]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
fixing ast_binstore_codegen's lvalue flag setting, now += on entfields works correctly
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     ast_unref(self->owner);
409     ast_expression_delete((ast_expression*)self);
410     mem_d(self);
411 }
412
413 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
414 {
415     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
416     if (!ontrue && !onfalse) {
417         /* because it is invalid */
418         mem_d(self);
419         return NULL;
420     }
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
422
423     self->cond     = cond;
424     self->on_true  = ontrue;
425     self->on_false = onfalse;
426
427     return self;
428 }
429
430 void ast_ifthen_delete(ast_ifthen *self)
431 {
432     ast_unref(self->cond);
433     if (self->on_true)
434         ast_unref(self->on_true);
435     if (self->on_false)
436         ast_unref(self->on_false);
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
444     /* This time NEITHER must be NULL */
445     if (!ontrue || !onfalse) {
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454     self->phi_out  = NULL;
455
456     return self;
457 }
458
459 void ast_ternary_delete(ast_ternary *self)
460 {
461     ast_unref(self->cond);
462     ast_unref(self->on_true);
463     ast_unref(self->on_false);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_loop* ast_loop_new(lex_ctx ctx,
469                        ast_expression *initexpr,
470                        ast_expression *precond,
471                        ast_expression *postcond,
472                        ast_expression *increment,
473                        ast_expression *body)
474 {
475     ast_instantiate(ast_loop, ctx, ast_loop_delete);
476     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
477
478     self->initexpr  = initexpr;
479     self->precond   = precond;
480     self->postcond  = postcond;
481     self->increment = increment;
482     self->body      = body;
483
484     return self;
485 }
486
487 void ast_loop_delete(ast_loop *self)
488 {
489     if (self->initexpr)
490         ast_unref(self->initexpr);
491     if (self->precond)
492         ast_unref(self->precond);
493     if (self->postcond)
494         ast_unref(self->postcond);
495     if (self->increment)
496         ast_unref(self->increment);
497     if (self->body)
498         ast_unref(self->body);
499     ast_expression_delete((ast_expression*)self);
500     mem_d(self);
501 }
502
503 ast_call* ast_call_new(lex_ctx ctx,
504                        ast_expression *funcexpr)
505 {
506     ast_instantiate(ast_call, ctx, ast_call_delete);
507     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
508
509     MEM_VECTOR_INIT(self, params);
510
511     self->func = funcexpr;
512
513     return self;
514 }
515 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
516
517 void ast_call_delete(ast_call *self)
518 {
519     size_t i;
520     for (i = 0; i < self->params_count; ++i)
521         ast_unref(self->params[i]);
522     MEM_VECTOR_CLEAR(self, params);
523
524     if (self->func)
525         ast_unref(self->func);
526
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_store* ast_store_new(lex_ctx ctx, int op,
532                          ast_expression *dest, ast_expression *source)
533 {
534     ast_instantiate(ast_store, ctx, ast_store_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
536
537     self->op = op;
538     self->dest = dest;
539     self->source = source;
540
541     return self;
542 }
543
544 void ast_store_delete(ast_store *self)
545 {
546     ast_unref(self->dest);
547     ast_unref(self->source);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_block* ast_block_new(lex_ctx ctx)
553 {
554     ast_instantiate(ast_block, ctx, ast_block_delete);
555     ast_expression_init((ast_expression*)self,
556                         (ast_expression_codegen*)&ast_block_codegen);
557
558     MEM_VECTOR_INIT(self, locals);
559     MEM_VECTOR_INIT(self, exprs);
560
561     return self;
562 }
563 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
564 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
565
566 void ast_block_delete(ast_block *self)
567 {
568     size_t i;
569     for (i = 0; i < self->exprs_count; ++i)
570         ast_unref(self->exprs[i]);
571     MEM_VECTOR_CLEAR(self, exprs);
572     for (i = 0; i < self->locals_count; ++i)
573         ast_delete(self->locals[i]);
574     MEM_VECTOR_CLEAR(self, locals);
575     ast_expression_delete((ast_expression*)self);
576     mem_d(self);
577 }
578
579 bool ast_block_set_type(ast_block *self, ast_expression *from)
580 {
581     if (self->expression.next)
582         ast_delete(self->expression.next);
583     self->expression.vtype = from->expression.vtype;
584     if (from->expression.next) {
585         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
586         if (!self->expression.next)
587             return false;
588     }
589     return true;
590 }
591
592 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
593 {
594     ast_instantiate(ast_function, ctx, ast_function_delete);
595
596     if (!vtype ||
597         vtype->isconst ||
598         vtype->expression.vtype != TYPE_FUNCTION)
599     {
600         mem_d(self);
601         return NULL;
602     }
603
604     self->vtype = vtype;
605     self->name = name ? util_strdup(name) : NULL;
606     MEM_VECTOR_INIT(self, blocks);
607
608     self->labelcount = 0;
609     self->builtin = 0;
610
611     self->ir_func = NULL;
612     self->curblock = NULL;
613
614     self->breakblock    = NULL;
615     self->continueblock = NULL;
616
617     vtype->isconst = true;
618     vtype->constval.vfunc = self;
619
620     return self;
621 }
622
623 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
624
625 void ast_function_delete(ast_function *self)
626 {
627     size_t i;
628     if (self->name)
629         mem_d((void*)self->name);
630     if (self->vtype) {
631         /* ast_value_delete(self->vtype); */
632         self->vtype->isconst = false;
633         self->vtype->constval.vfunc = NULL;
634         /* We use unref - if it was stored in a global table it is supposed
635          * to be deleted from *there*
636          */
637         ast_unref(self->vtype);
638     }
639     for (i = 0; i < self->blocks_count; ++i)
640         ast_delete(self->blocks[i]);
641     MEM_VECTOR_CLEAR(self, blocks);
642     mem_d(self);
643 }
644
645 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
646 {
647     unsigned int base = 10;
648 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
649 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
650     if (size < 1)
651         return;
652     checknul();
653     if (!num)
654         addch('0');
655     else {
656         while (num)
657         {
658             int digit = num % base;
659             num /= base;
660             addch('0' + digit);
661         }
662     }
663
664     *buf = 0;
665 #undef addch
666 #undef checknul
667 }
668
669 const char* ast_function_label(ast_function *self, const char *prefix)
670 {
671     size_t id = (self->labelcount++);
672     size_t len = strlen(prefix);
673     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
674     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
675     return self->labelbuf;
676 }
677
678 /*********************************************************************/
679 /* AST codegen part
680  * by convention you must never pass NULL to the 'ir_value **out'
681  * parameter. If you really don't care about the output, pass a dummy.
682  * But I can't imagine a pituation where the output is truly unnecessary.
683  */
684
685 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
686 {
687     /* NOTE: This is the codegen for a variable used in an expression.
688      * It is not the codegen to generate the value. For this purpose,
689      * ast_local_codegen and ast_global_codegen are to be used before this
690      * is executed. ast_function_codegen should take care of its locals,
691      * and the ast-user should take care of ast_global_codegen to be used
692      * on all the globals.
693      */
694     if (!self->ir_v) {
695         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
696         return false;
697     }
698     *out = self->ir_v;
699     return true;
700 }
701
702 bool ast_global_codegen(ast_value *self, ir_builder *ir)
703 {
704     ir_value *v = NULL;
705     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
706     {
707         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
708         if (!func)
709             return false;
710
711         self->constval.vfunc->ir_func = func;
712         self->ir_v = func->value;
713         /* The function is filled later on ast_function_codegen... */
714         return true;
715     }
716
717     if (self->expression.vtype == TYPE_FIELD) {
718         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
719         if (!v)
720             return false;
721         if (self->isconst) {
722             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
723             goto error;
724         }
725         self->ir_v = v;
726         return true;
727     }
728
729     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
730     if (!v) {
731         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
732         return false;
733     }
734
735     if (self->isconst) {
736         switch (self->expression.vtype)
737         {
738             case TYPE_FLOAT:
739                 if (!ir_value_set_float(v, self->constval.vfloat))
740                     goto error;
741                 break;
742             case TYPE_VECTOR:
743                 if (!ir_value_set_vector(v, self->constval.vvec))
744                     goto error;
745                 break;
746             case TYPE_STRING:
747                 if (!ir_value_set_string(v, self->constval.vstring))
748                     goto error;
749                 break;
750             case TYPE_FUNCTION:
751                 asterror(ast_ctx(self), "global of type function not properly generated\n");
752                 goto error;
753                 /* Cannot generate an IR value for a function,
754                  * need a pointer pointing to a function rather.
755                  */
756             default:
757                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
758                 break;
759         }
760     }
761
762     /* link us to the ir_value */
763     self->ir_v = v;
764     return true;
765
766 error: /* clean up */
767     ir_value_delete(v);
768     return false;
769 }
770
771 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
772 {
773     ir_value *v = NULL;
774     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
775     {
776         /* Do we allow local functions? I think not...
777          * this is NOT a function pointer atm.
778          */
779         return false;
780     }
781
782     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
783     if (!v)
784         return false;
785
786     /* A constant local... hmmm...
787      * I suppose the IR will have to deal with this
788      */
789     if (self->isconst) {
790         switch (self->expression.vtype)
791         {
792             case TYPE_FLOAT:
793                 if (!ir_value_set_float(v, self->constval.vfloat))
794                     goto error;
795                 break;
796             case TYPE_VECTOR:
797                 if (!ir_value_set_vector(v, self->constval.vvec))
798                     goto error;
799                 break;
800             case TYPE_STRING:
801                 if (!ir_value_set_string(v, self->constval.vstring))
802                     goto error;
803                 break;
804             default:
805                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
806                 break;
807         }
808     }
809
810     /* link us to the ir_value */
811     self->ir_v = v;
812     return true;
813
814 error: /* clean up */
815     ir_value_delete(v);
816     return false;
817 }
818
819 bool ast_function_codegen(ast_function *self, ir_builder *ir)
820 {
821     ir_function *irf;
822     ir_value    *dummy;
823     ast_expression_common *ec;
824     size_t    i;
825
826     irf = self->ir_func;
827     if (!irf) {
828         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
829         return false;
830     }
831
832     /* fill the parameter list */
833     ec = &self->vtype->expression;
834     for (i = 0; i < ec->params_count; ++i)
835     {
836         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
837             return false;
838         if (!self->builtin) {
839             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
840                 return false;
841         }
842     }
843
844     if (self->builtin) {
845         irf->builtin = self->builtin;
846         return true;
847     }
848
849     self->curblock = ir_function_create_block(irf, "entry");
850     if (!self->curblock)
851         return false;
852
853     for (i = 0; i < self->blocks_count; ++i) {
854         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
855         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
856             return false;
857     }
858
859     /* TODO: check return types */
860     if (!self->curblock->is_return)
861     {
862         if (!self->vtype->expression.next ||
863             self->vtype->expression.next->expression.vtype == TYPE_VOID)
864         {
865             return ir_block_create_return(self->curblock, NULL);
866         }
867         else
868         {
869             /* error("missing return"); */
870             return false;
871         }
872     }
873     return true;
874 }
875
876 /* Note, you will not see ast_block_codegen generate ir_blocks.
877  * To the AST and the IR, blocks are 2 different things.
878  * In the AST it represents a block of code, usually enclosed in
879  * curly braces {...}.
880  * While in the IR it represents a block in terms of control-flow.
881  */
882 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
883 {
884     size_t i;
885
886     /* We don't use this
887      * Note: an ast-representation using the comma-operator
888      * of the form: (a, b, c) = x should not assign to c...
889      */
890     (void)lvalue;
891     if (self->expression.outr) {
892         *out = self->expression.outr;
893         return true;
894     }
895
896     /* output is NULL at first, we'll have each expression
897      * assign to out output, thus, a comma-operator represention
898      * using an ast_block will return the last generated value,
899      * so: (b, c) + a  executed both b and c, and returns c,
900      * which is then added to a.
901      */
902     *out = NULL;
903
904     /* generate locals */
905     for (i = 0; i < self->locals_count; ++i)
906     {
907         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
908             return false;
909     }
910
911     for (i = 0; i < self->exprs_count; ++i)
912     {
913         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
914         if (!(*gen)(self->exprs[i], func, false, out))
915             return false;
916     }
917
918     self->expression.outr = *out;
919
920     return true;
921 }
922
923 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
924 {
925     ast_expression_codegen *cgen;
926     ir_value *left, *right;
927
928     if (lvalue && self->expression.outl) {
929         *out = self->expression.outl;
930         return true;
931     }
932
933     if (!lvalue && self->expression.outr) {
934         *out = self->expression.outr;
935         return true;
936     }
937
938     cgen = self->dest->expression.codegen;
939     /* lvalue! */
940     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
941         return false;
942     self->expression.outl = left;
943
944     cgen = self->source->expression.codegen;
945     /* rvalue! */
946     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
947         return false;
948
949     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
950         return false;
951     self->expression.outr = right;
952
953     /* Theoretically, an assinment returns its left side as an
954      * lvalue, if we don't need an lvalue though, we return
955      * the right side as an rvalue, otherwise we have to
956      * somehow know whether or not we need to dereference the pointer
957      * on the left side - that is: OP_LOAD if it was an address.
958      * Also: in original QC we cannot OP_LOADP *anyway*.
959      */
960     *out = (lvalue ? left : right);
961
962     return true;
963 }
964
965 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
966 {
967     ast_expression_codegen *cgen;
968     ir_value *left, *right;
969
970     /* In the context of a binary operation, we can disregard
971      * the lvalue flag.
972      */
973     (void)lvalue;
974     if (self->expression.outr) {
975         *out = self->expression.outr;
976         return true;
977     }
978
979     cgen = self->left->expression.codegen;
980     /* lvalue! */
981     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
982         return false;
983
984     cgen = self->right->expression.codegen;
985     /* rvalue! */
986     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
987         return false;
988
989     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
990                                  self->op, left, right);
991     if (!*out)
992         return false;
993     self->expression.outr = *out;
994
995     return true;
996 }
997
998 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
999 {
1000     ast_expression_codegen *cgen;
1001     ir_value *leftl, *leftr, *right, *bin;
1002
1003     if (lvalue && self->expression.outl) {
1004         *out = self->expression.outl;
1005         return true;
1006     }
1007
1008     if (!lvalue && self->expression.outr) {
1009         *out = self->expression.outr;
1010         return true;
1011     }
1012
1013     /* for a binstore we need both an lvalue and an rvalue for the left side */
1014     /* rvalue of destination! */
1015     cgen = self->dest->expression.codegen;
1016     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1017         return false;
1018
1019     /* source as rvalue only */
1020     cgen = self->source->expression.codegen;
1021     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1022         return false;
1023
1024     /* now the binary */
1025     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1026                                 self->opbin, leftr, right);
1027     self->expression.outr = bin;
1028
1029     /* now store them */
1030     cgen = self->dest->expression.codegen;
1031     /* lvalue of destination */
1032     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1033         return false;
1034     self->expression.outl = leftl;
1035
1036     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1037         return false;
1038     self->expression.outr = bin;
1039
1040     /* Theoretically, an assinment returns its left side as an
1041      * lvalue, if we don't need an lvalue though, we return
1042      * the right side as an rvalue, otherwise we have to
1043      * somehow know whether or not we need to dereference the pointer
1044      * on the left side - that is: OP_LOAD if it was an address.
1045      * Also: in original QC we cannot OP_LOADP *anyway*.
1046      */
1047     *out = (lvalue ? leftl : bin);
1048
1049     return true;
1050 }
1051
1052 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1053 {
1054     ast_expression_codegen *cgen;
1055     ir_value *operand;
1056
1057     /* In the context of a unary operation, we can disregard
1058      * the lvalue flag.
1059      */
1060     (void)lvalue;
1061     if (self->expression.outr) {
1062         *out = self->expression.outr;
1063         return true;
1064     }
1065
1066     cgen = self->operand->expression.codegen;
1067     /* lvalue! */
1068     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1069         return false;
1070
1071     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1072                                  self->op, operand);
1073     if (!*out)
1074         return false;
1075     self->expression.outr = *out;
1076
1077     return true;
1078 }
1079
1080 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1081 {
1082     ast_expression_codegen *cgen;
1083     ir_value *operand;
1084
1085     /* In the context of a return operation, we can disregard
1086      * the lvalue flag.
1087      */
1088     (void)lvalue;
1089     if (self->expression.outr) {
1090         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1091         return false;
1092     }
1093     self->expression.outr = (ir_value*)1;
1094
1095     cgen = self->operand->expression.codegen;
1096     /* lvalue! */
1097     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1098         return false;
1099
1100     if (!ir_block_create_return(func->curblock, operand))
1101         return false;
1102
1103     return true;
1104 }
1105
1106 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1107 {
1108     ast_expression_codegen *cgen;
1109     ir_value *ent, *field;
1110
1111     /* This function needs to take the 'lvalue' flag into account!
1112      * As lvalue we provide a field-pointer, as rvalue we provide the
1113      * value in a temp.
1114      */
1115
1116     if (lvalue && self->expression.outl) {
1117         *out = self->expression.outl;
1118         return true;
1119     }
1120
1121     if (!lvalue && self->expression.outr) {
1122         *out = self->expression.outr;
1123         return true;
1124     }
1125
1126     cgen = self->entity->expression.codegen;
1127     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1128         return false;
1129
1130     cgen = self->field->expression.codegen;
1131     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1132         return false;
1133
1134     if (lvalue) {
1135         /* address! */
1136         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1137                                             ent, field);
1138     } else {
1139         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1140                                              ent, field, self->expression.vtype);
1141     }
1142     if (!*out)
1143         return false;
1144
1145     if (lvalue)
1146         self->expression.outl = *out;
1147     else
1148         self->expression.outr = *out;
1149
1150     /* Hm that should be it... */
1151     return true;
1152 }
1153
1154 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1155 {
1156     ast_expression_codegen *cgen;
1157     ir_value *vec;
1158
1159     /* in QC this is always an lvalue */
1160     (void)lvalue;
1161     if (self->expression.outl) {
1162         *out = self->expression.outl;
1163         return true;
1164     }
1165
1166     cgen = self->owner->expression.codegen;
1167     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1168         return false;
1169
1170     if (vec->vtype != TYPE_VECTOR &&
1171         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1172     {
1173         return false;
1174     }
1175
1176     *out = ir_value_vector_member(vec, self->field);
1177     self->expression.outl = *out;
1178
1179     return (*out != NULL);
1180 }
1181
1182 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1183 {
1184     ast_expression_codegen *cgen;
1185
1186     ir_value *condval;
1187     ir_value *dummy;
1188
1189     ir_block *cond = func->curblock;
1190     ir_block *ontrue;
1191     ir_block *onfalse;
1192     ir_block *merge;
1193
1194     /* We don't output any value, thus also don't care about r/lvalue */
1195     (void)out;
1196     (void)lvalue;
1197
1198     if (self->expression.outr) {
1199         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1200         return false;
1201     }
1202     self->expression.outr = (ir_value*)1;
1203
1204     /* generate the condition */
1205     func->curblock = cond;
1206     cgen = self->cond->expression.codegen;
1207     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1208         return false;
1209
1210     /* on-true path */
1211
1212     if (self->on_true) {
1213         /* create on-true block */
1214         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1215         if (!ontrue)
1216             return false;
1217
1218         /* enter the block */
1219         func->curblock = ontrue;
1220
1221         /* generate */
1222         cgen = self->on_true->expression.codegen;
1223         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1224             return false;
1225     } else
1226         ontrue = NULL;
1227
1228     /* on-false path */
1229     if (self->on_false) {
1230         /* create on-false block */
1231         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1232         if (!onfalse)
1233             return false;
1234
1235         /* enter the block */
1236         func->curblock = onfalse;
1237
1238         /* generate */
1239         cgen = self->on_false->expression.codegen;
1240         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1241             return false;
1242     } else
1243         onfalse = NULL;
1244
1245     /* Merge block were they all merge in to */
1246     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1247     if (!merge)
1248         return false;
1249
1250     /* add jumps ot the merge block */
1251     if (ontrue && !ir_block_create_jump(ontrue, merge))
1252         return false;
1253     if (onfalse && !ir_block_create_jump(onfalse, merge))
1254         return false;
1255
1256     /* we create the if here, that way all blocks are ordered :)
1257      */
1258     if (!ir_block_create_if(cond, condval,
1259                             (ontrue  ? ontrue  : merge),
1260                             (onfalse ? onfalse : merge)))
1261     {
1262         return false;
1263     }
1264
1265     /* Now enter the merge block */
1266     func->curblock = merge;
1267
1268     return true;
1269 }
1270
1271 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1272 {
1273     ast_expression_codegen *cgen;
1274
1275     ir_value *condval;
1276     ir_value *trueval, *falseval;
1277     ir_instr *phi;
1278
1279     ir_block *cond = func->curblock;
1280     ir_block *ontrue;
1281     ir_block *onfalse;
1282     ir_block *merge;
1283
1284     /* Ternary can never create an lvalue... */
1285     if (lvalue)
1286         return false;
1287
1288     /* In theory it shouldn't be possible to pass through a node twice, but
1289      * in case we add any kind of optimization pass for the AST itself, it
1290      * may still happen, thus we remember a created ir_value and simply return one
1291      * if it already exists.
1292      */
1293     if (self->phi_out) {
1294         *out = self->phi_out;
1295         return true;
1296     }
1297
1298     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1299
1300     /* generate the condition */
1301     func->curblock = cond;
1302     cgen = self->cond->expression.codegen;
1303     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1304         return false;
1305
1306     /* create on-true block */
1307     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1308     if (!ontrue)
1309         return false;
1310     else
1311     {
1312         /* enter the block */
1313         func->curblock = ontrue;
1314
1315         /* generate */
1316         cgen = self->on_true->expression.codegen;
1317         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1318             return false;
1319     }
1320
1321     /* create on-false block */
1322     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1323     if (!onfalse)
1324         return false;
1325     else
1326     {
1327         /* enter the block */
1328         func->curblock = onfalse;
1329
1330         /* generate */
1331         cgen = self->on_false->expression.codegen;
1332         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1333             return false;
1334     }
1335
1336     /* create merge block */
1337     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1338     if (!merge)
1339         return false;
1340     /* jump to merge block */
1341     if (!ir_block_create_jump(ontrue, merge))
1342         return false;
1343     if (!ir_block_create_jump(onfalse, merge))
1344         return false;
1345
1346     /* create if instruction */
1347     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1348         return false;
1349
1350     /* Now enter the merge block */
1351     func->curblock = merge;
1352
1353     /* Here, now, we need a PHI node
1354      * but first some sanity checking...
1355      */
1356     if (trueval->vtype != falseval->vtype) {
1357         /* error("ternary with different types on the two sides"); */
1358         return false;
1359     }
1360
1361     /* create PHI */
1362     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1363     if (!phi ||
1364         !ir_phi_add(phi, ontrue,  trueval) ||
1365         !ir_phi_add(phi, onfalse, falseval))
1366     {
1367         return false;
1368     }
1369
1370     self->phi_out = ir_phi_value(phi);
1371     *out = self->phi_out;
1372
1373     return true;
1374 }
1375
1376 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1377 {
1378     ast_expression_codegen *cgen;
1379
1380     ir_value *dummy      = NULL;
1381     ir_value *precond    = NULL;
1382     ir_value *postcond   = NULL;
1383
1384     /* Since we insert some jumps "late" so we have blocks
1385      * ordered "nicely", we need to keep track of the actual end-blocks
1386      * of expressions to add the jumps to.
1387      */
1388     ir_block *bbody      = NULL, *end_bbody      = NULL;
1389     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1390     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1391     ir_block *bincrement = NULL, *end_bincrement = NULL;
1392     ir_block *bout       = NULL, *bin            = NULL;
1393
1394     /* let's at least move the outgoing block to the end */
1395     size_t    bout_id;
1396
1397     /* 'break' and 'continue' need to be able to find the right blocks */
1398     ir_block *bcontinue     = NULL;
1399     ir_block *bbreak        = NULL;
1400
1401     ir_block *old_bcontinue = NULL;
1402     ir_block *old_bbreak    = NULL;
1403
1404     ir_block *tmpblock      = NULL;
1405
1406     (void)lvalue;
1407     (void)out;
1408
1409     if (self->expression.outr) {
1410         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1411         return false;
1412     }
1413     self->expression.outr = (ir_value*)1;
1414
1415     /* NOTE:
1416      * Should we ever need some kind of block ordering, better make this function
1417      * move blocks around than write a block ordering algorithm later... after all
1418      * the ast and ir should work together, not against each other.
1419      */
1420
1421     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1422      * anyway if for example it contains a ternary.
1423      */
1424     if (self->initexpr)
1425     {
1426         cgen = self->initexpr->expression.codegen;
1427         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1428             return false;
1429     }
1430
1431     /* Store the block from which we enter this chaos */
1432     bin = func->curblock;
1433
1434     /* The pre-loop condition needs its own block since we
1435      * need to be able to jump to the start of that expression.
1436      */
1437     if (self->precond)
1438     {
1439         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1440         if (!bprecond)
1441             return false;
1442
1443         /* the pre-loop-condition the least important place to 'continue' at */
1444         bcontinue = bprecond;
1445
1446         /* enter */
1447         func->curblock = bprecond;
1448
1449         /* generate */
1450         cgen = self->precond->expression.codegen;
1451         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1452             return false;
1453
1454         end_bprecond = func->curblock;
1455     } else {
1456         bprecond = end_bprecond = NULL;
1457     }
1458
1459     /* Now the next blocks won't be ordered nicely, but we need to
1460      * generate them this early for 'break' and 'continue'.
1461      */
1462     if (self->increment) {
1463         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1464         if (!bincrement)
1465             return false;
1466         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1467     } else {
1468         bincrement = end_bincrement = NULL;
1469     }
1470
1471     if (self->postcond) {
1472         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1473         if (!bpostcond)
1474             return false;
1475         bcontinue = bpostcond; /* postcond comes before the increment */
1476     } else {
1477         bpostcond = end_bpostcond = NULL;
1478     }
1479
1480     bout_id = func->ir_func->blocks_count;
1481     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1482     if (!bout)
1483         return false;
1484     bbreak = bout;
1485
1486     /* The loop body... */
1487     if (self->body)
1488     {
1489         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1490         if (!bbody)
1491             return false;
1492
1493         /* enter */
1494         func->curblock = bbody;
1495
1496         old_bbreak          = func->breakblock;
1497         old_bcontinue       = func->continueblock;
1498         func->breakblock    = bbreak;
1499         func->continueblock = bcontinue;
1500
1501         /* generate */
1502         cgen = self->body->expression.codegen;
1503         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1504             return false;
1505
1506         end_bbody = func->curblock;
1507         func->breakblock    = old_bbreak;
1508         func->continueblock = old_bcontinue;
1509     }
1510
1511     /* post-loop-condition */
1512     if (self->postcond)
1513     {
1514         /* enter */
1515         func->curblock = bpostcond;
1516
1517         /* generate */
1518         cgen = self->postcond->expression.codegen;
1519         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1520             return false;
1521
1522         end_bpostcond = func->curblock;
1523     }
1524
1525     /* The incrementor */
1526     if (self->increment)
1527     {
1528         /* enter */
1529         func->curblock = bincrement;
1530
1531         /* generate */
1532         cgen = self->increment->expression.codegen;
1533         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1534             return false;
1535
1536         end_bincrement = func->curblock;
1537     }
1538
1539     /* In any case now, we continue from the outgoing block */
1540     func->curblock = bout;
1541
1542     /* Now all blocks are in place */
1543     /* From 'bin' we jump to whatever comes first */
1544     if      (bprecond)   tmpblock = bprecond;
1545     else if (bbody)      tmpblock = bbody;
1546     else if (bpostcond)  tmpblock = bpostcond;
1547     else                 tmpblock = bout;
1548     if (!ir_block_create_jump(bin, tmpblock))
1549         return false;
1550
1551     /* From precond */
1552     if (bprecond)
1553     {
1554         ir_block *ontrue, *onfalse;
1555         if      (bbody)      ontrue = bbody;
1556         else if (bincrement) ontrue = bincrement;
1557         else if (bpostcond)  ontrue = bpostcond;
1558         else                 ontrue = bprecond;
1559         onfalse = bout;
1560         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1561             return false;
1562     }
1563
1564     /* from body */
1565     if (bbody)
1566     {
1567         if      (bincrement) tmpblock = bincrement;
1568         else if (bpostcond)  tmpblock = bpostcond;
1569         else if (bprecond)   tmpblock = bprecond;
1570         else                 tmpblock = bout;
1571         if (!ir_block_create_jump(end_bbody, tmpblock))
1572             return false;
1573     }
1574
1575     /* from increment */
1576     if (bincrement)
1577     {
1578         if      (bpostcond)  tmpblock = bpostcond;
1579         else if (bprecond)   tmpblock = bprecond;
1580         else if (bbody)      tmpblock = bbody;
1581         else                 tmpblock = bout;
1582         if (!ir_block_create_jump(end_bincrement, tmpblock))
1583             return false;
1584     }
1585
1586     /* from postcond */
1587     if (bpostcond)
1588     {
1589         ir_block *ontrue, *onfalse;
1590         if      (bprecond)   ontrue = bprecond;
1591         else if (bbody)      ontrue = bbody;
1592         else if (bincrement) ontrue = bincrement;
1593         else                 ontrue = bpostcond;
1594         onfalse = bout;
1595         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1596             return false;
1597     }
1598
1599     /* Move 'bout' to the end */
1600     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1601         !ir_function_blocks_add(func->ir_func, bout))
1602     {
1603         ir_block_delete(bout);
1604         return false;
1605     }
1606
1607     return true;
1608 }
1609
1610 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1611 {
1612     ast_expression_codegen *cgen;
1613     ir_value_vector         params;
1614     ir_instr               *callinstr;
1615     size_t i;
1616
1617     ir_value *funval = NULL;
1618
1619     /* return values are never lvalues */
1620     (void)lvalue;
1621
1622     if (self->expression.outr) {
1623         *out = self->expression.outr;
1624         return true;
1625     }
1626
1627     cgen = self->func->expression.codegen;
1628     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1629         return false;
1630     if (!funval)
1631         return false;
1632
1633     MEM_VECTOR_INIT(&params, v);
1634
1635     /* parameters */
1636     for (i = 0; i < self->params_count; ++i)
1637     {
1638         ir_value *param;
1639         ast_expression *expr = self->params[i];
1640
1641         cgen = expr->expression.codegen;
1642         if (!(*cgen)(expr, func, false, &param))
1643             goto error;
1644         if (!param)
1645             goto error;
1646         if (!ir_value_vector_v_add(&params, param))
1647             goto error;
1648     }
1649
1650     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1651     if (!callinstr)
1652         goto error;
1653
1654     for (i = 0; i < params.v_count; ++i) {
1655         if (!ir_call_param(callinstr, params.v[i]))
1656             goto error;
1657     }
1658
1659     *out = ir_call_value(callinstr);
1660     self->expression.outr = *out;
1661
1662     MEM_VECTOR_CLEAR(&params, v);
1663     return true;
1664 error:
1665     MEM_VECTOR_CLEAR(&params, v);
1666     return false;
1667 }