]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_return_delete: check if self->operand is actually set before ast_unref-ing it
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     for (i = 0; i < fromex->params_count; ++i) {
111         ast_value *v = ast_value_copy(fromex->params[i]);
112         if (!v || !ast_expression_common_params_add(selfex, v)) {
113             ast_value_delete(cp);
114             return NULL;
115         }
116     }
117     return cp;
118 }
119
120 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
121 {
122     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
123     ast_expression_init(self, NULL);
124     self->expression.codegen = NULL;
125     self->expression.next    = NULL;
126     self->expression.vtype   = vtype;
127     return self;
128 }
129
130 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
131 {
132     size_t i;
133     const ast_expression_common *fromex;
134     ast_expression_common *selfex;
135
136     if (!ex)
137         return NULL;
138     else
139     {
140         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
141         ast_expression_init(self, NULL);
142
143         fromex   = &ex->expression;
144         selfex = &self->expression;
145
146         /* This may never be codegen()d */
147         selfex->codegen = NULL;
148
149         selfex->vtype = fromex->vtype;
150         if (fromex->next)
151         {
152             selfex->next = ast_type_copy(ctx, fromex->next);
153             if (!selfex->next) {
154                 ast_expression_delete_full(self);
155                 return NULL;
156             }
157         }
158         else
159             selfex->next = NULL;
160
161         for (i = 0; i < fromex->params_count; ++i) {
162             ast_value *v = ast_value_copy(fromex->params[i]);
163             if (!v || !ast_expression_common_params_add(selfex, v)) {
164                 ast_expression_delete_full(self);
165                 return NULL;
166             }
167         }
168
169         return self;
170     }
171 }
172
173 bool ast_compare_type(ast_expression *a, ast_expression *b)
174 {
175     if (a->expression.vtype != b->expression.vtype)
176         return false;
177     if (!a->expression.next != !b->expression.next)
178         return false;
179     if (a->expression.params_count != b->expression.params_count)
180         return false;
181     if (a->expression.params_count) {
182         size_t i;
183         for (i = 0; i < a->expression.params_count; ++i) {
184             if (!ast_compare_type((ast_expression*)a->expression.params[i],
185                                   (ast_expression*)b->expression.params[i]))
186                 return false;
187         }
188     }
189     if (a->expression.next)
190         return ast_compare_type(a->expression.next, b->expression.next);
191     return true;
192 }
193
194 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
195 {
196     ast_instantiate(ast_value, ctx, ast_value_delete);
197     ast_expression_init((ast_expression*)self,
198                         (ast_expression_codegen*)&ast_value_codegen);
199     self->expression.node.keep = true; /* keep */
200
201     self->name = name ? util_strdup(name) : NULL;
202     self->expression.vtype = t;
203     self->expression.next  = NULL;
204     self->isconst = false;
205     memset(&self->constval, 0, sizeof(self->constval));
206
207     self->ir_v    = NULL;
208
209     return self;
210 }
211
212 void ast_value_delete(ast_value* self)
213 {
214     if (self->name)
215         mem_d((void*)self->name);
216     if (self->isconst) {
217         switch (self->expression.vtype)
218         {
219         case TYPE_STRING:
220             mem_d((void*)self->constval.vstring);
221             break;
222         case TYPE_FUNCTION:
223             /* unlink us from the function node */
224             self->constval.vfunc->vtype = NULL;
225             break;
226         /* NOTE: delete function? currently collected in
227          * the parser structure
228          */
229         default:
230             break;
231         }
232     }
233     ast_expression_delete((ast_expression*)self);
234     mem_d(self);
235 }
236
237 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
238 {
239     return ast_expression_common_params_add(&self->expression, p);
240 }
241
242 bool ast_value_set_name(ast_value *self, const char *name)
243 {
244     if (self->name)
245         mem_d((void*)self->name);
246     self->name = util_strdup(name);
247     return !!self->name;
248 }
249
250 ast_binary* ast_binary_new(lex_ctx ctx, int op,
251                            ast_expression* left, ast_expression* right)
252 {
253     ast_instantiate(ast_binary, ctx, ast_binary_delete);
254     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
255
256     self->op = op;
257     self->left = left;
258     self->right = right;
259
260     if (op >= INSTR_EQ_F && op <= INSTR_GT)
261         self->expression.vtype = TYPE_FLOAT;
262     else if (op == INSTR_AND || op == INSTR_OR ||
263              op == INSTR_BITAND || op == INSTR_BITOR)
264         self->expression.vtype = TYPE_FLOAT;
265     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
266         self->expression.vtype = TYPE_VECTOR;
267     else if (op == INSTR_MUL_V)
268         self->expression.vtype = TYPE_FLOAT;
269     else
270         self->expression.vtype = left->expression.vtype;
271
272     return self;
273 }
274
275 void ast_binary_delete(ast_binary *self)
276 {
277     ast_unref(self->left);
278     ast_unref(self->right);
279     ast_expression_delete((ast_expression*)self);
280     mem_d(self);
281 }
282
283 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
284                                ast_expression* left, ast_expression* right)
285 {
286     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
287     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
288
289     self->opstore = storop;
290     self->opbin   = op;
291     self->dest    = left;
292     self->source  = right;
293
294     self->expression.vtype = left->expression.vtype;
295     if (left->expression.next) {
296         self->expression.next = ast_type_copy(ctx, left);
297         if (!self->expression.next) {
298             ast_delete(self);
299             return NULL;
300         }
301     }
302     else
303         self->expression.next = NULL;
304
305     return self;
306 }
307
308 void ast_binstore_delete(ast_binstore *self)
309 {
310     ast_unref(self->dest);
311     ast_unref(self->source);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_unary* ast_unary_new(lex_ctx ctx, int op,
317                          ast_expression *expr)
318 {
319     ast_instantiate(ast_unary, ctx, ast_unary_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
321
322     self->op = op;
323     self->operand = expr;
324
325     return self;
326 }
327
328 void ast_unary_delete(ast_unary *self)
329 {
330     ast_unref(self->operand);
331     ast_expression_delete((ast_expression*)self);
332     mem_d(self);
333 }
334
335 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
336 {
337     ast_instantiate(ast_return, ctx, ast_return_delete);
338     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
339
340     self->operand = expr;
341
342     return self;
343 }
344
345 void ast_return_delete(ast_return *self)
346 {
347     if (self->operand)
348         ast_unref(self->operand);
349     ast_expression_delete((ast_expression*)self);
350     mem_d(self);
351 }
352
353 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
354 {
355     const ast_expression *outtype;
356
357     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
358
359     if (field->expression.vtype != TYPE_FIELD) {
360         mem_d(self);
361         return NULL;
362     }
363
364     outtype = field->expression.next;
365     if (!outtype) {
366         mem_d(self);
367         /* Error: field has no type... */
368         return NULL;
369     }
370
371     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
372
373     self->expression.vtype = outtype->expression.vtype;
374     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
375
376     self->entity = entity;
377     self->field  = field;
378
379     return self;
380 }
381
382 void ast_entfield_delete(ast_entfield *self)
383 {
384     ast_unref(self->entity);
385     ast_unref(self->field);
386     ast_expression_delete((ast_expression*)self);
387     mem_d(self);
388 }
389
390 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
391 {
392     ast_instantiate(ast_member, ctx, ast_member_delete);
393     if (field >= 3) {
394         mem_d(self);
395         return NULL;
396     }
397
398     if (owner->expression.vtype != TYPE_VECTOR &&
399         owner->expression.vtype != TYPE_FIELD) {
400         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
401         mem_d(self);
402         return NULL;
403     }
404
405     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
406     self->expression.node.keep = true; /* keep */
407
408     if (owner->expression.vtype == TYPE_VECTOR) {
409         self->expression.vtype = TYPE_FLOAT;
410         self->expression.next  = NULL;
411     } else {
412         self->expression.vtype = TYPE_FIELD;
413         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
414     }
415
416     self->owner = owner;
417     self->field = field;
418
419     return self;
420 }
421
422 void ast_member_delete(ast_member *self)
423 {
424     /* The owner is always an ast_value, which has .keep=true,
425      * also: ast_members are usually deleted after the owner, thus
426      * this will cause invalid access
427     ast_unref(self->owner);
428      * once we allow (expression).x to access a vector-member, we need
429      * to change this: preferably by creating an alternate ast node for this
430      * purpose that is not garbage-collected.
431     */
432     ast_expression_delete((ast_expression*)self);
433     mem_d(self);
434 }
435
436 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
437 {
438     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
439     if (!ontrue && !onfalse) {
440         /* because it is invalid */
441         mem_d(self);
442         return NULL;
443     }
444     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
445
446     self->cond     = cond;
447     self->on_true  = ontrue;
448     self->on_false = onfalse;
449
450     return self;
451 }
452
453 void ast_ifthen_delete(ast_ifthen *self)
454 {
455     ast_unref(self->cond);
456     if (self->on_true)
457         ast_unref(self->on_true);
458     if (self->on_false)
459         ast_unref(self->on_false);
460     ast_expression_delete((ast_expression*)self);
461     mem_d(self);
462 }
463
464 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
465 {
466     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
467     /* This time NEITHER must be NULL */
468     if (!ontrue || !onfalse) {
469         mem_d(self);
470         return NULL;
471     }
472     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
473
474     self->cond     = cond;
475     self->on_true  = ontrue;
476     self->on_false = onfalse;
477     self->phi_out  = NULL;
478
479     return self;
480 }
481
482 void ast_ternary_delete(ast_ternary *self)
483 {
484     ast_unref(self->cond);
485     ast_unref(self->on_true);
486     ast_unref(self->on_false);
487     ast_expression_delete((ast_expression*)self);
488     mem_d(self);
489 }
490
491 ast_loop* ast_loop_new(lex_ctx ctx,
492                        ast_expression *initexpr,
493                        ast_expression *precond,
494                        ast_expression *postcond,
495                        ast_expression *increment,
496                        ast_expression *body)
497 {
498     ast_instantiate(ast_loop, ctx, ast_loop_delete);
499     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
500
501     self->initexpr  = initexpr;
502     self->precond   = precond;
503     self->postcond  = postcond;
504     self->increment = increment;
505     self->body      = body;
506
507     return self;
508 }
509
510 void ast_loop_delete(ast_loop *self)
511 {
512     if (self->initexpr)
513         ast_unref(self->initexpr);
514     if (self->precond)
515         ast_unref(self->precond);
516     if (self->postcond)
517         ast_unref(self->postcond);
518     if (self->increment)
519         ast_unref(self->increment);
520     if (self->body)
521         ast_unref(self->body);
522     ast_expression_delete((ast_expression*)self);
523     mem_d(self);
524 }
525
526 ast_call* ast_call_new(lex_ctx ctx,
527                        ast_expression *funcexpr)
528 {
529     ast_instantiate(ast_call, ctx, ast_call_delete);
530     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
531
532     MEM_VECTOR_INIT(self, params);
533
534     self->func = funcexpr;
535
536     return self;
537 }
538 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
539
540 void ast_call_delete(ast_call *self)
541 {
542     size_t i;
543     for (i = 0; i < self->params_count; ++i)
544         ast_unref(self->params[i]);
545     MEM_VECTOR_CLEAR(self, params);
546
547     if (self->func)
548         ast_unref(self->func);
549
550     ast_expression_delete((ast_expression*)self);
551     mem_d(self);
552 }
553
554 ast_store* ast_store_new(lex_ctx ctx, int op,
555                          ast_expression *dest, ast_expression *source)
556 {
557     ast_instantiate(ast_store, ctx, ast_store_delete);
558     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
559
560     self->op = op;
561     self->dest = dest;
562     self->source = source;
563
564     return self;
565 }
566
567 void ast_store_delete(ast_store *self)
568 {
569     ast_unref(self->dest);
570     ast_unref(self->source);
571     ast_expression_delete((ast_expression*)self);
572     mem_d(self);
573 }
574
575 ast_block* ast_block_new(lex_ctx ctx)
576 {
577     ast_instantiate(ast_block, ctx, ast_block_delete);
578     ast_expression_init((ast_expression*)self,
579                         (ast_expression_codegen*)&ast_block_codegen);
580
581     MEM_VECTOR_INIT(self, locals);
582     MEM_VECTOR_INIT(self, exprs);
583     MEM_VECTOR_INIT(self, collect);
584
585     return self;
586 }
587 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
588 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
589 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
590
591 bool ast_block_collect(ast_block *self, ast_expression *expr)
592 {
593     if (!ast_block_collect_add(self, expr))
594         return false;
595     expr->expression.node.keep = true;
596     return true;
597 }
598
599 void ast_block_delete(ast_block *self)
600 {
601     size_t i;
602     for (i = 0; i < self->exprs_count; ++i)
603         ast_unref(self->exprs[i]);
604     MEM_VECTOR_CLEAR(self, exprs);
605     for (i = 0; i < self->locals_count; ++i)
606         ast_delete(self->locals[i]);
607     MEM_VECTOR_CLEAR(self, locals);
608     for (i = 0; i < self->collect_count; ++i)
609         ast_delete(self->collect[i]);
610     MEM_VECTOR_CLEAR(self, collect);
611     ast_expression_delete((ast_expression*)self);
612     mem_d(self);
613 }
614
615 bool ast_block_set_type(ast_block *self, ast_expression *from)
616 {
617     if (self->expression.next)
618         ast_delete(self->expression.next);
619     self->expression.vtype = from->expression.vtype;
620     if (from->expression.next) {
621         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
622         if (!self->expression.next)
623             return false;
624     }
625     else
626         self->expression.next = NULL;
627     return true;
628 }
629
630 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
631 {
632     ast_instantiate(ast_function, ctx, ast_function_delete);
633
634     if (!vtype ||
635         vtype->isconst ||
636         vtype->expression.vtype != TYPE_FUNCTION)
637     {
638         mem_d(self);
639         return NULL;
640     }
641
642     self->vtype = vtype;
643     self->name = name ? util_strdup(name) : NULL;
644     MEM_VECTOR_INIT(self, blocks);
645
646     self->labelcount = 0;
647     self->builtin = 0;
648
649     self->ir_func = NULL;
650     self->curblock = NULL;
651
652     self->breakblock    = NULL;
653     self->continueblock = NULL;
654
655     vtype->isconst = true;
656     vtype->constval.vfunc = self;
657
658     return self;
659 }
660
661 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
662
663 void ast_function_delete(ast_function *self)
664 {
665     size_t i;
666     if (self->name)
667         mem_d((void*)self->name);
668     if (self->vtype) {
669         /* ast_value_delete(self->vtype); */
670         self->vtype->isconst = false;
671         self->vtype->constval.vfunc = NULL;
672         /* We use unref - if it was stored in a global table it is supposed
673          * to be deleted from *there*
674          */
675         ast_unref(self->vtype);
676     }
677     for (i = 0; i < self->blocks_count; ++i)
678         ast_delete(self->blocks[i]);
679     MEM_VECTOR_CLEAR(self, blocks);
680     mem_d(self);
681 }
682
683 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
684 {
685     unsigned int base = 10;
686 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
687 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
688     if (size < 1)
689         return;
690     checknul();
691     if (!num)
692         addch('0');
693     else {
694         while (num)
695         {
696             int digit = num % base;
697             num /= base;
698             addch('0' + digit);
699         }
700     }
701
702     *buf = 0;
703 #undef addch
704 #undef checknul
705 }
706
707 const char* ast_function_label(ast_function *self, const char *prefix)
708 {
709     size_t id = (self->labelcount++);
710     size_t len = strlen(prefix);
711     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
712     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
713     return self->labelbuf;
714 }
715
716 /*********************************************************************/
717 /* AST codegen part
718  * by convention you must never pass NULL to the 'ir_value **out'
719  * parameter. If you really don't care about the output, pass a dummy.
720  * But I can't imagine a pituation where the output is truly unnecessary.
721  */
722
723 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
724 {
725     /* NOTE: This is the codegen for a variable used in an expression.
726      * It is not the codegen to generate the value. For this purpose,
727      * ast_local_codegen and ast_global_codegen are to be used before this
728      * is executed. ast_function_codegen should take care of its locals,
729      * and the ast-user should take care of ast_global_codegen to be used
730      * on all the globals.
731      */
732     if (!self->ir_v) {
733         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
734         return false;
735     }
736     *out = self->ir_v;
737     return true;
738 }
739
740 bool ast_global_codegen(ast_value *self, ir_builder *ir)
741 {
742     ir_value *v = NULL;
743     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
744     {
745         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
746         if (!func)
747             return false;
748
749         self->constval.vfunc->ir_func = func;
750         self->ir_v = func->value;
751         /* The function is filled later on ast_function_codegen... */
752         return true;
753     }
754
755     if (self->expression.vtype == TYPE_FIELD) {
756         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
757         if (!v)
758             return false;
759         if (self->isconst) {
760             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
761             goto error;
762         }
763         self->ir_v = v;
764         return true;
765     }
766
767     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
768     if (!v) {
769         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
770         return false;
771     }
772
773     if (self->isconst) {
774         switch (self->expression.vtype)
775         {
776             case TYPE_FLOAT:
777                 if (!ir_value_set_float(v, self->constval.vfloat))
778                     goto error;
779                 break;
780             case TYPE_VECTOR:
781                 if (!ir_value_set_vector(v, self->constval.vvec))
782                     goto error;
783                 break;
784             case TYPE_STRING:
785                 if (!ir_value_set_string(v, self->constval.vstring))
786                     goto error;
787                 break;
788             case TYPE_FUNCTION:
789                 asterror(ast_ctx(self), "global of type function not properly generated\n");
790                 goto error;
791                 /* Cannot generate an IR value for a function,
792                  * need a pointer pointing to a function rather.
793                  */
794             default:
795                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
796                 break;
797         }
798     }
799
800     /* link us to the ir_value */
801     self->ir_v = v;
802     return true;
803
804 error: /* clean up */
805     ir_value_delete(v);
806     return false;
807 }
808
809 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
810 {
811     ir_value *v = NULL;
812     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
813     {
814         /* Do we allow local functions? I think not...
815          * this is NOT a function pointer atm.
816          */
817         return false;
818     }
819
820     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
821     if (!v)
822         return false;
823
824     /* A constant local... hmmm...
825      * I suppose the IR will have to deal with this
826      */
827     if (self->isconst) {
828         switch (self->expression.vtype)
829         {
830             case TYPE_FLOAT:
831                 if (!ir_value_set_float(v, self->constval.vfloat))
832                     goto error;
833                 break;
834             case TYPE_VECTOR:
835                 if (!ir_value_set_vector(v, self->constval.vvec))
836                     goto error;
837                 break;
838             case TYPE_STRING:
839                 if (!ir_value_set_string(v, self->constval.vstring))
840                     goto error;
841                 break;
842             default:
843                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
844                 break;
845         }
846     }
847
848     /* link us to the ir_value */
849     self->ir_v = v;
850     return true;
851
852 error: /* clean up */
853     ir_value_delete(v);
854     return false;
855 }
856
857 bool ast_function_codegen(ast_function *self, ir_builder *ir)
858 {
859     ir_function *irf;
860     ir_value    *dummy;
861     ast_expression_common *ec;
862     size_t    i;
863
864     irf = self->ir_func;
865     if (!irf) {
866         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
867         return false;
868     }
869
870     /* fill the parameter list */
871     ec = &self->vtype->expression;
872     for (i = 0; i < ec->params_count; ++i)
873     {
874         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
875             return false;
876         if (!self->builtin) {
877             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
878                 return false;
879         }
880     }
881
882     if (self->builtin) {
883         irf->builtin = self->builtin;
884         return true;
885     }
886
887     if (!self->blocks_count) {
888         asterror(ast_ctx(self), "function `%s` has no body", self->name);
889         return false;
890     }
891
892     self->curblock = ir_function_create_block(irf, "entry");
893     if (!self->curblock)
894         return false;
895
896     for (i = 0; i < self->blocks_count; ++i) {
897         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
898         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
899             return false;
900     }
901
902     /* TODO: check return types */
903     if (!self->curblock->is_return)
904     {
905         if (!self->vtype->expression.next ||
906             self->vtype->expression.next->expression.vtype == TYPE_VOID)
907         {
908             return ir_block_create_return(self->curblock, NULL);
909         }
910         else
911         {
912             /* error("missing return"); */
913             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
914             return false;
915         }
916     }
917     return true;
918 }
919
920 /* Note, you will not see ast_block_codegen generate ir_blocks.
921  * To the AST and the IR, blocks are 2 different things.
922  * In the AST it represents a block of code, usually enclosed in
923  * curly braces {...}.
924  * While in the IR it represents a block in terms of control-flow.
925  */
926 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
927 {
928     size_t i;
929
930     /* We don't use this
931      * Note: an ast-representation using the comma-operator
932      * of the form: (a, b, c) = x should not assign to c...
933      */
934     (void)lvalue;
935     if (self->expression.outr) {
936         *out = self->expression.outr;
937         return true;
938     }
939
940     /* output is NULL at first, we'll have each expression
941      * assign to out output, thus, a comma-operator represention
942      * using an ast_block will return the last generated value,
943      * so: (b, c) + a  executed both b and c, and returns c,
944      * which is then added to a.
945      */
946     *out = NULL;
947
948     /* generate locals */
949     for (i = 0; i < self->locals_count; ++i)
950     {
951         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
952             return false;
953     }
954
955     for (i = 0; i < self->exprs_count; ++i)
956     {
957         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
958         if (!(*gen)(self->exprs[i], func, false, out))
959             return false;
960     }
961
962     self->expression.outr = *out;
963
964     return true;
965 }
966
967 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
968 {
969     ast_expression_codegen *cgen;
970     ir_value *left, *right;
971
972     if (lvalue && self->expression.outl) {
973         *out = self->expression.outl;
974         return true;
975     }
976
977     if (!lvalue && self->expression.outr) {
978         *out = self->expression.outr;
979         return true;
980     }
981
982     cgen = self->dest->expression.codegen;
983     /* lvalue! */
984     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
985         return false;
986     self->expression.outl = left;
987
988     cgen = self->source->expression.codegen;
989     /* rvalue! */
990     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
991         return false;
992
993     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
994         return false;
995     self->expression.outr = right;
996
997     /* Theoretically, an assinment returns its left side as an
998      * lvalue, if we don't need an lvalue though, we return
999      * the right side as an rvalue, otherwise we have to
1000      * somehow know whether or not we need to dereference the pointer
1001      * on the left side - that is: OP_LOAD if it was an address.
1002      * Also: in original QC we cannot OP_LOADP *anyway*.
1003      */
1004     *out = (lvalue ? left : right);
1005
1006     return true;
1007 }
1008
1009 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1010 {
1011     ast_expression_codegen *cgen;
1012     ir_value *left, *right;
1013
1014     /* In the context of a binary operation, we can disregard
1015      * the lvalue flag.
1016      */
1017     (void)lvalue;
1018     if (self->expression.outr) {
1019         *out = self->expression.outr;
1020         return true;
1021     }
1022
1023     cgen = self->left->expression.codegen;
1024     /* lvalue! */
1025     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1026         return false;
1027
1028     cgen = self->right->expression.codegen;
1029     /* rvalue! */
1030     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1031         return false;
1032
1033     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1034                                  self->op, left, right);
1035     if (!*out)
1036         return false;
1037     self->expression.outr = *out;
1038
1039     return true;
1040 }
1041
1042 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1043 {
1044     ast_expression_codegen *cgen;
1045     ir_value *leftl, *leftr, *right, *bin;
1046
1047     if (lvalue && self->expression.outl) {
1048         *out = self->expression.outl;
1049         return true;
1050     }
1051
1052     if (!lvalue && self->expression.outr) {
1053         *out = self->expression.outr;
1054         return true;
1055     }
1056
1057     /* for a binstore we need both an lvalue and an rvalue for the left side */
1058     /* rvalue of destination! */
1059     cgen = self->dest->expression.codegen;
1060     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1061         return false;
1062
1063     /* source as rvalue only */
1064     cgen = self->source->expression.codegen;
1065     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1066         return false;
1067
1068     /* now the binary */
1069     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1070                                 self->opbin, leftr, right);
1071     self->expression.outr = bin;
1072
1073     /* now store them */
1074     cgen = self->dest->expression.codegen;
1075     /* lvalue of destination */
1076     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1077         return false;
1078     self->expression.outl = leftl;
1079
1080     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1081         return false;
1082     self->expression.outr = bin;
1083
1084     /* Theoretically, an assinment returns its left side as an
1085      * lvalue, if we don't need an lvalue though, we return
1086      * the right side as an rvalue, otherwise we have to
1087      * somehow know whether or not we need to dereference the pointer
1088      * on the left side - that is: OP_LOAD if it was an address.
1089      * Also: in original QC we cannot OP_LOADP *anyway*.
1090      */
1091     *out = (lvalue ? leftl : bin);
1092
1093     return true;
1094 }
1095
1096 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1097 {
1098     ast_expression_codegen *cgen;
1099     ir_value *operand;
1100
1101     /* In the context of a unary operation, we can disregard
1102      * the lvalue flag.
1103      */
1104     (void)lvalue;
1105     if (self->expression.outr) {
1106         *out = self->expression.outr;
1107         return true;
1108     }
1109
1110     cgen = self->operand->expression.codegen;
1111     /* lvalue! */
1112     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1113         return false;
1114
1115     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1116                                  self->op, operand);
1117     if (!*out)
1118         return false;
1119     self->expression.outr = *out;
1120
1121     return true;
1122 }
1123
1124 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1125 {
1126     ast_expression_codegen *cgen;
1127     ir_value *operand;
1128
1129     /* In the context of a return operation, we can disregard
1130      * the lvalue flag.
1131      */
1132     (void)lvalue;
1133     if (self->expression.outr) {
1134         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1135         return false;
1136     }
1137     self->expression.outr = (ir_value*)1;
1138
1139     if (self->operand) {
1140         cgen = self->operand->expression.codegen;
1141         /* lvalue! */
1142         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1143             return false;
1144
1145         if (!ir_block_create_return(func->curblock, operand))
1146             return false;
1147     } else {
1148         if (!ir_block_create_return(func->curblock, NULL))
1149             return false;
1150     }
1151
1152     return true;
1153 }
1154
1155 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1156 {
1157     ast_expression_codegen *cgen;
1158     ir_value *ent, *field;
1159
1160     /* This function needs to take the 'lvalue' flag into account!
1161      * As lvalue we provide a field-pointer, as rvalue we provide the
1162      * value in a temp.
1163      */
1164
1165     if (lvalue && self->expression.outl) {
1166         *out = self->expression.outl;
1167         return true;
1168     }
1169
1170     if (!lvalue && self->expression.outr) {
1171         *out = self->expression.outr;
1172         return true;
1173     }
1174
1175     cgen = self->entity->expression.codegen;
1176     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1177         return false;
1178
1179     cgen = self->field->expression.codegen;
1180     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1181         return false;
1182
1183     if (lvalue) {
1184         /* address! */
1185         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1186                                             ent, field);
1187     } else {
1188         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1189                                              ent, field, self->expression.vtype);
1190     }
1191     if (!*out) {
1192         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1193                  (lvalue ? "ADDRESS" : "FIELD"),
1194                  type_name[self->expression.vtype]);
1195         return false;
1196     }
1197
1198     if (lvalue)
1199         self->expression.outl = *out;
1200     else
1201         self->expression.outr = *out;
1202
1203     /* Hm that should be it... */
1204     return true;
1205 }
1206
1207 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1208 {
1209     ast_expression_codegen *cgen;
1210     ir_value *vec;
1211
1212     /* in QC this is always an lvalue */
1213     (void)lvalue;
1214     if (self->expression.outl) {
1215         *out = self->expression.outl;
1216         return true;
1217     }
1218
1219     cgen = self->owner->expression.codegen;
1220     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1221         return false;
1222
1223     if (vec->vtype != TYPE_VECTOR &&
1224         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1225     {
1226         return false;
1227     }
1228
1229     *out = ir_value_vector_member(vec, self->field);
1230     self->expression.outl = *out;
1231
1232     return (*out != NULL);
1233 }
1234
1235 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1236 {
1237     ast_expression_codegen *cgen;
1238
1239     ir_value *condval;
1240     ir_value *dummy;
1241
1242     ir_block *cond = func->curblock;
1243     ir_block *ontrue;
1244     ir_block *onfalse;
1245     ir_block *merge;
1246
1247     /* We don't output any value, thus also don't care about r/lvalue */
1248     (void)out;
1249     (void)lvalue;
1250
1251     if (self->expression.outr) {
1252         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1253         return false;
1254     }
1255     self->expression.outr = (ir_value*)1;
1256
1257     /* generate the condition */
1258     func->curblock = cond;
1259     cgen = self->cond->expression.codegen;
1260     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1261         return false;
1262
1263     /* on-true path */
1264
1265     if (self->on_true) {
1266         /* create on-true block */
1267         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1268         if (!ontrue)
1269             return false;
1270
1271         /* enter the block */
1272         func->curblock = ontrue;
1273
1274         /* generate */
1275         cgen = self->on_true->expression.codegen;
1276         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1277             return false;
1278     } else
1279         ontrue = NULL;
1280
1281     /* on-false path */
1282     if (self->on_false) {
1283         /* create on-false block */
1284         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1285         if (!onfalse)
1286             return false;
1287
1288         /* enter the block */
1289         func->curblock = onfalse;
1290
1291         /* generate */
1292         cgen = self->on_false->expression.codegen;
1293         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1294             return false;
1295     } else
1296         onfalse = NULL;
1297
1298     /* Merge block were they all merge in to */
1299     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1300     if (!merge)
1301         return false;
1302
1303     /* add jumps ot the merge block */
1304     if (ontrue && !ir_block_create_jump(ontrue, merge))
1305         return false;
1306     if (onfalse && !ir_block_create_jump(onfalse, merge))
1307         return false;
1308
1309     /* we create the if here, that way all blocks are ordered :)
1310      */
1311     if (!ir_block_create_if(cond, condval,
1312                             (ontrue  ? ontrue  : merge),
1313                             (onfalse ? onfalse : merge)))
1314     {
1315         return false;
1316     }
1317
1318     /* Now enter the merge block */
1319     func->curblock = merge;
1320
1321     return true;
1322 }
1323
1324 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1325 {
1326     ast_expression_codegen *cgen;
1327
1328     ir_value *condval;
1329     ir_value *trueval, *falseval;
1330     ir_instr *phi;
1331
1332     ir_block *cond = func->curblock;
1333     ir_block *ontrue;
1334     ir_block *onfalse;
1335     ir_block *merge;
1336
1337     /* Ternary can never create an lvalue... */
1338     if (lvalue)
1339         return false;
1340
1341     /* In theory it shouldn't be possible to pass through a node twice, but
1342      * in case we add any kind of optimization pass for the AST itself, it
1343      * may still happen, thus we remember a created ir_value and simply return one
1344      * if it already exists.
1345      */
1346     if (self->phi_out) {
1347         *out = self->phi_out;
1348         return true;
1349     }
1350
1351     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1352
1353     /* generate the condition */
1354     func->curblock = cond;
1355     cgen = self->cond->expression.codegen;
1356     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1357         return false;
1358
1359     /* create on-true block */
1360     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1361     if (!ontrue)
1362         return false;
1363     else
1364     {
1365         /* enter the block */
1366         func->curblock = ontrue;
1367
1368         /* generate */
1369         cgen = self->on_true->expression.codegen;
1370         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1371             return false;
1372     }
1373
1374     /* create on-false block */
1375     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1376     if (!onfalse)
1377         return false;
1378     else
1379     {
1380         /* enter the block */
1381         func->curblock = onfalse;
1382
1383         /* generate */
1384         cgen = self->on_false->expression.codegen;
1385         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1386             return false;
1387     }
1388
1389     /* create merge block */
1390     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1391     if (!merge)
1392         return false;
1393     /* jump to merge block */
1394     if (!ir_block_create_jump(ontrue, merge))
1395         return false;
1396     if (!ir_block_create_jump(onfalse, merge))
1397         return false;
1398
1399     /* create if instruction */
1400     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1401         return false;
1402
1403     /* Now enter the merge block */
1404     func->curblock = merge;
1405
1406     /* Here, now, we need a PHI node
1407      * but first some sanity checking...
1408      */
1409     if (trueval->vtype != falseval->vtype) {
1410         /* error("ternary with different types on the two sides"); */
1411         return false;
1412     }
1413
1414     /* create PHI */
1415     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1416     if (!phi ||
1417         !ir_phi_add(phi, ontrue,  trueval) ||
1418         !ir_phi_add(phi, onfalse, falseval))
1419     {
1420         return false;
1421     }
1422
1423     self->phi_out = ir_phi_value(phi);
1424     *out = self->phi_out;
1425
1426     return true;
1427 }
1428
1429 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1430 {
1431     ast_expression_codegen *cgen;
1432
1433     ir_value *dummy      = NULL;
1434     ir_value *precond    = NULL;
1435     ir_value *postcond   = NULL;
1436
1437     /* Since we insert some jumps "late" so we have blocks
1438      * ordered "nicely", we need to keep track of the actual end-blocks
1439      * of expressions to add the jumps to.
1440      */
1441     ir_block *bbody      = NULL, *end_bbody      = NULL;
1442     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1443     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1444     ir_block *bincrement = NULL, *end_bincrement = NULL;
1445     ir_block *bout       = NULL, *bin            = NULL;
1446
1447     /* let's at least move the outgoing block to the end */
1448     size_t    bout_id;
1449
1450     /* 'break' and 'continue' need to be able to find the right blocks */
1451     ir_block *bcontinue     = NULL;
1452     ir_block *bbreak        = NULL;
1453
1454     ir_block *old_bcontinue = NULL;
1455     ir_block *old_bbreak    = NULL;
1456
1457     ir_block *tmpblock      = NULL;
1458
1459     (void)lvalue;
1460     (void)out;
1461
1462     if (self->expression.outr) {
1463         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1464         return false;
1465     }
1466     self->expression.outr = (ir_value*)1;
1467
1468     /* NOTE:
1469      * Should we ever need some kind of block ordering, better make this function
1470      * move blocks around than write a block ordering algorithm later... after all
1471      * the ast and ir should work together, not against each other.
1472      */
1473
1474     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1475      * anyway if for example it contains a ternary.
1476      */
1477     if (self->initexpr)
1478     {
1479         cgen = self->initexpr->expression.codegen;
1480         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1481             return false;
1482     }
1483
1484     /* Store the block from which we enter this chaos */
1485     bin = func->curblock;
1486
1487     /* The pre-loop condition needs its own block since we
1488      * need to be able to jump to the start of that expression.
1489      */
1490     if (self->precond)
1491     {
1492         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1493         if (!bprecond)
1494             return false;
1495
1496         /* the pre-loop-condition the least important place to 'continue' at */
1497         bcontinue = bprecond;
1498
1499         /* enter */
1500         func->curblock = bprecond;
1501
1502         /* generate */
1503         cgen = self->precond->expression.codegen;
1504         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1505             return false;
1506
1507         end_bprecond = func->curblock;
1508     } else {
1509         bprecond = end_bprecond = NULL;
1510     }
1511
1512     /* Now the next blocks won't be ordered nicely, but we need to
1513      * generate them this early for 'break' and 'continue'.
1514      */
1515     if (self->increment) {
1516         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1517         if (!bincrement)
1518             return false;
1519         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1520     } else {
1521         bincrement = end_bincrement = NULL;
1522     }
1523
1524     if (self->postcond) {
1525         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1526         if (!bpostcond)
1527             return false;
1528         bcontinue = bpostcond; /* postcond comes before the increment */
1529     } else {
1530         bpostcond = end_bpostcond = NULL;
1531     }
1532
1533     bout_id = func->ir_func->blocks_count;
1534     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1535     if (!bout)
1536         return false;
1537     bbreak = bout;
1538
1539     /* The loop body... */
1540     if (self->body)
1541     {
1542         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1543         if (!bbody)
1544             return false;
1545
1546         /* enter */
1547         func->curblock = bbody;
1548
1549         old_bbreak          = func->breakblock;
1550         old_bcontinue       = func->continueblock;
1551         func->breakblock    = bbreak;
1552         func->continueblock = bcontinue;
1553
1554         /* generate */
1555         cgen = self->body->expression.codegen;
1556         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1557             return false;
1558
1559         end_bbody = func->curblock;
1560         func->breakblock    = old_bbreak;
1561         func->continueblock = old_bcontinue;
1562     }
1563
1564     /* post-loop-condition */
1565     if (self->postcond)
1566     {
1567         /* enter */
1568         func->curblock = bpostcond;
1569
1570         /* generate */
1571         cgen = self->postcond->expression.codegen;
1572         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1573             return false;
1574
1575         end_bpostcond = func->curblock;
1576     }
1577
1578     /* The incrementor */
1579     if (self->increment)
1580     {
1581         /* enter */
1582         func->curblock = bincrement;
1583
1584         /* generate */
1585         cgen = self->increment->expression.codegen;
1586         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1587             return false;
1588
1589         end_bincrement = func->curblock;
1590     }
1591
1592     /* In any case now, we continue from the outgoing block */
1593     func->curblock = bout;
1594
1595     /* Now all blocks are in place */
1596     /* From 'bin' we jump to whatever comes first */
1597     if      (bprecond)   tmpblock = bprecond;
1598     else if (bbody)      tmpblock = bbody;
1599     else if (bpostcond)  tmpblock = bpostcond;
1600     else                 tmpblock = bout;
1601     if (!ir_block_create_jump(bin, tmpblock))
1602         return false;
1603
1604     /* From precond */
1605     if (bprecond)
1606     {
1607         ir_block *ontrue, *onfalse;
1608         if      (bbody)      ontrue = bbody;
1609         else if (bincrement) ontrue = bincrement;
1610         else if (bpostcond)  ontrue = bpostcond;
1611         else                 ontrue = bprecond;
1612         onfalse = bout;
1613         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1614             return false;
1615     }
1616
1617     /* from body */
1618     if (bbody)
1619     {
1620         if      (bincrement) tmpblock = bincrement;
1621         else if (bpostcond)  tmpblock = bpostcond;
1622         else if (bprecond)   tmpblock = bprecond;
1623         else                 tmpblock = bout;
1624         if (!ir_block_create_jump(end_bbody, tmpblock))
1625             return false;
1626     }
1627
1628     /* from increment */
1629     if (bincrement)
1630     {
1631         if      (bpostcond)  tmpblock = bpostcond;
1632         else if (bprecond)   tmpblock = bprecond;
1633         else if (bbody)      tmpblock = bbody;
1634         else                 tmpblock = bout;
1635         if (!ir_block_create_jump(end_bincrement, tmpblock))
1636             return false;
1637     }
1638
1639     /* from postcond */
1640     if (bpostcond)
1641     {
1642         ir_block *ontrue, *onfalse;
1643         if      (bprecond)   ontrue = bprecond;
1644         else if (bbody)      ontrue = bbody;
1645         else if (bincrement) ontrue = bincrement;
1646         else                 ontrue = bpostcond;
1647         onfalse = bout;
1648         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1649             return false;
1650     }
1651
1652     /* Move 'bout' to the end */
1653     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1654         !ir_function_blocks_add(func->ir_func, bout))
1655     {
1656         ir_block_delete(bout);
1657         return false;
1658     }
1659
1660     return true;
1661 }
1662
1663 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1664 {
1665     ast_expression_codegen *cgen;
1666     ir_value_vector         params;
1667     ir_instr               *callinstr;
1668     size_t i;
1669
1670     ir_value *funval = NULL;
1671
1672     /* return values are never lvalues */
1673     (void)lvalue;
1674
1675     if (self->expression.outr) {
1676         *out = self->expression.outr;
1677         return true;
1678     }
1679
1680     cgen = self->func->expression.codegen;
1681     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1682         return false;
1683     if (!funval)
1684         return false;
1685
1686     MEM_VECTOR_INIT(&params, v);
1687
1688     /* parameters */
1689     for (i = 0; i < self->params_count; ++i)
1690     {
1691         ir_value *param;
1692         ast_expression *expr = self->params[i];
1693
1694         cgen = expr->expression.codegen;
1695         if (!(*cgen)(expr, func, false, &param))
1696             goto error;
1697         if (!param)
1698             goto error;
1699         if (!ir_value_vector_v_add(&params, param))
1700             goto error;
1701     }
1702
1703     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1704     if (!callinstr)
1705         goto error;
1706
1707     for (i = 0; i < params.v_count; ++i) {
1708         if (!ir_call_param(callinstr, params.v[i]))
1709             goto error;
1710     }
1711
1712     *out = ir_call_value(callinstr);
1713     self->expression.outr = *out;
1714
1715     MEM_VECTOR_CLEAR(&params, v);
1716     return true;
1717 error:
1718     MEM_VECTOR_CLEAR(&params, v);
1719     return false;
1720 }