]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Merge branch 'master' into blub/bc3
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     if (op >= INSTR_EQ_F && op <= INSTR_GT)
174         self->expression.vtype = TYPE_FLOAT;
175     else if (op == INSTR_AND || op == INSTR_OR ||
176              op == INSTR_BITAND || op == INSTR_BITOR)
177         self->expression.vtype = TYPE_FLOAT;
178     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
179         self->expression.vtype = TYPE_VECTOR;
180     else if (op == INSTR_MUL_V)
181         self->expression.vtype = TYPE_FLOAT;
182     else
183         self->expression.vtype = left->expression.vtype;
184
185     return self;
186 }
187
188 void ast_binary_delete(ast_binary *self)
189 {
190     ast_unref(self->left);
191     ast_unref(self->right);
192     ast_expression_delete((ast_expression*)self);
193     mem_d(self);
194 }
195
196 ast_unary* ast_unary_new(lex_ctx ctx, int op,
197                          ast_expression *expr)
198 {
199     ast_instantiate(ast_unary, ctx, ast_unary_delete);
200     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
201
202     self->op = op;
203     self->operand = expr;
204
205     return self;
206 }
207
208 void ast_unary_delete(ast_unary *self)
209 {
210     ast_unref(self->operand);
211     ast_expression_delete((ast_expression*)self);
212     mem_d(self);
213 }
214
215 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
216 {
217     ast_instantiate(ast_return, ctx, ast_return_delete);
218     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
219
220     self->operand = expr;
221
222     return self;
223 }
224
225 void ast_return_delete(ast_return *self)
226 {
227     ast_unref(self->operand);
228     ast_expression_delete((ast_expression*)self);
229     mem_d(self);
230 }
231
232 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
233 {
234     const ast_expression *outtype;
235
236     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
237
238     if (field->expression.vtype != TYPE_FIELD) {
239         mem_d(self);
240         return NULL;
241     }
242
243     outtype = field->expression.next;
244     if (!outtype) {
245         mem_d(self);
246         /* Error: field has no type... */
247         return NULL;
248     }
249
250     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
251
252     self->expression.vtype = outtype->expression.vtype;
253     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
254
255     self->entity = entity;
256     self->field  = field;
257
258     return self;
259 }
260
261 void ast_entfield_delete(ast_entfield *self)
262 {
263     ast_unref(self->entity);
264     ast_unref(self->field);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
270 {
271     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
272     if (!ontrue && !onfalse) {
273         /* because it is invalid */
274         mem_d(self);
275         return NULL;
276     }
277     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
278
279     self->cond     = cond;
280     self->on_true  = ontrue;
281     self->on_false = onfalse;
282
283     return self;
284 }
285
286 void ast_ifthen_delete(ast_ifthen *self)
287 {
288     ast_unref(self->cond);
289     if (self->on_true)
290         ast_unref(self->on_true);
291     if (self->on_false)
292         ast_unref(self->on_false);
293     ast_expression_delete((ast_expression*)self);
294     mem_d(self);
295 }
296
297 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
298 {
299     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
300     /* This time NEITHER must be NULL */
301     if (!ontrue || !onfalse) {
302         mem_d(self);
303         return NULL;
304     }
305     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
306
307     self->cond     = cond;
308     self->on_true  = ontrue;
309     self->on_false = onfalse;
310     self->phi_out  = NULL;
311
312     return self;
313 }
314
315 void ast_ternary_delete(ast_ternary *self)
316 {
317     ast_unref(self->cond);
318     ast_unref(self->on_true);
319     ast_unref(self->on_false);
320     ast_expression_delete((ast_expression*)self);
321     mem_d(self);
322 }
323
324 ast_loop* ast_loop_new(lex_ctx ctx,
325                        ast_expression *initexpr,
326                        ast_expression *precond,
327                        ast_expression *postcond,
328                        ast_expression *increment,
329                        ast_expression *body)
330 {
331     ast_instantiate(ast_loop, ctx, ast_loop_delete);
332     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
333
334     self->initexpr  = initexpr;
335     self->precond   = precond;
336     self->postcond  = postcond;
337     self->increment = increment;
338     self->body      = body;
339
340     return self;
341 }
342
343 void ast_loop_delete(ast_loop *self)
344 {
345     if (self->initexpr)
346         ast_unref(self->initexpr);
347     if (self->precond)
348         ast_unref(self->precond);
349     if (self->postcond)
350         ast_unref(self->postcond);
351     if (self->increment)
352         ast_unref(self->increment);
353     if (self->body)
354         ast_unref(self->body);
355     ast_expression_delete((ast_expression*)self);
356     mem_d(self);
357 }
358
359 ast_call* ast_call_new(lex_ctx ctx,
360                        ast_expression *funcexpr)
361 {
362     ast_instantiate(ast_call, ctx, ast_call_delete);
363     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
364
365     MEM_VECTOR_INIT(self, params);
366
367     self->func = funcexpr;
368
369     return self;
370 }
371 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
372
373 void ast_call_delete(ast_call *self)
374 {
375     size_t i;
376     for (i = 0; i < self->params_count; ++i)
377         ast_unref(self->params[i]);
378     MEM_VECTOR_CLEAR(self, params);
379
380     if (self->func)
381         ast_unref(self->func);
382
383     ast_expression_delete((ast_expression*)self);
384     mem_d(self);
385 }
386
387 ast_store* ast_store_new(lex_ctx ctx, int op,
388                          ast_value *dest, ast_expression *source)
389 {
390     ast_instantiate(ast_store, ctx, ast_store_delete);
391     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
392
393     self->op = op;
394     self->dest = dest;
395     self->source = source;
396
397     return self;
398 }
399
400 void ast_store_delete(ast_store *self)
401 {
402     ast_unref(self->dest);
403     ast_unref(self->source);
404     ast_expression_delete((ast_expression*)self);
405     mem_d(self);
406 }
407
408 ast_block* ast_block_new(lex_ctx ctx)
409 {
410     ast_instantiate(ast_block, ctx, ast_block_delete);
411     ast_expression_init((ast_expression*)self,
412                         (ast_expression_codegen*)&ast_block_codegen);
413
414     MEM_VECTOR_INIT(self, locals);
415     MEM_VECTOR_INIT(self, exprs);
416
417     return self;
418 }
419 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
420 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
421
422 void ast_block_delete(ast_block *self)
423 {
424     size_t i;
425     for (i = 0; i < self->exprs_count; ++i)
426         ast_unref(self->exprs[i]);
427     MEM_VECTOR_CLEAR(self, exprs);
428     for (i = 0; i < self->locals_count; ++i)
429         ast_delete(self->locals[i]);
430     MEM_VECTOR_CLEAR(self, locals);
431     ast_expression_delete((ast_expression*)self);
432     mem_d(self);
433 }
434
435 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
436 {
437     ast_instantiate(ast_function, ctx, ast_function_delete);
438
439     if (!vtype ||
440         vtype->isconst ||
441         vtype->expression.vtype != TYPE_FUNCTION)
442     {
443         mem_d(self);
444         return NULL;
445     }
446
447     self->vtype = vtype;
448     self->name = name ? util_strdup(name) : NULL;
449     MEM_VECTOR_INIT(self, blocks);
450
451     self->labelcount = 0;
452     self->builtin = 0;
453
454     self->ir_func = NULL;
455     self->curblock = NULL;
456
457     self->breakblock    = NULL;
458     self->continueblock = NULL;
459
460     vtype->isconst = true;
461     vtype->constval.vfunc = self;
462
463     return self;
464 }
465
466 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
467
468 void ast_function_delete(ast_function *self)
469 {
470     size_t i;
471     if (self->name)
472         mem_d((void*)self->name);
473     if (self->vtype) {
474         /* ast_value_delete(self->vtype); */
475         self->vtype->isconst = false;
476         self->vtype->constval.vfunc = NULL;
477         /* We use unref - if it was stored in a global table it is supposed
478          * to be deleted from *there*
479          */
480         ast_unref(self->vtype);
481     }
482     for (i = 0; i < self->blocks_count; ++i)
483         ast_delete(self->blocks[i]);
484     MEM_VECTOR_CLEAR(self, blocks);
485     mem_d(self);
486 }
487
488 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
489 {
490     unsigned int base = 10;
491 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
492 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
493     if (size < 1)
494         return;
495     checknul();
496     if (!num)
497         addch('0');
498     else {
499         while (num)
500         {
501             int digit = num % base;
502             num /= base;
503             addch('0' + digit);
504         }
505     }
506
507     *buf = 0;
508 #undef addch
509 #undef checknul
510 }
511
512 const char* ast_function_label(ast_function *self, const char *prefix)
513 {
514     size_t id = (self->labelcount++);
515     size_t len = strlen(prefix);
516     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
517     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
518     return self->labelbuf;
519 }
520
521 /*********************************************************************/
522 /* AST codegen part
523  * by convention you must never pass NULL to the 'ir_value **out'
524  * parameter. If you really don't care about the output, pass a dummy.
525  * But I can't imagine a pituation where the output is truly unnecessary.
526  */
527
528 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
529 {
530     /* NOTE: This is the codegen for a variable used in an expression.
531      * It is not the codegen to generate the value. For this purpose,
532      * ast_local_codegen and ast_global_codegen are to be used before this
533      * is executed. ast_function_codegen should take care of its locals,
534      * and the ast-user should take care of ast_global_codegen to be used
535      * on all the globals.
536      */
537     if (!self->ir_v) {
538         printf("ast_value used before generated (%s)\n", self->name);
539         return false;
540     }
541     *out = self->ir_v;
542     return true;
543 }
544
545 bool ast_global_codegen(ast_value *self, ir_builder *ir)
546 {
547     ir_value *v = NULL;
548     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
549     {
550         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
551         if (!func)
552             return false;
553
554         self->constval.vfunc->ir_func = func;
555         self->ir_v = func->value;
556         /* The function is filled later on ast_function_codegen... */
557         return true;
558     }
559
560     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
561     if (!v) {
562         printf("ir_builder_create_global failed\n");
563         return false;
564     }
565
566     if (self->isconst) {
567         switch (self->expression.vtype)
568         {
569             case TYPE_FLOAT:
570                 if (!ir_value_set_float(v, self->constval.vfloat))
571                     goto error;
572                 break;
573             case TYPE_VECTOR:
574                 if (!ir_value_set_vector(v, self->constval.vvec))
575                     goto error;
576                 break;
577             case TYPE_STRING:
578                 if (!ir_value_set_string(v, self->constval.vstring))
579                     goto error;
580                 break;
581             case TYPE_FUNCTION:
582                 printf("global of type function not properly generated\n");
583                 goto error;
584                 /* Cannot generate an IR value for a function,
585                  * need a pointer pointing to a function rather.
586                  */
587             default:
588                 printf("TODO: global constant type %i\n", self->expression.vtype);
589                 break;
590         }
591     }
592
593     /* link us to the ir_value */
594     self->ir_v = v;
595     return true;
596
597 error: /* clean up */
598     ir_value_delete(v);
599     return false;
600 }
601
602 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
603 {
604     ir_value *v = NULL;
605     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
606     {
607         /* Do we allow local functions? I think not...
608          * this is NOT a function pointer atm.
609          */
610         return false;
611     }
612
613     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
614     if (!v)
615         return false;
616
617     /* A constant local... hmmm...
618      * I suppose the IR will have to deal with this
619      */
620     if (self->isconst) {
621         switch (self->expression.vtype)
622         {
623             case TYPE_FLOAT:
624                 if (!ir_value_set_float(v, self->constval.vfloat))
625                     goto error;
626                 break;
627             case TYPE_VECTOR:
628                 if (!ir_value_set_vector(v, self->constval.vvec))
629                     goto error;
630                 break;
631             case TYPE_STRING:
632                 if (!ir_value_set_string(v, self->constval.vstring))
633                     goto error;
634                 break;
635             default:
636                 printf("TODO: global constant type %i\n", self->expression.vtype);
637                 break;
638         }
639     }
640
641     /* link us to the ir_value */
642     self->ir_v = v;
643     return true;
644
645 error: /* clean up */
646     ir_value_delete(v);
647     return false;
648 }
649
650 bool ast_function_codegen(ast_function *self, ir_builder *ir)
651 {
652     ir_function *irf;
653     ir_value    *dummy;
654     size_t    i;
655
656     irf = self->ir_func;
657     if (!irf) {
658         printf("ast_function's related ast_value was not generated yet\n");
659         return false;
660     }
661
662     /* fill the parameter list */
663     for (i = 0; i < self->vtype->params_count; ++i)
664     {
665         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
666             return false;
667         if (!self->builtin) {
668             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
669                 return false;
670         }
671     }
672
673     if (self->builtin) {
674         irf->builtin = self->builtin;
675         return true;
676     }
677
678     self->curblock = ir_function_create_block(irf, "entry");
679     if (!self->curblock)
680         return false;
681
682     for (i = 0; i < self->blocks_count; ++i) {
683         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
684         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
685             return false;
686     }
687
688     /* TODO: check return types */
689     if (!self->curblock->is_return)
690     {
691         if (!self->vtype->expression.next ||
692             self->vtype->expression.next->expression.vtype == TYPE_VOID)
693         {
694             return ir_block_create_return(self->curblock, NULL);
695         }
696         else
697         {
698             /* error("missing return"); */
699             return false;
700         }
701     }
702     return true;
703 }
704
705 /* Note, you will not see ast_block_codegen generate ir_blocks.
706  * To the AST and the IR, blocks are 2 different things.
707  * In the AST it represents a block of code, usually enclosed in
708  * curly braces {...}.
709  * While in the IR it represents a block in terms of control-flow.
710  */
711 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
712 {
713     size_t i;
714
715     /* We don't use this
716      * Note: an ast-representation using the comma-operator
717      * of the form: (a, b, c) = x should not assign to c...
718      */
719     (void)lvalue;
720
721     /* output is NULL at first, we'll have each expression
722      * assign to out output, thus, a comma-operator represention
723      * using an ast_block will return the last generated value,
724      * so: (b, c) + a  executed both b and c, and returns c,
725      * which is then added to a.
726      */
727     *out = NULL;
728
729     /* generate locals */
730     for (i = 0; i < self->locals_count; ++i)
731     {
732         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
733             return false;
734     }
735
736     for (i = 0; i < self->exprs_count; ++i)
737     {
738         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
739         if (!(*gen)(self->exprs[i], func, false, out))
740             return false;
741     }
742
743     return true;
744 }
745
746 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
747 {
748     ast_expression_codegen *cgen;
749     ir_value *left, *right;
750
751     cgen = self->dest->expression.codegen;
752     /* lvalue! */
753     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
754         return false;
755
756     cgen = self->source->expression.codegen;
757     /* rvalue! */
758     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
759         return false;
760
761     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
762         return false;
763
764     /* Theoretically, an assinment returns its left side as an
765      * lvalue, if we don't need an lvalue though, we return
766      * the right side as an rvalue, otherwise we have to
767      * somehow know whether or not we need to dereference the pointer
768      * on the left side - that is: OP_LOAD if it was an address.
769      * Also: in original QC we cannot OP_LOADP *anyway*.
770      */
771     *out = (lvalue ? left : right);
772
773     return true;
774 }
775
776 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
777 {
778     ast_expression_codegen *cgen;
779     ir_value *left, *right;
780
781     /* In the context of a binary operation, we can disregard
782      * the lvalue flag.
783      */
784      (void)lvalue;
785
786     cgen = self->left->expression.codegen;
787     /* lvalue! */
788     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
789         return false;
790
791     cgen = self->right->expression.codegen;
792     /* rvalue! */
793     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
794         return false;
795
796     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
797                                  self->op, left, right);
798     if (!*out)
799         return false;
800
801     return true;
802 }
803
804 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
805 {
806     ast_expression_codegen *cgen;
807     ir_value *operand;
808
809     /* In the context of a unary operation, we can disregard
810      * the lvalue flag.
811      */
812     (void)lvalue;
813
814     cgen = self->operand->expression.codegen;
815     /* lvalue! */
816     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
817         return false;
818
819     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
820                                  self->op, operand);
821     if (!*out)
822         return false;
823
824     return true;
825 }
826
827 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
828 {
829     ast_expression_codegen *cgen;
830     ir_value *operand;
831
832     /* In the context of a return operation, we can disregard
833      * the lvalue flag.
834      */
835     (void)lvalue;
836
837     cgen = self->operand->expression.codegen;
838     /* lvalue! */
839     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
840         return false;
841
842     if (!ir_block_create_return(func->curblock, operand))
843         return false;
844
845     return true;
846 }
847
848 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
849 {
850     ast_expression_codegen *cgen;
851     ir_value *ent, *field;
852
853     /* This function needs to take the 'lvalue' flag into account!
854      * As lvalue we provide a field-pointer, as rvalue we provide the
855      * value in a temp.
856      */
857
858     cgen = self->entity->expression.codegen;
859     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
860         return false;
861
862     cgen = self->field->expression.codegen;
863     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
864         return false;
865
866     if (lvalue) {
867         /* address! */
868         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
869                                             ent, field);
870     } else {
871         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
872                                              ent, field, self->expression.vtype);
873     }
874     if (!*out)
875         return false;
876
877     /* Hm that should be it... */
878     return true;
879 }
880
881 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
882 {
883     ast_expression_codegen *cgen;
884
885     ir_value *condval;
886     ir_value *dummy;
887
888     ir_block *cond = func->curblock;
889     ir_block *ontrue;
890     ir_block *onfalse;
891     ir_block *merge;
892
893     /* We don't output any value, thus also don't care about r/lvalue */
894     (void)out;
895     (void)lvalue;
896
897     /* generate the condition */
898     func->curblock = cond;
899     cgen = self->cond->expression.codegen;
900     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
901         return false;
902
903     /* on-true path */
904
905     if (self->on_true) {
906         /* create on-true block */
907         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
908         if (!ontrue)
909             return false;
910
911         /* enter the block */
912         func->curblock = ontrue;
913
914         /* generate */
915         cgen = self->on_true->expression.codegen;
916         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
917             return false;
918     } else
919         ontrue = NULL;
920
921     /* on-false path */
922     if (self->on_false) {
923         /* create on-false block */
924         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
925         if (!onfalse)
926             return false;
927
928         /* enter the block */
929         func->curblock = onfalse;
930
931         /* generate */
932         cgen = self->on_false->expression.codegen;
933         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
934             return false;
935     } else
936         onfalse = NULL;
937
938     /* Merge block were they all merge in to */
939     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
940     if (!merge)
941         return false;
942
943     /* add jumps ot the merge block */
944     if (ontrue && !ir_block_create_jump(ontrue, merge))
945         return false;
946     if (onfalse && !ir_block_create_jump(onfalse, merge))
947         return false;
948
949     /* we create the if here, that way all blocks are ordered :)
950      */
951     if (!ir_block_create_if(cond, condval,
952                             (ontrue  ? ontrue  : merge),
953                             (onfalse ? onfalse : merge)))
954     {
955         return false;
956     }
957
958     /* Now enter the merge block */
959     func->curblock = merge;
960
961     return true;
962 }
963
964 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
965 {
966     ast_expression_codegen *cgen;
967
968     ir_value *condval;
969     ir_value *trueval, *falseval;
970     ir_instr *phi;
971
972     ir_block *cond = func->curblock;
973     ir_block *ontrue;
974     ir_block *onfalse;
975     ir_block *merge;
976
977     /* In theory it shouldn't be possible to pass through a node twice, but
978      * in case we add any kind of optimization pass for the AST itself, it
979      * may still happen, thus we remember a created ir_value and simply return one
980      * if it already exists.
981      */
982     if (self->phi_out) {
983         *out = self->phi_out;
984         return true;
985     }
986
987     /* Ternary can never create an lvalue... */
988     if (lvalue)
989         return false;
990
991     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
992
993     /* generate the condition */
994     func->curblock = cond;
995     cgen = self->cond->expression.codegen;
996     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
997         return false;
998
999     /* create on-true block */
1000     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1001     if (!ontrue)
1002         return false;
1003     else
1004     {
1005         /* enter the block */
1006         func->curblock = ontrue;
1007
1008         /* generate */
1009         cgen = self->on_true->expression.codegen;
1010         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1011             return false;
1012     }
1013
1014     /* create on-false block */
1015     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1016     if (!onfalse)
1017         return false;
1018     else
1019     {
1020         /* enter the block */
1021         func->curblock = onfalse;
1022
1023         /* generate */
1024         cgen = self->on_false->expression.codegen;
1025         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1026             return false;
1027     }
1028
1029     /* create merge block */
1030     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1031     if (!merge)
1032         return false;
1033     /* jump to merge block */
1034     if (!ir_block_create_jump(ontrue, merge))
1035         return false;
1036     if (!ir_block_create_jump(onfalse, merge))
1037         return false;
1038
1039     /* create if instruction */
1040     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1041         return false;
1042
1043     /* Now enter the merge block */
1044     func->curblock = merge;
1045
1046     /* Here, now, we need a PHI node
1047      * but first some sanity checking...
1048      */
1049     if (trueval->vtype != falseval->vtype) {
1050         /* error("ternary with different types on the two sides"); */
1051         return false;
1052     }
1053
1054     /* create PHI */
1055     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1056     if (!phi ||
1057         !ir_phi_add(phi, ontrue,  trueval) ||
1058         !ir_phi_add(phi, onfalse, falseval))
1059     {
1060         return false;
1061     }
1062
1063     self->phi_out = ir_phi_value(phi);
1064     *out = self->phi_out;
1065
1066     return true;
1067 }
1068
1069 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1070 {
1071     ast_expression_codegen *cgen;
1072
1073     ir_value *dummy      = NULL;
1074     ir_value *precond    = NULL;
1075     ir_value *postcond   = NULL;
1076
1077     /* Since we insert some jumps "late" so we have blocks
1078      * ordered "nicely", we need to keep track of the actual end-blocks
1079      * of expressions to add the jumps to.
1080      */
1081     ir_block *bbody      = NULL, *end_bbody      = NULL;
1082     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1083     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1084     ir_block *bincrement = NULL, *end_bincrement = NULL;
1085     ir_block *bout       = NULL, *bin            = NULL;
1086
1087     /* let's at least move the outgoing block to the end */
1088     size_t    bout_id;
1089
1090     /* 'break' and 'continue' need to be able to find the right blocks */
1091     ir_block *bcontinue     = NULL;
1092     ir_block *bbreak        = NULL;
1093
1094     ir_block *old_bcontinue = NULL;
1095     ir_block *old_bbreak    = NULL;
1096
1097     ir_block *tmpblock      = NULL;
1098
1099     (void)lvalue;
1100     (void)out;
1101
1102     /* NOTE:
1103      * Should we ever need some kind of block ordering, better make this function
1104      * move blocks around than write a block ordering algorithm later... after all
1105      * the ast and ir should work together, not against each other.
1106      */
1107
1108     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1109      * anyway if for example it contains a ternary.
1110      */
1111     if (self->initexpr)
1112     {
1113         cgen = self->initexpr->expression.codegen;
1114         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1115             return false;
1116     }
1117
1118     /* Store the block from which we enter this chaos */
1119     bin = func->curblock;
1120
1121     /* The pre-loop condition needs its own block since we
1122      * need to be able to jump to the start of that expression.
1123      */
1124     if (self->precond)
1125     {
1126         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1127         if (!bprecond)
1128             return false;
1129
1130         /* the pre-loop-condition the least important place to 'continue' at */
1131         bcontinue = bprecond;
1132
1133         /* enter */
1134         func->curblock = bprecond;
1135
1136         /* generate */
1137         cgen = self->precond->expression.codegen;
1138         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1139             return false;
1140
1141         end_bprecond = func->curblock;
1142     } else {
1143         bprecond = end_bprecond = NULL;
1144     }
1145
1146     /* Now the next blocks won't be ordered nicely, but we need to
1147      * generate them this early for 'break' and 'continue'.
1148      */
1149     if (self->increment) {
1150         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1151         if (!bincrement)
1152             return false;
1153         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1154     } else {
1155         bincrement = end_bincrement = NULL;
1156     }
1157
1158     if (self->postcond) {
1159         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1160         if (!bpostcond)
1161             return false;
1162         bcontinue = bpostcond; /* postcond comes before the increment */
1163     } else {
1164         bpostcond = end_bpostcond = NULL;
1165     }
1166
1167     bout_id = func->ir_func->blocks_count;
1168     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1169     if (!bout)
1170         return false;
1171     bbreak = bout;
1172
1173     /* The loop body... */
1174     if (self->body)
1175     {
1176         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1177         if (!bbody)
1178             return false;
1179
1180         /* enter */
1181         func->curblock = bbody;
1182
1183         old_bbreak          = func->breakblock;
1184         old_bcontinue       = func->continueblock;
1185         func->breakblock    = bbreak;
1186         func->continueblock = bcontinue;
1187
1188         /* generate */
1189         cgen = self->body->expression.codegen;
1190         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1191             return false;
1192
1193         end_bbody = func->curblock;
1194         func->breakblock    = old_bbreak;
1195         func->continueblock = old_bcontinue;
1196     }
1197
1198     /* post-loop-condition */
1199     if (self->postcond)
1200     {
1201         /* enter */
1202         func->curblock = bpostcond;
1203
1204         /* generate */
1205         cgen = self->postcond->expression.codegen;
1206         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1207             return false;
1208
1209         end_bpostcond = func->curblock;
1210     }
1211
1212     /* The incrementor */
1213     if (self->increment)
1214     {
1215         /* enter */
1216         func->curblock = bincrement;
1217
1218         /* generate */
1219         cgen = self->increment->expression.codegen;
1220         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1221             return false;
1222
1223         end_bincrement = func->curblock;
1224     }
1225
1226     /* In any case now, we continue from the outgoing block */
1227     func->curblock = bout;
1228
1229     /* Now all blocks are in place */
1230     /* From 'bin' we jump to whatever comes first */
1231     if      (bprecond)   tmpblock = bprecond;
1232     else if (bbody)      tmpblock = bbody;
1233     else if (bpostcond)  tmpblock = bpostcond;
1234     else                 tmpblock = bout;
1235     if (!ir_block_create_jump(bin, tmpblock))
1236         return false;
1237
1238     /* From precond */
1239     if (bprecond)
1240     {
1241         ir_block *ontrue, *onfalse;
1242         if      (bbody)      ontrue = bbody;
1243         else if (bincrement) ontrue = bincrement;
1244         else if (bpostcond)  ontrue = bpostcond;
1245         else                 ontrue = bprecond;
1246         onfalse = bout;
1247         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1248             return false;
1249     }
1250
1251     /* from body */
1252     if (bbody)
1253     {
1254         if      (bincrement) tmpblock = bincrement;
1255         else if (bpostcond)  tmpblock = bpostcond;
1256         else if (bprecond)   tmpblock = bprecond;
1257         else                 tmpblock = bout;
1258         if (!ir_block_create_jump(end_bbody, tmpblock))
1259             return false;
1260     }
1261
1262     /* from increment */
1263     if (bincrement)
1264     {
1265         if      (bpostcond)  tmpblock = bpostcond;
1266         else if (bprecond)   tmpblock = bprecond;
1267         else if (bbody)      tmpblock = bbody;
1268         else                 tmpblock = bout;
1269         if (!ir_block_create_jump(end_bincrement, tmpblock))
1270             return false;
1271     }
1272
1273     /* from postcond */
1274     if (bpostcond)
1275     {
1276         ir_block *ontrue, *onfalse;
1277         if      (bprecond)   ontrue = bprecond;
1278         else if (bbody)      ontrue = bbody;
1279         else if (bincrement) ontrue = bincrement;
1280         else                 ontrue = bpostcond;
1281         onfalse = bout;
1282         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1283             return false;
1284     }
1285
1286     /* Move 'bout' to the end */
1287     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1288         !ir_function_blocks_add(func->ir_func, bout))
1289     {
1290         ir_block_delete(bout);
1291         return false;
1292     }
1293
1294     return true;
1295 }
1296
1297 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1298 {
1299     ast_expression_codegen *cgen;
1300     ir_value_vector         params;
1301     ir_instr               *callinstr;
1302     size_t i;
1303
1304     ir_value *funval = NULL;
1305
1306     /* return values are never rvalues */
1307     (void)lvalue;
1308
1309     cgen = self->func->expression.codegen;
1310     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1311         return false;
1312     if (!funval)
1313         return false;
1314
1315     MEM_VECTOR_INIT(&params, v);
1316
1317     /* parameters */
1318     for (i = 0; i < self->params_count; ++i)
1319     {
1320         ir_value *param;
1321         ast_expression *expr = self->params[i];
1322
1323         cgen = expr->expression.codegen;
1324         if (!(*cgen)(expr, func, false, &param))
1325             goto error;
1326         if (!param)
1327             goto error;
1328         if (!ir_value_vector_v_add(&params, param))
1329             goto error;
1330     }
1331
1332     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1333     if (!callinstr)
1334         goto error;
1335
1336     for (i = 0; i < params.v_count; ++i) {
1337         if (!ir_call_param(callinstr, params.v[i]))
1338             goto error;
1339     }
1340
1341     *out = ir_call_value(callinstr);
1342
1343     return true;
1344 error:
1345     MEM_VECTOR_CLEAR(&params, v);
1346     return false;
1347 }