]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Generating function-local arrays
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         mem_d(self);
492         return NULL;
493     }
494
495     outtype = field->expression.next;
496     if (!outtype) {
497         mem_d(self);
498         /* Error: field has no type... */
499         return NULL;
500     }
501
502     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
503
504     self->entity = entity;
505     self->field  = field;
506
507     if (!ast_type_adopt(self, outtype)) {
508         ast_entfield_delete(self);
509         return NULL;
510     }
511
512     return self;
513 }
514
515 void ast_entfield_delete(ast_entfield *self)
516 {
517     ast_unref(self->entity);
518     ast_unref(self->field);
519     ast_expression_delete((ast_expression*)self);
520     mem_d(self);
521 }
522
523 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
524 {
525     ast_instantiate(ast_member, ctx, ast_member_delete);
526     if (field >= 3) {
527         mem_d(self);
528         return NULL;
529     }
530
531     if (owner->expression.vtype != TYPE_VECTOR &&
532         owner->expression.vtype != TYPE_FIELD) {
533         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
534         mem_d(self);
535         return NULL;
536     }
537
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
539     self->expression.node.keep = true; /* keep */
540
541     if (owner->expression.vtype == TYPE_VECTOR) {
542         self->expression.vtype = TYPE_FLOAT;
543         self->expression.next  = NULL;
544     } else {
545         self->expression.vtype = TYPE_FIELD;
546         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
547     }
548
549     self->owner = owner;
550     self->field = field;
551
552     return self;
553 }
554
555 void ast_member_delete(ast_member *self)
556 {
557     /* The owner is always an ast_value, which has .keep=true,
558      * also: ast_members are usually deleted after the owner, thus
559      * this will cause invalid access
560     ast_unref(self->owner);
561      * once we allow (expression).x to access a vector-member, we need
562      * to change this: preferably by creating an alternate ast node for this
563      * purpose that is not garbage-collected.
564     */
565     ast_expression_delete((ast_expression*)self);
566     mem_d(self);
567 }
568
569 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
570 {
571     const ast_expression *outtype;
572     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
573
574     outtype = array->expression.next;
575     if (!outtype) {
576         mem_d(self);
577         /* Error: field has no type... */
578         return NULL;
579     }
580
581     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
582
583     self->array = array;
584     self->index = index;
585
586     if (!ast_type_adopt(self, outtype)) {
587         ast_array_index_delete(self);
588         return NULL;
589     }
590
591     return self;
592 }
593
594 void ast_array_index_delete(ast_array_index *self)
595 {
596     ast_unref(self->array);
597     ast_unref(self->index);
598     ast_expression_delete((ast_expression*)self);
599     mem_d(self);
600 }
601
602 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
603 {
604     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
605     if (!ontrue && !onfalse) {
606         /* because it is invalid */
607         mem_d(self);
608         return NULL;
609     }
610     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
611
612     self->cond     = cond;
613     self->on_true  = ontrue;
614     self->on_false = onfalse;
615
616     return self;
617 }
618
619 void ast_ifthen_delete(ast_ifthen *self)
620 {
621     ast_unref(self->cond);
622     if (self->on_true)
623         ast_unref(self->on_true);
624     if (self->on_false)
625         ast_unref(self->on_false);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
631 {
632     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
633     /* This time NEITHER must be NULL */
634     if (!ontrue || !onfalse) {
635         mem_d(self);
636         return NULL;
637     }
638     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
639
640     self->cond     = cond;
641     self->on_true  = ontrue;
642     self->on_false = onfalse;
643     self->phi_out  = NULL;
644
645     return self;
646 }
647
648 void ast_ternary_delete(ast_ternary *self)
649 {
650     ast_unref(self->cond);
651     ast_unref(self->on_true);
652     ast_unref(self->on_false);
653     ast_expression_delete((ast_expression*)self);
654     mem_d(self);
655 }
656
657 ast_loop* ast_loop_new(lex_ctx ctx,
658                        ast_expression *initexpr,
659                        ast_expression *precond,
660                        ast_expression *postcond,
661                        ast_expression *increment,
662                        ast_expression *body)
663 {
664     ast_instantiate(ast_loop, ctx, ast_loop_delete);
665     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
666
667     self->initexpr  = initexpr;
668     self->precond   = precond;
669     self->postcond  = postcond;
670     self->increment = increment;
671     self->body      = body;
672
673     return self;
674 }
675
676 void ast_loop_delete(ast_loop *self)
677 {
678     if (self->initexpr)
679         ast_unref(self->initexpr);
680     if (self->precond)
681         ast_unref(self->precond);
682     if (self->postcond)
683         ast_unref(self->postcond);
684     if (self->increment)
685         ast_unref(self->increment);
686     if (self->body)
687         ast_unref(self->body);
688     ast_expression_delete((ast_expression*)self);
689     mem_d(self);
690 }
691
692 ast_call* ast_call_new(lex_ctx ctx,
693                        ast_expression *funcexpr)
694 {
695     ast_instantiate(ast_call, ctx, ast_call_delete);
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
697
698     MEM_VECTOR_INIT(self, params);
699
700     self->func = funcexpr;
701
702     self->expression.vtype = funcexpr->expression.next->expression.vtype;
703     if (funcexpr->expression.next->expression.next)
704         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
705
706     return self;
707 }
708 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
709
710 void ast_call_delete(ast_call *self)
711 {
712     size_t i;
713     for (i = 0; i < self->params_count; ++i)
714         ast_unref(self->params[i]);
715     MEM_VECTOR_CLEAR(self, params);
716
717     if (self->func)
718         ast_unref(self->func);
719
720     ast_expression_delete((ast_expression*)self);
721     mem_d(self);
722 }
723
724 bool ast_call_check_types(ast_call *self)
725 {
726     size_t i;
727     bool   retval = true;
728     const  ast_expression *func = self->func;
729     size_t count = self->params_count;
730     if (count > func->expression.params_count)
731         count = func->expression.params_count;
732
733     for (i = 0; i < count; ++i) {
734         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
735             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
736                      (unsigned int)(i+1));
737             /* we don't immediately return */
738             retval = false;
739         }
740     }
741     return retval;
742 }
743
744 ast_store* ast_store_new(lex_ctx ctx, int op,
745                          ast_expression *dest, ast_expression *source)
746 {
747     ast_instantiate(ast_store, ctx, ast_store_delete);
748     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
749
750     self->op = op;
751     self->dest = dest;
752     self->source = source;
753
754     self->expression.vtype = dest->expression.vtype;
755     if (dest->expression.next) {
756         self->expression.next = ast_type_copy(ctx, dest);
757         if (!self->expression.next) {
758             ast_delete(self);
759             return NULL;
760         }
761     }
762     else
763         self->expression.next = NULL;
764
765     return self;
766 }
767
768 void ast_store_delete(ast_store *self)
769 {
770     ast_unref(self->dest);
771     ast_unref(self->source);
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 ast_block* ast_block_new(lex_ctx ctx)
777 {
778     ast_instantiate(ast_block, ctx, ast_block_delete);
779     ast_expression_init((ast_expression*)self,
780                         (ast_expression_codegen*)&ast_block_codegen);
781
782     MEM_VECTOR_INIT(self, locals);
783     MEM_VECTOR_INIT(self, exprs);
784     MEM_VECTOR_INIT(self, collect);
785
786     return self;
787 }
788 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
789 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
791
792 bool ast_block_collect(ast_block *self, ast_expression *expr)
793 {
794     if (!ast_block_collect_add(self, expr))
795         return false;
796     expr->expression.node.keep = true;
797     return true;
798 }
799
800 void ast_block_delete(ast_block *self)
801 {
802     size_t i;
803     for (i = 0; i < self->exprs_count; ++i)
804         ast_unref(self->exprs[i]);
805     MEM_VECTOR_CLEAR(self, exprs);
806     for (i = 0; i < self->locals_count; ++i)
807         ast_delete(self->locals[i]);
808     MEM_VECTOR_CLEAR(self, locals);
809     for (i = 0; i < self->collect_count; ++i)
810         ast_delete(self->collect[i]);
811     MEM_VECTOR_CLEAR(self, collect);
812     ast_expression_delete((ast_expression*)self);
813     mem_d(self);
814 }
815
816 bool ast_block_set_type(ast_block *self, ast_expression *from)
817 {
818     if (self->expression.next)
819         ast_delete(self->expression.next);
820     self->expression.vtype = from->expression.vtype;
821     if (from->expression.next) {
822         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
823         if (!self->expression.next)
824             return false;
825     }
826     else
827         self->expression.next = NULL;
828     return true;
829 }
830
831 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
832 {
833     ast_instantiate(ast_function, ctx, ast_function_delete);
834
835     if (!vtype ||
836         vtype->isconst ||
837         vtype->expression.vtype != TYPE_FUNCTION)
838     {
839         mem_d(self);
840         return NULL;
841     }
842
843     self->vtype = vtype;
844     self->name = name ? util_strdup(name) : NULL;
845     MEM_VECTOR_INIT(self, blocks);
846
847     self->labelcount = 0;
848     self->builtin = 0;
849
850     self->ir_func = NULL;
851     self->curblock = NULL;
852
853     self->breakblock    = NULL;
854     self->continueblock = NULL;
855
856     vtype->isconst = true;
857     vtype->constval.vfunc = self;
858
859     return self;
860 }
861
862 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
863
864 void ast_function_delete(ast_function *self)
865 {
866     size_t i;
867     if (self->name)
868         mem_d((void*)self->name);
869     if (self->vtype) {
870         /* ast_value_delete(self->vtype); */
871         self->vtype->isconst = false;
872         self->vtype->constval.vfunc = NULL;
873         /* We use unref - if it was stored in a global table it is supposed
874          * to be deleted from *there*
875          */
876         ast_unref(self->vtype);
877     }
878     for (i = 0; i < self->blocks_count; ++i)
879         ast_delete(self->blocks[i]);
880     MEM_VECTOR_CLEAR(self, blocks);
881     mem_d(self);
882 }
883
884 const char* ast_function_label(ast_function *self, const char *prefix)
885 {
886     size_t id;
887     size_t len;
888     char  *from;
889
890     if (!opts_dump)
891         return NULL;
892
893     id  = (self->labelcount++);
894     len = strlen(prefix);
895
896     from = self->labelbuf + sizeof(self->labelbuf)-1;
897     *from-- = 0;
898     do {
899         unsigned int digit = id % 10;
900         *from = digit + '0';
901         id /= 10;
902     } while (id);
903     memcpy(from - len, prefix, len);
904     return from - len;
905 }
906
907 /*********************************************************************/
908 /* AST codegen part
909  * by convention you must never pass NULL to the 'ir_value **out'
910  * parameter. If you really don't care about the output, pass a dummy.
911  * But I can't imagine a pituation where the output is truly unnecessary.
912  */
913
914 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     /* NOTE: This is the codegen for a variable used in an expression.
917      * It is not the codegen to generate the value. For this purpose,
918      * ast_local_codegen and ast_global_codegen are to be used before this
919      * is executed. ast_function_codegen should take care of its locals,
920      * and the ast-user should take care of ast_global_codegen to be used
921      * on all the globals.
922      */
923     if (!self->ir_v) {
924         char typename[1024];
925         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
926         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
927         return false;
928     }
929     *out = self->ir_v;
930     return true;
931 }
932
933 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
934 {
935     ir_value *v = NULL;
936
937     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
938     {
939         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
940         if (!func)
941             return false;
942         func->context = ast_ctx(self);
943         func->value->context = ast_ctx(self);
944
945         self->constval.vfunc->ir_func = func;
946         self->ir_v = func->value;
947         /* The function is filled later on ast_function_codegen... */
948         return true;
949     }
950
951     if (isfield && self->expression.vtype == TYPE_FIELD) {
952         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
953         if (!v)
954             return false;
955         v->context = ast_ctx(self);
956         if (self->isconst) {
957             asterror(ast_ctx(self), "TODO: constant field pointers with value");
958             goto error;
959         }
960         self->ir_v = v;
961         return true;
962     }
963
964     if (self->expression.vtype == TYPE_ARRAY) {
965         size_t ai;
966         char   *name;
967         size_t  namelen;
968
969         ast_expression_common *elemtype = &self->expression.next->expression;
970         int vtype = elemtype->vtype;
971
972         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
973         if (!self->expression.count || self->expression.count > opts_max_array_size) {
974             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
975         }
976
977         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
978         if (!self->ir_values) {
979             asterror(ast_ctx(self), "failed to allocate array values");
980             return false;
981         }
982
983         v = ir_builder_create_global(ir, self->name, vtype);
984         if (!v) {
985             asterror(ast_ctx(self), "ir_builder_create_global failed");
986             return false;
987         }
988         if (vtype == TYPE_FIELD)
989             v->fieldtype = elemtype->next->expression.vtype;
990         v->context = ast_ctx(self);
991
992         namelen = strlen(self->name);
993         name    = (char*)mem_a(namelen + 16);
994         strcpy(name, self->name);
995
996         self->ir_values[0] = v;
997         for (ai = 1; ai < self->expression.count; ++ai) {
998             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
999             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1000             if (!self->ir_values[ai]) {
1001                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1002                 return false;
1003             }
1004             if (vtype == TYPE_FIELD)
1005                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1006             self->ir_values[ai]->context = ast_ctx(self);
1007         }
1008     }
1009     else
1010     {
1011         /* Arrays don't do this since there's no "array" value which spans across the
1012          * whole thing.
1013          */
1014         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1015         if (!v) {
1016             asterror(ast_ctx(self), "ir_builder_create_global failed");
1017             return false;
1018         }
1019         if (self->expression.vtype == TYPE_FIELD)
1020             v->fieldtype = self->expression.next->expression.vtype;
1021         v->context = ast_ctx(self);
1022     }
1023
1024     if (self->isconst) {
1025         switch (self->expression.vtype)
1026         {
1027             case TYPE_FLOAT:
1028                 if (!ir_value_set_float(v, self->constval.vfloat))
1029                     goto error;
1030                 break;
1031             case TYPE_VECTOR:
1032                 if (!ir_value_set_vector(v, self->constval.vvec))
1033                     goto error;
1034                 break;
1035             case TYPE_STRING:
1036                 if (!ir_value_set_string(v, self->constval.vstring))
1037                     goto error;
1038                 break;
1039             case TYPE_ARRAY:
1040                 asterror(ast_ctx(self), "TODO: global constant array");
1041                 break;
1042             case TYPE_FUNCTION:
1043                 asterror(ast_ctx(self), "global of type function not properly generated");
1044                 goto error;
1045                 /* Cannot generate an IR value for a function,
1046                  * need a pointer pointing to a function rather.
1047                  */
1048             default:
1049                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1050                 break;
1051         }
1052     }
1053
1054     /* link us to the ir_value */
1055     self->ir_v = v;
1056     return true;
1057
1058 error: /* clean up */
1059     ir_value_delete(v);
1060     return false;
1061 }
1062
1063 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1064 {
1065     ir_value *v = NULL;
1066     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1067     {
1068         /* Do we allow local functions? I think not...
1069          * this is NOT a function pointer atm.
1070          */
1071         return false;
1072     }
1073
1074     if (self->expression.vtype == TYPE_ARRAY) {
1075         size_t ai;
1076         char   *name;
1077         size_t  namelen;
1078
1079         ast_expression_common *elemtype = &self->expression.next->expression;
1080         int vtype = elemtype->vtype;
1081
1082         if (param) {
1083             asterror(ast_ctx(self), "array-parameters are not supported");
1084             return false;
1085         }
1086
1087         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1088         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1089             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1090         }
1091
1092         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1093         if (!self->ir_values) {
1094             asterror(ast_ctx(self), "failed to allocate array values");
1095             return false;
1096         }
1097
1098         v = ir_function_create_local(func, self->name, vtype, param);
1099         if (!v) {
1100             asterror(ast_ctx(self), "ir_function_create_local failed");
1101             return false;
1102         }
1103         if (vtype == TYPE_FIELD)
1104             v->fieldtype = elemtype->next->expression.vtype;
1105         v->context = ast_ctx(self);
1106
1107         namelen = strlen(self->name);
1108         name    = (char*)mem_a(namelen + 16);
1109         strcpy(name, self->name);
1110
1111         self->ir_values[0] = v;
1112         for (ai = 1; ai < self->expression.count; ++ai) {
1113             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1114             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1115             if (!self->ir_values[ai]) {
1116                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1117                 return false;
1118             }
1119             if (vtype == TYPE_FIELD)
1120                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1121             self->ir_values[ai]->context = ast_ctx(self);
1122         }
1123     }
1124     else
1125     {
1126         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1127         if (!v)
1128             return false;
1129         if (self->expression.vtype == TYPE_FIELD)
1130             v->fieldtype = self->expression.next->expression.vtype;
1131         v->context = ast_ctx(self);
1132     }
1133
1134     /* A constant local... hmmm...
1135      * I suppose the IR will have to deal with this
1136      */
1137     if (self->isconst) {
1138         switch (self->expression.vtype)
1139         {
1140             case TYPE_FLOAT:
1141                 if (!ir_value_set_float(v, self->constval.vfloat))
1142                     goto error;
1143                 break;
1144             case TYPE_VECTOR:
1145                 if (!ir_value_set_vector(v, self->constval.vvec))
1146                     goto error;
1147                 break;
1148             case TYPE_STRING:
1149                 if (!ir_value_set_string(v, self->constval.vstring))
1150                     goto error;
1151                 break;
1152             default:
1153                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1154                 break;
1155         }
1156     }
1157
1158     /* link us to the ir_value */
1159     self->ir_v = v;
1160
1161     if (self->setter) {
1162         if (!ast_global_codegen(self->setter, func->owner, false) ||
1163             !ast_function_codegen(self->setter->constval.vfunc, func->owner))
1164             return false;
1165     }
1166     if (self->getter) {
1167         if (!ast_global_codegen(self->getter, func->owner, false) ||
1168             !ast_function_codegen(self->getter->constval.vfunc, func->owner))
1169             return false;
1170     }
1171     return true;
1172
1173 error: /* clean up */
1174     ir_value_delete(v);
1175     return false;
1176 }
1177
1178 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1179 {
1180     ir_function *irf;
1181     ir_value    *dummy;
1182     ast_expression_common *ec;
1183     size_t    i;
1184
1185     irf = self->ir_func;
1186     if (!irf) {
1187         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1188         return false;
1189     }
1190
1191     /* fill the parameter list */
1192     ec = &self->vtype->expression;
1193     for (i = 0; i < ec->params_count; ++i)
1194     {
1195         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1196             return false;
1197         if (!self->builtin) {
1198             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1199                 return false;
1200         }
1201     }
1202
1203     if (self->builtin) {
1204         irf->builtin = self->builtin;
1205         return true;
1206     }
1207
1208     if (!self->blocks_count) {
1209         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1210         return false;
1211     }
1212
1213     self->curblock = ir_function_create_block(irf, "entry");
1214     if (!self->curblock) {
1215         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1216         return false;
1217     }
1218
1219     for (i = 0; i < self->blocks_count; ++i) {
1220         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1221         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1222             return false;
1223     }
1224
1225     /* TODO: check return types */
1226     if (!self->curblock->is_return)
1227     {
1228         return ir_block_create_return(self->curblock, NULL);
1229         /* From now on the parser has to handle this situation */
1230 #if 0
1231         if (!self->vtype->expression.next ||
1232             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1233         {
1234             return ir_block_create_return(self->curblock, NULL);
1235         }
1236         else
1237         {
1238             /* error("missing return"); */
1239             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1240             return false;
1241         }
1242 #endif
1243     }
1244     return true;
1245 }
1246
1247 /* Note, you will not see ast_block_codegen generate ir_blocks.
1248  * To the AST and the IR, blocks are 2 different things.
1249  * In the AST it represents a block of code, usually enclosed in
1250  * curly braces {...}.
1251  * While in the IR it represents a block in terms of control-flow.
1252  */
1253 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1254 {
1255     size_t i;
1256
1257     /* We don't use this
1258      * Note: an ast-representation using the comma-operator
1259      * of the form: (a, b, c) = x should not assign to c...
1260      */
1261     if (lvalue) {
1262         asterror(ast_ctx(self), "not an l-value (code-block)");
1263         return false;
1264     }
1265
1266     if (self->expression.outr) {
1267         *out = self->expression.outr;
1268         return true;
1269     }
1270
1271     /* output is NULL at first, we'll have each expression
1272      * assign to out output, thus, a comma-operator represention
1273      * using an ast_block will return the last generated value,
1274      * so: (b, c) + a  executed both b and c, and returns c,
1275      * which is then added to a.
1276      */
1277     *out = NULL;
1278
1279     /* generate locals */
1280     for (i = 0; i < self->locals_count; ++i)
1281     {
1282         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1283             if (opts_debug)
1284                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1285             return false;
1286         }
1287     }
1288
1289     for (i = 0; i < self->exprs_count; ++i)
1290     {
1291         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1292         if (!(*gen)(self->exprs[i], func, false, out))
1293             return false;
1294     }
1295
1296     self->expression.outr = *out;
1297
1298     return true;
1299 }
1300
1301 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1302 {
1303     ast_expression_codegen *cgen;
1304     ir_value *left, *right;
1305
1306     ast_value       *arr;
1307     ast_value       *idx;
1308     ast_array_index *ai = NULL;
1309
1310     if (lvalue && self->expression.outl) {
1311         *out = self->expression.outl;
1312         return true;
1313     }
1314
1315     if (!lvalue && self->expression.outr) {
1316         *out = self->expression.outr;
1317         return true;
1318     }
1319
1320     if (ast_istype(self->dest, ast_array_index))
1321     {
1322
1323         ai = (ast_array_index*)self->dest;
1324         idx = (ast_value*)ai->index;
1325
1326         if (ast_istype(ai->index, ast_value) && idx->isconst)
1327             ai = NULL;
1328     }
1329
1330     if (ai) {
1331         /* we need to call the setter */
1332         ir_value  *iridx, *funval;
1333         ir_instr  *call;
1334
1335         if (lvalue) {
1336             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1337             return false;
1338         }
1339
1340         arr = (ast_value*)ai->array;
1341         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1342             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1343             return false;
1344         }
1345
1346         cgen = idx->expression.codegen;
1347         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1348             return false;
1349
1350         cgen = arr->setter->expression.codegen;
1351         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1352             return false;
1353
1354         cgen = self->source->expression.codegen;
1355         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1356             return false;
1357
1358         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1359         if (!call)
1360             return false;
1361         if (!ir_call_param(call, iridx))
1362             return false;
1363         if (!ir_call_param(call, right))
1364             return false;
1365         self->expression.outr = right;
1366     }
1367     else
1368     {
1369         /* regular code */
1370
1371         cgen = self->dest->expression.codegen;
1372         /* lvalue! */
1373         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1374             return false;
1375         self->expression.outl = left;
1376
1377         cgen = self->source->expression.codegen;
1378         /* rvalue! */
1379         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1380             return false;
1381
1382         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1383             return false;
1384         self->expression.outr = right;
1385     }
1386
1387     /* Theoretically, an assinment returns its left side as an
1388      * lvalue, if we don't need an lvalue though, we return
1389      * the right side as an rvalue, otherwise we have to
1390      * somehow know whether or not we need to dereference the pointer
1391      * on the left side - that is: OP_LOAD if it was an address.
1392      * Also: in original QC we cannot OP_LOADP *anyway*.
1393      */
1394     *out = (lvalue ? left : right);
1395
1396     return true;
1397 }
1398
1399 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1400 {
1401     ast_expression_codegen *cgen;
1402     ir_value *left, *right;
1403
1404     /* A binary operation cannot yield an l-value */
1405     if (lvalue) {
1406         asterror(ast_ctx(self), "not an l-value (binop)");
1407         return false;
1408     }
1409
1410     if (self->expression.outr) {
1411         *out = self->expression.outr;
1412         return true;
1413     }
1414
1415     cgen = self->left->expression.codegen;
1416     /* lvalue! */
1417     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1418         return false;
1419
1420     cgen = self->right->expression.codegen;
1421     /* rvalue! */
1422     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1423         return false;
1424
1425     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1426                                  self->op, left, right);
1427     if (!*out)
1428         return false;
1429     self->expression.outr = *out;
1430
1431     return true;
1432 }
1433
1434 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1435 {
1436     ast_expression_codegen *cgen;
1437     ir_value *leftl, *leftr, *right, *bin;
1438
1439     if (lvalue && self->expression.outl) {
1440         *out = self->expression.outl;
1441         return true;
1442     }
1443
1444     if (!lvalue && self->expression.outr) {
1445         *out = self->expression.outr;
1446         return true;
1447     }
1448
1449     /* for a binstore we need both an lvalue and an rvalue for the left side */
1450     /* rvalue of destination! */
1451     cgen = self->dest->expression.codegen;
1452     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1453         return false;
1454
1455     /* source as rvalue only */
1456     cgen = self->source->expression.codegen;
1457     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1458         return false;
1459
1460     /* now the binary */
1461     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1462                                 self->opbin, leftr, right);
1463     self->expression.outr = bin;
1464
1465     /* now store them */
1466     cgen = self->dest->expression.codegen;
1467     /* lvalue of destination */
1468     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1469         return false;
1470     self->expression.outl = leftl;
1471
1472     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1473         return false;
1474     self->expression.outr = bin;
1475
1476     /* Theoretically, an assinment returns its left side as an
1477      * lvalue, if we don't need an lvalue though, we return
1478      * the right side as an rvalue, otherwise we have to
1479      * somehow know whether or not we need to dereference the pointer
1480      * on the left side - that is: OP_LOAD if it was an address.
1481      * Also: in original QC we cannot OP_LOADP *anyway*.
1482      */
1483     *out = (lvalue ? leftl : bin);
1484
1485     return true;
1486 }
1487
1488 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1489 {
1490     ast_expression_codegen *cgen;
1491     ir_value *operand;
1492
1493     /* An unary operation cannot yield an l-value */
1494     if (lvalue) {
1495         asterror(ast_ctx(self), "not an l-value (binop)");
1496         return false;
1497     }
1498
1499     if (self->expression.outr) {
1500         *out = self->expression.outr;
1501         return true;
1502     }
1503
1504     cgen = self->operand->expression.codegen;
1505     /* lvalue! */
1506     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1507         return false;
1508
1509     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1510                                  self->op, operand);
1511     if (!*out)
1512         return false;
1513     self->expression.outr = *out;
1514
1515     return true;
1516 }
1517
1518 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1519 {
1520     ast_expression_codegen *cgen;
1521     ir_value *operand;
1522
1523     /* In the context of a return operation, we don't actually return
1524      * anything...
1525      */
1526     if (lvalue) {
1527         asterror(ast_ctx(self), "return-expression is not an l-value");
1528         return false;
1529     }
1530
1531     if (self->expression.outr) {
1532         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1533         return false;
1534     }
1535     self->expression.outr = (ir_value*)1;
1536
1537     if (self->operand) {
1538         cgen = self->operand->expression.codegen;
1539         /* lvalue! */
1540         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1541             return false;
1542
1543         if (!ir_block_create_return(func->curblock, operand))
1544             return false;
1545     } else {
1546         if (!ir_block_create_return(func->curblock, NULL))
1547             return false;
1548     }
1549
1550     return true;
1551 }
1552
1553 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1554 {
1555     ast_expression_codegen *cgen;
1556     ir_value *ent, *field;
1557
1558     /* This function needs to take the 'lvalue' flag into account!
1559      * As lvalue we provide a field-pointer, as rvalue we provide the
1560      * value in a temp.
1561      */
1562
1563     if (lvalue && self->expression.outl) {
1564         *out = self->expression.outl;
1565         return true;
1566     }
1567
1568     if (!lvalue && self->expression.outr) {
1569         *out = self->expression.outr;
1570         return true;
1571     }
1572
1573     cgen = self->entity->expression.codegen;
1574     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1575         return false;
1576
1577     cgen = self->field->expression.codegen;
1578     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1579         return false;
1580
1581     if (lvalue) {
1582         /* address! */
1583         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1584                                             ent, field);
1585     } else {
1586         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1587                                              ent, field, self->expression.vtype);
1588     }
1589     if (!*out) {
1590         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1591                  (lvalue ? "ADDRESS" : "FIELD"),
1592                  type_name[self->expression.vtype]);
1593         return false;
1594     }
1595
1596     if (lvalue)
1597         self->expression.outl = *out;
1598     else
1599         self->expression.outr = *out;
1600
1601     /* Hm that should be it... */
1602     return true;
1603 }
1604
1605 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1606 {
1607     ast_expression_codegen *cgen;
1608     ir_value *vec;
1609
1610     /* in QC this is always an lvalue */
1611     (void)lvalue;
1612     if (self->expression.outl) {
1613         *out = self->expression.outl;
1614         return true;
1615     }
1616
1617     cgen = self->owner->expression.codegen;
1618     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1619         return false;
1620
1621     if (vec->vtype != TYPE_VECTOR &&
1622         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1623     {
1624         return false;
1625     }
1626
1627     *out = ir_value_vector_member(vec, self->field);
1628     self->expression.outl = *out;
1629
1630     return (*out != NULL);
1631 }
1632
1633 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1634 {
1635     ast_value *arr;
1636     ast_value *idx;
1637
1638     if (!lvalue && self->expression.outr) {
1639         *out = self->expression.outr;
1640     }
1641     if (lvalue && self->expression.outl) {
1642         *out = self->expression.outl;
1643     }
1644
1645     if (!ast_istype(self->array, ast_value)) {
1646         asterror(ast_ctx(self), "array indexing this way is not supported");
1647         /* note this would actually be pointer indexing because the left side is
1648          * not an actual array but (hopefully) an indexable expression.
1649          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1650          * support this path will be filled.
1651          */
1652         return false;
1653     }
1654
1655     arr = (ast_value*)self->array;
1656     idx = (ast_value*)self->index;
1657
1658     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1659         /* Time to use accessor functions */
1660         ast_expression_codegen *cgen;
1661         ir_value               *iridx, *funval;
1662         ir_instr               *call;
1663
1664         if (lvalue) {
1665             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1666             return false;
1667         }
1668
1669         if (!arr->getter) {
1670             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1671             return false;
1672         }
1673
1674         cgen = self->index->expression.codegen;
1675         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1676             return false;
1677
1678         cgen = arr->getter->expression.codegen;
1679         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1680             return false;
1681
1682         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1683         if (!call)
1684             return false;
1685         if (!ir_call_param(call, iridx))
1686             return false;
1687
1688         *out = ir_call_value(call);
1689         self->expression.outr = *out;
1690         return true;
1691     }
1692
1693     if (idx->expression.vtype == TYPE_FLOAT)
1694         *out = arr->ir_values[(int)idx->constval.vfloat];
1695     else if (idx->expression.vtype == TYPE_INTEGER)
1696         *out = arr->ir_values[idx->constval.vint];
1697     else {
1698         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1699         return false;
1700     }
1701     return true;
1702 }
1703
1704 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1705 {
1706     ast_expression_codegen *cgen;
1707
1708     ir_value *condval;
1709     ir_value *dummy;
1710
1711     ir_block *cond = func->curblock;
1712     ir_block *ontrue;
1713     ir_block *onfalse;
1714     ir_block *ontrue_endblock = NULL;
1715     ir_block *onfalse_endblock = NULL;
1716     ir_block *merge;
1717
1718     /* We don't output any value, thus also don't care about r/lvalue */
1719     (void)out;
1720     (void)lvalue;
1721
1722     if (self->expression.outr) {
1723         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1724         return false;
1725     }
1726     self->expression.outr = (ir_value*)1;
1727
1728     /* generate the condition */
1729     func->curblock = cond;
1730     cgen = self->cond->expression.codegen;
1731     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1732         return false;
1733
1734     /* on-true path */
1735
1736     if (self->on_true) {
1737         /* create on-true block */
1738         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1739         if (!ontrue)
1740             return false;
1741
1742         /* enter the block */
1743         func->curblock = ontrue;
1744
1745         /* generate */
1746         cgen = self->on_true->expression.codegen;
1747         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1748             return false;
1749
1750         /* we now need to work from the current endpoint */
1751         ontrue_endblock = func->curblock;
1752     } else
1753         ontrue = NULL;
1754
1755     /* on-false path */
1756     if (self->on_false) {
1757         /* create on-false block */
1758         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1759         if (!onfalse)
1760             return false;
1761
1762         /* enter the block */
1763         func->curblock = onfalse;
1764
1765         /* generate */
1766         cgen = self->on_false->expression.codegen;
1767         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1768             return false;
1769
1770         /* we now need to work from the current endpoint */
1771         onfalse_endblock = func->curblock;
1772     } else
1773         onfalse = NULL;
1774
1775     /* Merge block were they all merge in to */
1776     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1777     if (!merge)
1778         return false;
1779
1780     /* add jumps ot the merge block */
1781     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1782         return false;
1783     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1784         return false;
1785
1786     /* we create the if here, that way all blocks are ordered :)
1787      */
1788     if (!ir_block_create_if(cond, condval,
1789                             (ontrue  ? ontrue  : merge),
1790                             (onfalse ? onfalse : merge)))
1791     {
1792         return false;
1793     }
1794
1795     /* Now enter the merge block */
1796     func->curblock = merge;
1797
1798     return true;
1799 }
1800
1801 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1802 {
1803     ast_expression_codegen *cgen;
1804
1805     ir_value *condval;
1806     ir_value *trueval, *falseval;
1807     ir_instr *phi;
1808
1809     ir_block *cond = func->curblock;
1810     ir_block *ontrue;
1811     ir_block *onfalse;
1812     ir_block *merge;
1813
1814     /* Ternary can never create an lvalue... */
1815     if (lvalue)
1816         return false;
1817
1818     /* In theory it shouldn't be possible to pass through a node twice, but
1819      * in case we add any kind of optimization pass for the AST itself, it
1820      * may still happen, thus we remember a created ir_value and simply return one
1821      * if it already exists.
1822      */
1823     if (self->phi_out) {
1824         *out = self->phi_out;
1825         return true;
1826     }
1827
1828     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1829
1830     /* generate the condition */
1831     func->curblock = cond;
1832     cgen = self->cond->expression.codegen;
1833     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1834         return false;
1835
1836     /* create on-true block */
1837     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1838     if (!ontrue)
1839         return false;
1840     else
1841     {
1842         /* enter the block */
1843         func->curblock = ontrue;
1844
1845         /* generate */
1846         cgen = self->on_true->expression.codegen;
1847         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1848             return false;
1849     }
1850
1851     /* create on-false block */
1852     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1853     if (!onfalse)
1854         return false;
1855     else
1856     {
1857         /* enter the block */
1858         func->curblock = onfalse;
1859
1860         /* generate */
1861         cgen = self->on_false->expression.codegen;
1862         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1863             return false;
1864     }
1865
1866     /* create merge block */
1867     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1868     if (!merge)
1869         return false;
1870     /* jump to merge block */
1871     if (!ir_block_create_jump(ontrue, merge))
1872         return false;
1873     if (!ir_block_create_jump(onfalse, merge))
1874         return false;
1875
1876     /* create if instruction */
1877     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1878         return false;
1879
1880     /* Now enter the merge block */
1881     func->curblock = merge;
1882
1883     /* Here, now, we need a PHI node
1884      * but first some sanity checking...
1885      */
1886     if (trueval->vtype != falseval->vtype) {
1887         /* error("ternary with different types on the two sides"); */
1888         return false;
1889     }
1890
1891     /* create PHI */
1892     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1893     if (!phi ||
1894         !ir_phi_add(phi, ontrue,  trueval) ||
1895         !ir_phi_add(phi, onfalse, falseval))
1896     {
1897         return false;
1898     }
1899
1900     self->phi_out = ir_phi_value(phi);
1901     *out = self->phi_out;
1902
1903     return true;
1904 }
1905
1906 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1907 {
1908     ast_expression_codegen *cgen;
1909
1910     ir_value *dummy      = NULL;
1911     ir_value *precond    = NULL;
1912     ir_value *postcond   = NULL;
1913
1914     /* Since we insert some jumps "late" so we have blocks
1915      * ordered "nicely", we need to keep track of the actual end-blocks
1916      * of expressions to add the jumps to.
1917      */
1918     ir_block *bbody      = NULL, *end_bbody      = NULL;
1919     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1920     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1921     ir_block *bincrement = NULL, *end_bincrement = NULL;
1922     ir_block *bout       = NULL, *bin            = NULL;
1923
1924     /* let's at least move the outgoing block to the end */
1925     size_t    bout_id;
1926
1927     /* 'break' and 'continue' need to be able to find the right blocks */
1928     ir_block *bcontinue     = NULL;
1929     ir_block *bbreak        = NULL;
1930
1931     ir_block *old_bcontinue = NULL;
1932     ir_block *old_bbreak    = NULL;
1933
1934     ir_block *tmpblock      = NULL;
1935
1936     (void)lvalue;
1937     (void)out;
1938
1939     if (self->expression.outr) {
1940         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1941         return false;
1942     }
1943     self->expression.outr = (ir_value*)1;
1944
1945     /* NOTE:
1946      * Should we ever need some kind of block ordering, better make this function
1947      * move blocks around than write a block ordering algorithm later... after all
1948      * the ast and ir should work together, not against each other.
1949      */
1950
1951     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1952      * anyway if for example it contains a ternary.
1953      */
1954     if (self->initexpr)
1955     {
1956         cgen = self->initexpr->expression.codegen;
1957         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1958             return false;
1959     }
1960
1961     /* Store the block from which we enter this chaos */
1962     bin = func->curblock;
1963
1964     /* The pre-loop condition needs its own block since we
1965      * need to be able to jump to the start of that expression.
1966      */
1967     if (self->precond)
1968     {
1969         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1970         if (!bprecond)
1971             return false;
1972
1973         /* the pre-loop-condition the least important place to 'continue' at */
1974         bcontinue = bprecond;
1975
1976         /* enter */
1977         func->curblock = bprecond;
1978
1979         /* generate */
1980         cgen = self->precond->expression.codegen;
1981         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1982             return false;
1983
1984         end_bprecond = func->curblock;
1985     } else {
1986         bprecond = end_bprecond = NULL;
1987     }
1988
1989     /* Now the next blocks won't be ordered nicely, but we need to
1990      * generate them this early for 'break' and 'continue'.
1991      */
1992     if (self->increment) {
1993         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1994         if (!bincrement)
1995             return false;
1996         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1997     } else {
1998         bincrement = end_bincrement = NULL;
1999     }
2000
2001     if (self->postcond) {
2002         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2003         if (!bpostcond)
2004             return false;
2005         bcontinue = bpostcond; /* postcond comes before the increment */
2006     } else {
2007         bpostcond = end_bpostcond = NULL;
2008     }
2009
2010     bout_id = func->ir_func->blocks_count;
2011     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2012     if (!bout)
2013         return false;
2014     bbreak = bout;
2015
2016     /* The loop body... */
2017     if (self->body)
2018     {
2019         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2020         if (!bbody)
2021             return false;
2022
2023         /* enter */
2024         func->curblock = bbody;
2025
2026         old_bbreak          = func->breakblock;
2027         old_bcontinue       = func->continueblock;
2028         func->breakblock    = bbreak;
2029         func->continueblock = bcontinue;
2030
2031         /* generate */
2032         cgen = self->body->expression.codegen;
2033         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2034             return false;
2035
2036         end_bbody = func->curblock;
2037         func->breakblock    = old_bbreak;
2038         func->continueblock = old_bcontinue;
2039     }
2040
2041     /* post-loop-condition */
2042     if (self->postcond)
2043     {
2044         /* enter */
2045         func->curblock = bpostcond;
2046
2047         /* generate */
2048         cgen = self->postcond->expression.codegen;
2049         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2050             return false;
2051
2052         end_bpostcond = func->curblock;
2053     }
2054
2055     /* The incrementor */
2056     if (self->increment)
2057     {
2058         /* enter */
2059         func->curblock = bincrement;
2060
2061         /* generate */
2062         cgen = self->increment->expression.codegen;
2063         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2064             return false;
2065
2066         end_bincrement = func->curblock;
2067     }
2068
2069     /* In any case now, we continue from the outgoing block */
2070     func->curblock = bout;
2071
2072     /* Now all blocks are in place */
2073     /* From 'bin' we jump to whatever comes first */
2074     if      (bprecond)   tmpblock = bprecond;
2075     else if (bbody)      tmpblock = bbody;
2076     else if (bpostcond)  tmpblock = bpostcond;
2077     else                 tmpblock = bout;
2078     if (!ir_block_create_jump(bin, tmpblock))
2079         return false;
2080
2081     /* From precond */
2082     if (bprecond)
2083     {
2084         ir_block *ontrue, *onfalse;
2085         if      (bbody)      ontrue = bbody;
2086         else if (bincrement) ontrue = bincrement;
2087         else if (bpostcond)  ontrue = bpostcond;
2088         else                 ontrue = bprecond;
2089         onfalse = bout;
2090         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2091             return false;
2092     }
2093
2094     /* from body */
2095     if (bbody)
2096     {
2097         if      (bincrement) tmpblock = bincrement;
2098         else if (bpostcond)  tmpblock = bpostcond;
2099         else if (bprecond)   tmpblock = bprecond;
2100         else                 tmpblock = bout;
2101         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2102             return false;
2103     }
2104
2105     /* from increment */
2106     if (bincrement)
2107     {
2108         if      (bpostcond)  tmpblock = bpostcond;
2109         else if (bprecond)   tmpblock = bprecond;
2110         else if (bbody)      tmpblock = bbody;
2111         else                 tmpblock = bout;
2112         if (!ir_block_create_jump(end_bincrement, tmpblock))
2113             return false;
2114     }
2115
2116     /* from postcond */
2117     if (bpostcond)
2118     {
2119         ir_block *ontrue, *onfalse;
2120         if      (bprecond)   ontrue = bprecond;
2121         else if (bbody)      ontrue = bbody;
2122         else if (bincrement) ontrue = bincrement;
2123         else                 ontrue = bpostcond;
2124         onfalse = bout;
2125         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2126             return false;
2127     }
2128
2129     /* Move 'bout' to the end */
2130     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2131         !ir_function_blocks_add(func->ir_func, bout))
2132     {
2133         ir_block_delete(bout);
2134         return false;
2135     }
2136
2137     return true;
2138 }
2139
2140 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2141 {
2142     ast_expression_codegen *cgen;
2143     ir_value_vector         params;
2144     ir_instr               *callinstr;
2145     size_t i;
2146
2147     ir_value *funval = NULL;
2148
2149     /* return values are never lvalues */
2150     if (lvalue) {
2151         asterror(ast_ctx(self), "not an l-value (function call)");
2152         return false;
2153     }
2154
2155     if (self->expression.outr) {
2156         *out = self->expression.outr;
2157         return true;
2158     }
2159
2160     cgen = self->func->expression.codegen;
2161     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2162         return false;
2163     if (!funval)
2164         return false;
2165
2166     MEM_VECTOR_INIT(&params, v);
2167
2168     /* parameters */
2169     for (i = 0; i < self->params_count; ++i)
2170     {
2171         ir_value *param;
2172         ast_expression *expr = self->params[i];
2173
2174         cgen = expr->expression.codegen;
2175         if (!(*cgen)(expr, func, false, &param))
2176             goto error;
2177         if (!param)
2178             goto error;
2179         if (!ir_value_vector_v_add(&params, param))
2180             goto error;
2181     }
2182
2183     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2184     if (!callinstr)
2185         goto error;
2186
2187     for (i = 0; i < params.v_count; ++i) {
2188         if (!ir_call_param(callinstr, params.v[i]))
2189             goto error;
2190     }
2191
2192     *out = ir_call_value(callinstr);
2193     self->expression.outr = *out;
2194
2195     MEM_VECTOR_CLEAR(&params, v);
2196     return true;
2197 error:
2198     MEM_VECTOR_CLEAR(&params, v);
2199     return false;
2200 }