; i < self->params_count; ++i)
1749     {
1750         ir_value *param;
1751         ast_expression *expr = self->params[i];
1752
1753         cgen = expr->expression.codegen;
1754         if (!(*cgen)(expr, func, false, &param))
1755             goto error;
1756         if (!param)
1757             goto error;
1758         if (!ir_value_vector_v_add(&params, param))
1759             goto error;
1760     }
1761
1762     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1763     if (!callinstr)
1764         goto error;
1765
1766     for (i = 0; i < params.v_count; ++i) {
1767         if (!ir_call_param(callinstr, params.v[i]))
1768             goto error;
1769     }
1770
1771     *out = ir_call_value(callinstr);
1772     self->expression.outr = *out;
1773
1774     MEM_VECTOR_CLEAR(&params, v);
1775     return true;
1776 error:
1777     MEM_VECTOR_CLEAR(&params, v);
1778     return false;
1779 }