]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_block_set_type
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_unary* ast_unary_new(lex_ctx ctx, int op,
185                          ast_expression *expr)
186 {
187     ast_instantiate(ast_unary, ctx, ast_unary_delete);
188     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
189
190     self->op = op;
191     self->operand = expr;
192
193     return self;
194 }
195
196 void ast_unary_delete(ast_unary *self)
197 {
198     ast_unref(self->operand);
199     ast_expression_delete((ast_expression*)self);
200     mem_d(self);
201 }
202
203 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
204 {
205     ast_instantiate(ast_return, ctx, ast_return_delete);
206     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
207
208     self->operand = expr;
209
210     return self;
211 }
212
213 void ast_return_delete(ast_return *self)
214 {
215     ast_unref(self->operand);
216     ast_expression_delete((ast_expression*)self);
217     mem_d(self);
218 }
219
220 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
221 {
222     const ast_expression *outtype;
223
224     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
225
226     if (field->expression.vtype != TYPE_FIELD) {
227         mem_d(self);
228         return NULL;
229     }
230
231     outtype = field->expression.next;
232     if (!outtype) {
233         mem_d(self);
234         /* Error: field has no type... */
235         return NULL;
236     }
237
238     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
239
240     self->expression.vtype = outtype->expression.vtype;
241     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
242
243     self->entity = entity;
244     self->field  = field;
245
246     return self;
247 }
248
249 void ast_entfield_delete(ast_entfield *self)
250 {
251     ast_unref(self->entity);
252     ast_unref(self->field);
253     ast_expression_delete((ast_expression*)self);
254     mem_d(self);
255 }
256
257 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
258 {
259     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
260     if (!ontrue && !onfalse) {
261         /* because it is invalid */
262         mem_d(self);
263         return NULL;
264     }
265     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
266
267     self->cond     = cond;
268     self->on_true  = ontrue;
269     self->on_false = onfalse;
270
271     return self;
272 }
273
274 void ast_ifthen_delete(ast_ifthen *self)
275 {
276     ast_unref(self->cond);
277     if (self->on_true)
278         ast_unref(self->on_true);
279     if (self->on_false)
280         ast_unref(self->on_false);
281     ast_expression_delete((ast_expression*)self);
282     mem_d(self);
283 }
284
285 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
286 {
287     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
288     /* This time NEITHER must be NULL */
289     if (!ontrue || !onfalse) {
290         mem_d(self);
291         return NULL;
292     }
293     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
294
295     self->cond     = cond;
296     self->on_true  = ontrue;
297     self->on_false = onfalse;
298     self->phi_out  = NULL;
299
300     return self;
301 }
302
303 void ast_ternary_delete(ast_ternary *self)
304 {
305     ast_unref(self->cond);
306     ast_unref(self->on_true);
307     ast_unref(self->on_false);
308     ast_expression_delete((ast_expression*)self);
309     mem_d(self);
310 }
311
312 ast_loop* ast_loop_new(lex_ctx ctx,
313                        ast_expression *initexpr,
314                        ast_expression *precond,
315                        ast_expression *postcond,
316                        ast_expression *increment,
317                        ast_expression *body)
318 {
319     ast_instantiate(ast_loop, ctx, ast_loop_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
321
322     self->initexpr  = initexpr;
323     self->precond   = precond;
324     self->postcond  = postcond;
325     self->increment = increment;
326     self->body      = body;
327
328     return self;
329 }
330
331 void ast_loop_delete(ast_loop *self)
332 {
333     if (self->initexpr)
334         ast_unref(self->initexpr);
335     if (self->precond)
336         ast_unref(self->precond);
337     if (self->postcond)
338         ast_unref(self->postcond);
339     if (self->increment)
340         ast_unref(self->increment);
341     if (self->body)
342         ast_unref(self->body);
343     ast_expression_delete((ast_expression*)self);
344     mem_d(self);
345 }
346
347 ast_call* ast_call_new(lex_ctx ctx,
348                        ast_expression *funcexpr)
349 {
350     ast_instantiate(ast_call, ctx, ast_call_delete);
351     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
352
353     MEM_VECTOR_INIT(self, params);
354
355     self->func = funcexpr;
356
357     return self;
358 }
359 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
360
361 void ast_call_delete(ast_call *self)
362 {
363     size_t i;
364     for (i = 0; i < self->params_count; ++i)
365         ast_unref(self->params[i]);
366     MEM_VECTOR_CLEAR(self, params);
367
368     if (self->func)
369         ast_unref(self->func);
370
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_store* ast_store_new(lex_ctx ctx, int op,
376                          ast_value *dest, ast_expression *source)
377 {
378     ast_instantiate(ast_store, ctx, ast_store_delete);
379     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
380
381     self->op = op;
382     self->dest = dest;
383     self->source = source;
384
385     return self;
386 }
387
388 void ast_store_delete(ast_store *self)
389 {
390     ast_unref(self->dest);
391     ast_unref(self->source);
392     ast_expression_delete((ast_expression*)self);
393     mem_d(self);
394 }
395
396 ast_block* ast_block_new(lex_ctx ctx)
397 {
398     ast_instantiate(ast_block, ctx, ast_block_delete);
399     ast_expression_init((ast_expression*)self,
400                         (ast_expression_codegen*)&ast_block_codegen);
401
402     MEM_VECTOR_INIT(self, locals);
403     MEM_VECTOR_INIT(self, exprs);
404
405     return self;
406 }
407 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
408 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
409
410 void ast_block_delete(ast_block *self)
411 {
412     size_t i;
413     for (i = 0; i < self->exprs_count; ++i)
414         ast_unref(self->exprs[i]);
415     MEM_VECTOR_CLEAR(self, exprs);
416     for (i = 0; i < self->locals_count; ++i)
417         ast_delete(self->locals[i]);
418     MEM_VECTOR_CLEAR(self, locals);
419     ast_expression_delete((ast_expression*)self);
420     mem_d(self);
421 }
422
423 bool ast_block_set_type(ast_block *self, ast_expression *from)
424 {
425     if (self->expression.next)
426         ast_delete(self->expression.next);
427     self->expression.vtype = from->expression.vtype;
428     if (from->expression.next) {
429         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
430         if (!self->expression.next)
431             return false;
432     }
433     return true;
434 }
435
436 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
437 {
438     ast_instantiate(ast_function, ctx, ast_function_delete);
439
440     if (!vtype ||
441         vtype->isconst ||
442         vtype->expression.vtype != TYPE_FUNCTION)
443     {
444         mem_d(self);
445         return NULL;
446     }
447
448     self->vtype = vtype;
449     self->name = name ? util_strdup(name) : NULL;
450     MEM_VECTOR_INIT(self, blocks);
451
452     self->labelcount = 0;
453     self->builtin = 0;
454
455     self->ir_func = NULL;
456     self->curblock = NULL;
457
458     self->breakblock    = NULL;
459     self->continueblock = NULL;
460
461     vtype->isconst = true;
462     vtype->constval.vfunc = self;
463
464     return self;
465 }
466
467 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
468
469 void ast_function_delete(ast_function *self)
470 {
471     size_t i;
472     if (self->name)
473         mem_d((void*)self->name);
474     if (self->vtype) {
475         /* ast_value_delete(self->vtype); */
476         self->vtype->isconst = false;
477         self->vtype->constval.vfunc = NULL;
478         /* We use unref - if it was stored in a global table it is supposed
479          * to be deleted from *there*
480          */
481         ast_unref(self->vtype);
482     }
483     for (i = 0; i < self->blocks_count; ++i)
484         ast_delete(self->blocks[i]);
485     MEM_VECTOR_CLEAR(self, blocks);
486     mem_d(self);
487 }
488
489 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
490 {
491     unsigned int base = 10;
492 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
493 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
494     if (size < 1)
495         return;
496     checknul();
497     if (!num)
498         addch('0');
499     else {
500         while (num)
501         {
502             int digit = num % base;
503             num /= base;
504             addch('0' + digit);
505         }
506     }
507
508     *buf = 0;
509 #undef addch
510 #undef checknul
511 }
512
513 const char* ast_function_label(ast_function *self, const char *prefix)
514 {
515     size_t id = (self->labelcount++);
516     size_t len = strlen(prefix);
517     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
518     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
519     return self->labelbuf;
520 }
521
522 /*********************************************************************/
523 /* AST codegen part
524  * by convention you must never pass NULL to the 'ir_value **out'
525  * parameter. If you really don't care about the output, pass a dummy.
526  * But I can't imagine a pituation where the output is truly unnecessary.
527  */
528
529 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
530 {
531     /* NOTE: This is the codegen for a variable used in an expression.
532      * It is not the codegen to generate the value. For this purpose,
533      * ast_local_codegen and ast_global_codegen are to be used before this
534      * is executed. ast_function_codegen should take care of its locals,
535      * and the ast-user should take care of ast_global_codegen to be used
536      * on all the globals.
537      */
538     if (!self->ir_v) {
539         printf("ast_value used before generated (%s)\n", self->name);
540         return false;
541     }
542     *out = self->ir_v;
543     return true;
544 }
545
546 bool ast_global_codegen(ast_value *self, ir_builder *ir)
547 {
548     ir_value *v = NULL;
549     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
550     {
551         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
552         if (!func)
553             return false;
554
555         self->constval.vfunc->ir_func = func;
556         self->ir_v = func->value;
557         /* The function is filled later on ast_function_codegen... */
558         return true;
559     }
560
561     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
562     if (!v)
563         return false;
564
565     if (self->isconst) {
566         switch (self->expression.vtype)
567         {
568             case TYPE_FLOAT:
569                 if (!ir_value_set_float(v, self->constval.vfloat))
570                     goto error;
571                 break;
572             case TYPE_VECTOR:
573                 if (!ir_value_set_vector(v, self->constval.vvec))
574                     goto error;
575                 break;
576             case TYPE_STRING:
577                 if (!ir_value_set_string(v, self->constval.vstring))
578                     goto error;
579                 break;
580             case TYPE_FUNCTION:
581                 printf("global of type function not properly generated\n");
582                 goto error;
583                 /* Cannot generate an IR value for a function,
584                  * need a pointer pointing to a function rather.
585                  */
586             default:
587                 printf("TODO: global constant type %i\n", self->expression.vtype);
588                 break;
589         }
590     }
591
592     /* link us to the ir_value */
593     self->ir_v = v;
594     return true;
595
596 error: /* clean up */
597     ir_value_delete(v);
598     return false;
599 }
600
601 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
602 {
603     ir_value *v = NULL;
604     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
605     {
606         /* Do we allow local functions? I think not...
607          * this is NOT a function pointer atm.
608          */
609         return false;
610     }
611
612     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
613     if (!v)
614         return false;
615
616     /* A constant local... hmmm...
617      * I suppose the IR will have to deal with this
618      */
619     if (self->isconst) {
620         switch (self->expression.vtype)
621         {
622             case TYPE_FLOAT:
623                 if (!ir_value_set_float(v, self->constval.vfloat))
624                     goto error;
625                 break;
626             case TYPE_VECTOR:
627                 if (!ir_value_set_vector(v, self->constval.vvec))
628                     goto error;
629                 break;
630             case TYPE_STRING:
631                 if (!ir_value_set_string(v, self->constval.vstring))
632                     goto error;
633                 break;
634             default:
635                 printf("TODO: global constant type %i\n", self->expression.vtype);
636                 break;
637         }
638     }
639
640     /* link us to the ir_value */
641     self->ir_v = v;
642     return true;
643
644 error: /* clean up */
645     ir_value_delete(v);
646     return false;
647 }
648
649 bool ast_function_codegen(ast_function *self, ir_builder *ir)
650 {
651     ir_function *irf;
652     ir_value    *dummy;
653     size_t    i;
654
655     irf = self->ir_func;
656     if (!irf) {
657         printf("ast_function's related ast_value was not generated yet\n");
658         return false;
659     }
660
661     /* fill the parameter list */
662     for (i = 0; i < self->vtype->params_count; ++i)
663     {
664         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
665             return false;
666         if (!self->builtin) {
667             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
668                 return false;
669         }
670     }
671
672     if (self->builtin) {
673         irf->builtin = self->builtin;
674         return true;
675     }
676
677     self->curblock = ir_function_create_block(irf, "entry");
678     if (!self->curblock)
679         return false;
680
681     for (i = 0; i < self->blocks_count; ++i) {
682         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
683         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
684             return false;
685     }
686
687     /* TODO: check return types */
688     if (!self->curblock->is_return)
689     {
690         if (!self->vtype->expression.next ||
691             self->vtype->expression.next->expression.vtype == TYPE_VOID)
692         {
693             return ir_block_create_return(self->curblock, NULL);
694         }
695         else
696         {
697             /* error("missing return"); */
698             return false;
699         }
700     }
701     return true;
702 }
703
704 /* Note, you will not see ast_block_codegen generate ir_blocks.
705  * To the AST and the IR, blocks are 2 different things.
706  * In the AST it represents a block of code, usually enclosed in
707  * curly braces {...}.
708  * While in the IR it represents a block in terms of control-flow.
709  */
710 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
711 {
712     size_t i;
713
714     /* We don't use this
715      * Note: an ast-representation using the comma-operator
716      * of the form: (a, b, c) = x should not assign to c...
717      */
718     (void)lvalue;
719
720     /* output is NULL at first, we'll have each expression
721      * assign to out output, thus, a comma-operator represention
722      * using an ast_block will return the last generated value,
723      * so: (b, c) + a  executed both b and c, and returns c,
724      * which is then added to a.
725      */
726     *out = NULL;
727
728     /* generate locals */
729     for (i = 0; i < self->locals_count; ++i)
730     {
731         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
732             return false;
733     }
734
735     for (i = 0; i < self->exprs_count; ++i)
736     {
737         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
738         if (!(*gen)(self->exprs[i], func, false, out))
739             return false;
740     }
741
742     return true;
743 }
744
745 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
746 {
747     ast_expression_codegen *cgen;
748     ir_value *left, *right;
749
750     cgen = self->dest->expression.codegen;
751     /* lvalue! */
752     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
753         return false;
754
755     cgen = self->source->expression.codegen;
756     /* rvalue! */
757     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
758         return false;
759
760     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
761         return false;
762
763     /* Theoretically, an assinment returns its left side as an
764      * lvalue, if we don't need an lvalue though, we return
765      * the right side as an rvalue, otherwise we have to
766      * somehow know whether or not we need to dereference the pointer
767      * on the left side - that is: OP_LOAD if it was an address.
768      * Also: in original QC we cannot OP_LOADP *anyway*.
769      */
770     *out = (lvalue ? left : right);
771
772     return true;
773 }
774
775 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
776 {
777     ast_expression_codegen *cgen;
778     ir_value *left, *right;
779
780     /* In the context of a binary operation, we can disregard
781      * the lvalue flag.
782      */
783      (void)lvalue;
784
785     cgen = self->left->expression.codegen;
786     /* lvalue! */
787     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
788         return false;
789
790     cgen = self->right->expression.codegen;
791     /* rvalue! */
792     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
793         return false;
794
795     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
796                                  self->op, left, right);
797     if (!*out)
798         return false;
799
800     return true;
801 }
802
803 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
804 {
805     ast_expression_codegen *cgen;
806     ir_value *operand;
807
808     /* In the context of a unary operation, we can disregard
809      * the lvalue flag.
810      */
811     (void)lvalue;
812
813     cgen = self->operand->expression.codegen;
814     /* lvalue! */
815     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
816         return false;
817
818     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
819                                  self->op, operand);
820     if (!*out)
821         return false;
822
823     return true;
824 }
825
826 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
827 {
828     ast_expression_codegen *cgen;
829     ir_value *operand;
830
831     /* In the context of a return operation, we can disregard
832      * the lvalue flag.
833      */
834     (void)lvalue;
835
836     cgen = self->operand->expression.codegen;
837     /* lvalue! */
838     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
839         return false;
840
841     if (!ir_block_create_return(func->curblock, operand))
842         return false;
843
844     return true;
845 }
846
847 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
848 {
849     ast_expression_codegen *cgen;
850     ir_value *ent, *field;
851
852     /* This function needs to take the 'lvalue' flag into account!
853      * As lvalue we provide a field-pointer, as rvalue we provide the
854      * value in a temp.
855      */
856
857     cgen = self->entity->expression.codegen;
858     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
859         return false;
860
861     cgen = self->field->expression.codegen;
862     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
863         return false;
864
865     if (lvalue) {
866         /* address! */
867         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
868                                             ent, field);
869     } else {
870         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
871                                              ent, field, self->expression.vtype);
872     }
873     if (!*out)
874         return false;
875
876     /* Hm that should be it... */
877     return true;
878 }
879
880 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
881 {
882     ast_expression_codegen *cgen;
883
884     ir_value *condval;
885     ir_value *dummy;
886
887     ir_block *cond = func->curblock;
888     ir_block *ontrue;
889     ir_block *onfalse;
890     ir_block *merge;
891
892     /* We don't output any value, thus also don't care about r/lvalue */
893     (void)out;
894     (void)lvalue;
895
896     /* generate the condition */
897     func->curblock = cond;
898     cgen = self->cond->expression.codegen;
899     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
900         return false;
901
902     /* on-true path */
903
904     if (self->on_true) {
905         /* create on-true block */
906         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
907         if (!ontrue)
908             return false;
909
910         /* enter the block */
911         func->curblock = ontrue;
912
913         /* generate */
914         cgen = self->on_true->expression.codegen;
915         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
916             return false;
917     } else
918         ontrue = NULL;
919
920     /* on-false path */
921     if (self->on_false) {
922         /* create on-false block */
923         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
924         if (!onfalse)
925             return false;
926
927         /* enter the block */
928         func->curblock = onfalse;
929
930         /* generate */
931         cgen = self->on_false->expression.codegen;
932         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
933             return false;
934     } else
935         onfalse = NULL;
936
937     /* Merge block were they all merge in to */
938     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
939     if (!merge)
940         return false;
941
942     /* add jumps ot the merge block */
943     if (ontrue && !ir_block_create_jump(ontrue, merge))
944         return false;
945     if (onfalse && !ir_block_create_jump(onfalse, merge))
946         return false;
947
948     /* we create the if here, that way all blocks are ordered :)
949      */
950     if (!ir_block_create_if(cond, condval,
951                             (ontrue  ? ontrue  : merge),
952                             (onfalse ? onfalse : merge)))
953     {
954         return false;
955     }
956
957     /* Now enter the merge block */
958     func->curblock = merge;
959
960     return true;
961 }
962
963 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
964 {
965     ast_expression_codegen *cgen;
966
967     ir_value *condval;
968     ir_value *trueval, *falseval;
969     ir_instr *phi;
970
971     ir_block *cond = func->curblock;
972     ir_block *ontrue;
973     ir_block *onfalse;
974     ir_block *merge;
975
976     /* In theory it shouldn't be possible to pass through a node twice, but
977      * in case we add any kind of optimization pass for the AST itself, it
978      * may still happen, thus we remember a created ir_value and simply return one
979      * if it already exists.
980      */
981     if (self->phi_out) {
982         *out = self->phi_out;
983         return true;
984     }
985
986     /* Ternary can never create an lvalue... */
987     if (lvalue)
988         return false;
989
990     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
991
992     /* generate the condition */
993     func->curblock = cond;
994     cgen = self->cond->expression.codegen;
995     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
996         return false;
997
998     /* create on-true block */
999     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1000     if (!ontrue)
1001         return false;
1002     else
1003     {
1004         /* enter the block */
1005         func->curblock = ontrue;
1006
1007         /* generate */
1008         cgen = self->on_true->expression.codegen;
1009         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1010             return false;
1011     }
1012
1013     /* create on-false block */
1014     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1015     if (!onfalse)
1016         return false;
1017     else
1018     {
1019         /* enter the block */
1020         func->curblock = onfalse;
1021
1022         /* generate */
1023         cgen = self->on_false->expression.codegen;
1024         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1025             return false;
1026     }
1027
1028     /* create merge block */
1029     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1030     if (!merge)
1031         return false;
1032     /* jump to merge block */
1033     if (!ir_block_create_jump(ontrue, merge))
1034         return false;
1035     if (!ir_block_create_jump(onfalse, merge))
1036         return false;
1037
1038     /* create if instruction */
1039     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1040         return false;
1041
1042     /* Now enter the merge block */
1043     func->curblock = merge;
1044
1045     /* Here, now, we need a PHI node
1046      * but first some sanity checking...
1047      */
1048     if (trueval->vtype != falseval->vtype) {
1049         /* error("ternary with different types on the two sides"); */
1050         return false;
1051     }
1052
1053     /* create PHI */
1054     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1055     if (!phi ||
1056         !ir_phi_add(phi, ontrue,  trueval) ||
1057         !ir_phi_add(phi, onfalse, falseval))
1058     {
1059         return false;
1060     }
1061
1062     self->phi_out = ir_phi_value(phi);
1063     *out = self->phi_out;
1064
1065     return true;
1066 }
1067
1068 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1069 {
1070     ast_expression_codegen *cgen;
1071
1072     ir_value *dummy      = NULL;
1073     ir_value *precond    = NULL;
1074     ir_value *postcond   = NULL;
1075
1076     /* Since we insert some jumps "late" so we have blocks
1077      * ordered "nicely", we need to keep track of the actual end-blocks
1078      * of expressions to add the jumps to.
1079      */
1080     ir_block *bbody      = NULL, *end_bbody      = NULL;
1081     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1082     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1083     ir_block *bincrement = NULL, *end_bincrement = NULL;
1084     ir_block *bout       = NULL, *bin            = NULL;
1085
1086     /* let's at least move the outgoing block to the end */
1087     size_t    bout_id;
1088
1089     /* 'break' and 'continue' need to be able to find the right blocks */
1090     ir_block *bcontinue     = NULL;
1091     ir_block *bbreak        = NULL;
1092
1093     ir_block *old_bcontinue = NULL;
1094     ir_block *old_bbreak    = NULL;
1095
1096     ir_block *tmpblock      = NULL;
1097
1098     (void)lvalue;
1099     (void)out;
1100
1101     /* NOTE:
1102      * Should we ever need some kind of block ordering, better make this function
1103      * move blocks around than write a block ordering algorithm later... after all
1104      * the ast and ir should work together, not against each other.
1105      */
1106
1107     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1108      * anyway if for example it contains a ternary.
1109      */
1110     if (self->initexpr)
1111     {
1112         cgen = self->initexpr->expression.codegen;
1113         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1114             return false;
1115     }
1116
1117     /* Store the block from which we enter this chaos */
1118     bin = func->curblock;
1119
1120     /* The pre-loop condition needs its own block since we
1121      * need to be able to jump to the start of that expression.
1122      */
1123     if (self->precond)
1124     {
1125         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1126         if (!bprecond)
1127             return false;
1128
1129         /* the pre-loop-condition the least important place to 'continue' at */
1130         bcontinue = bprecond;
1131
1132         /* enter */
1133         func->curblock = bprecond;
1134
1135         /* generate */
1136         cgen = self->precond->expression.codegen;
1137         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1138             return false;
1139
1140         end_bprecond = func->curblock;
1141     } else {
1142         bprecond = end_bprecond = NULL;
1143     }
1144
1145     /* Now the next blocks won't be ordered nicely, but we need to
1146      * generate them this early for 'break' and 'continue'.
1147      */
1148     if (self->increment) {
1149         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1150         if (!bincrement)
1151             return false;
1152         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1153     } else {
1154         bincrement = end_bincrement = NULL;
1155     }
1156
1157     if (self->postcond) {
1158         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1159         if (!bpostcond)
1160             return false;
1161         bcontinue = bpostcond; /* postcond comes before the increment */
1162     } else {
1163         bpostcond = end_bpostcond = NULL;
1164     }
1165
1166     bout_id = func->ir_func->blocks_count;
1167     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1168     if (!bout)
1169         return false;
1170     bbreak = bout;
1171
1172     /* The loop body... */
1173     if (self->body)
1174     {
1175         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1176         if (!bbody)
1177             return false;
1178
1179         /* enter */
1180         func->curblock = bbody;
1181
1182         old_bbreak          = func->breakblock;
1183         old_bcontinue       = func->continueblock;
1184         func->breakblock    = bbreak;
1185         func->continueblock = bcontinue;
1186
1187         /* generate */
1188         cgen = self->body->expression.codegen;
1189         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1190             return false;
1191
1192         end_bbody = func->curblock;
1193         func->breakblock    = old_bbreak;
1194         func->continueblock = old_bcontinue;
1195     }
1196
1197     /* post-loop-condition */
1198     if (self->postcond)
1199     {
1200         /* enter */
1201         func->curblock = bpostcond;
1202
1203         /* generate */
1204         cgen = self->postcond->expression.codegen;
1205         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1206             return false;
1207
1208         end_bpostcond = func->curblock;
1209     }
1210
1211     /* The incrementor */
1212     if (self->increment)
1213     {
1214         /* enter */
1215         func->curblock = bincrement;
1216
1217         /* generate */
1218         cgen = self->increment->expression.codegen;
1219         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1220             return false;
1221
1222         end_bincrement = func->curblock;
1223     }
1224
1225     /* In any case now, we continue from the outgoing block */
1226     func->curblock = bout;
1227
1228     /* Now all blocks are in place */
1229     /* From 'bin' we jump to whatever comes first */
1230     if      (bprecond)   tmpblock = bprecond;
1231     else if (bbody)      tmpblock = bbody;
1232     else if (bpostcond)  tmpblock = bpostcond;
1233     else                 tmpblock = bout;
1234     if (!ir_block_create_jump(bin, tmpblock))
1235         return false;
1236
1237     /* From precond */
1238     if (bprecond)
1239     {
1240         ir_block *ontrue, *onfalse;
1241         if      (bbody)      ontrue = bbody;
1242         else if (bincrement) ontrue = bincrement;
1243         else if (bpostcond)  ontrue = bpostcond;
1244         else                 ontrue = bprecond;
1245         onfalse = bout;
1246         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1247             return false;
1248     }
1249
1250     /* from body */
1251     if (bbody)
1252     {
1253         if      (bincrement) tmpblock = bincrement;
1254         else if (bpostcond)  tmpblock = bpostcond;
1255         else if (bprecond)   tmpblock = bprecond;
1256         else                 tmpblock = bout;
1257         if (!ir_block_create_jump(end_bbody, tmpblock))
1258             return false;
1259     }
1260
1261     /* from increment */
1262     if (bincrement)
1263     {
1264         if      (bpostcond)  tmpblock = bpostcond;
1265         else if (bprecond)   tmpblock = bprecond;
1266         else if (bbody)      tmpblock = bbody;
1267         else                 tmpblock = bout;
1268         if (!ir_block_create_jump(end_bincrement, tmpblock))
1269             return false;
1270     }
1271
1272     /* from postcond */
1273     if (bpostcond)
1274     {
1275         ir_block *ontrue, *onfalse;
1276         if      (bprecond)   ontrue = bprecond;
1277         else if (bbody)      ontrue = bbody;
1278         else if (bincrement) ontrue = bincrement;
1279         else                 ontrue = bpostcond;
1280         onfalse = bout;
1281         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1282             return false;
1283     }
1284
1285     /* Move 'bout' to the end */
1286     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1287         !ir_function_blocks_add(func->ir_func, bout))
1288     {
1289         ir_block_delete(bout);
1290         return false;
1291     }
1292
1293     return true;
1294 }
1295
1296 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1297 {
1298     ast_expression_codegen *cgen;
1299     ir_value_vector         params;
1300     ir_instr               *callinstr;
1301     size_t i;
1302
1303     ir_value *funval = NULL;
1304
1305     /* return values are never rvalues */
1306     (void)lvalue;
1307
1308     cgen = self->func->expression.codegen;
1309     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1310         return false;
1311     if (!funval)
1312         return false;
1313
1314     MEM_VECTOR_INIT(&params, v);
1315
1316     /* parameters */
1317     for (i = 0; i < self->params_count; ++i)
1318     {
1319         ir_value *param;
1320         ast_expression *expr = self->params[i];
1321
1322         cgen = expr->expression.codegen;
1323         if (!(*cgen)(expr, func, false, &param))
1324             goto error;
1325         if (!param)
1326             goto error;
1327         if (!ir_value_vector_v_add(&params, param))
1328             goto error;
1329     }
1330
1331     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1332     if (!callinstr)
1333         goto error;
1334
1335     for (i = 0; i < params.v_count; ++i) {
1336         if (!ir_call_param(callinstr, params.v[i]))
1337             goto error;
1338     }
1339
1340     *out = ir_call_value(callinstr);
1341
1342     return true;
1343 error:
1344     MEM_VECTOR_CLEAR(&params, v);
1345     return false;
1346 }