]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
adding opts_max_array_size with a default of 1024, adding some TODO errors for arrays...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         default:
280             typestr = type_name[e->expression.vtype];
281             typelen = strlen(typestr);
282             if (pos + typelen >= bufsize)
283                 goto full;
284             strcpy(buf + pos, typestr);
285             return pos + typelen;
286     }
287
288 full:
289     buf[bufsize-3] = '.';
290     buf[bufsize-2] = '.';
291     buf[bufsize-1] = '.';
292     return bufsize;
293 }
294
295 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
296 {
297     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
298     buf[pos] = 0;
299 }
300
301 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
302 {
303     ast_instantiate(ast_value, ctx, ast_value_delete);
304     ast_expression_init((ast_expression*)self,
305                         (ast_expression_codegen*)&ast_value_codegen);
306     self->expression.node.keep = true; /* keep */
307
308     self->name = name ? util_strdup(name) : NULL;
309     self->expression.vtype = t;
310     self->expression.next  = NULL;
311     self->isconst = false;
312     self->uses    = 0;
313     memset(&self->constval, 0, sizeof(self->constval));
314
315     self->ir_v           = NULL;
316     self->ir_values      = NULL;
317     self->ir_value_count = 0;
318
319     return self;
320 }
321
322 void ast_value_delete(ast_value* self)
323 {
324     if (self->name)
325         mem_d((void*)self->name);
326     if (self->isconst) {
327         switch (self->expression.vtype)
328         {
329         case TYPE_STRING:
330             mem_d((void*)self->constval.vstring);
331             break;
332         case TYPE_FUNCTION:
333             /* unlink us from the function node */
334             self->constval.vfunc->vtype = NULL;
335             break;
336         /* NOTE: delete function? currently collected in
337          * the parser structure
338          */
339         default:
340             break;
341         }
342     }
343     ast_expression_delete((ast_expression*)self);
344     mem_d(self);
345 }
346
347 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
348 {
349     return ast_expression_common_params_add(&self->expression, p);
350 }
351
352 bool ast_value_set_name(ast_value *self, const char *name)
353 {
354     if (self->name)
355         mem_d((void*)self->name);
356     self->name = util_strdup(name);
357     return !!self->name;
358 }
359
360 ast_binary* ast_binary_new(lex_ctx ctx, int op,
361                            ast_expression* left, ast_expression* right)
362 {
363     ast_instantiate(ast_binary, ctx, ast_binary_delete);
364     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
365
366     self->op = op;
367     self->left = left;
368     self->right = right;
369
370     if (op >= INSTR_EQ_F && op <= INSTR_GT)
371         self->expression.vtype = TYPE_FLOAT;
372     else if (op == INSTR_AND || op == INSTR_OR ||
373              op == INSTR_BITAND || op == INSTR_BITOR)
374         self->expression.vtype = TYPE_FLOAT;
375     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
376         self->expression.vtype = TYPE_VECTOR;
377     else if (op == INSTR_MUL_V)
378         self->expression.vtype = TYPE_FLOAT;
379     else
380         self->expression.vtype = left->expression.vtype;
381
382     return self;
383 }
384
385 void ast_binary_delete(ast_binary *self)
386 {
387     ast_unref(self->left);
388     ast_unref(self->right);
389     ast_expression_delete((ast_expression*)self);
390     mem_d(self);
391 }
392
393 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
394                                ast_expression* left, ast_expression* right)
395 {
396     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
397     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
398
399     self->opstore = storop;
400     self->opbin   = op;
401     self->dest    = left;
402     self->source  = right;
403
404     self->expression.vtype = left->expression.vtype;
405     if (left->expression.next) {
406         self->expression.next = ast_type_copy(ctx, left);
407         if (!self->expression.next) {
408             ast_delete(self);
409             return NULL;
410         }
411     }
412     else
413         self->expression.next = NULL;
414
415     return self;
416 }
417
418 void ast_binstore_delete(ast_binstore *self)
419 {
420     ast_unref(self->dest);
421     ast_unref(self->source);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_unary* ast_unary_new(lex_ctx ctx, int op,
427                          ast_expression *expr)
428 {
429     ast_instantiate(ast_unary, ctx, ast_unary_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
431
432     self->op = op;
433     self->operand = expr;
434
435     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
436         self->expression.vtype = TYPE_FLOAT;
437     } else
438         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
439
440     return self;
441 }
442
443 void ast_unary_delete(ast_unary *self)
444 {
445     ast_unref(self->operand);
446     ast_expression_delete((ast_expression*)self);
447     mem_d(self);
448 }
449
450 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
451 {
452     ast_instantiate(ast_return, ctx, ast_return_delete);
453     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
454
455     self->operand = expr;
456
457     return self;
458 }
459
460 void ast_return_delete(ast_return *self)
461 {
462     if (self->operand)
463         ast_unref(self->operand);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
469 {
470     const ast_expression *outtype;
471
472     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
473
474     if (field->expression.vtype != TYPE_FIELD) {
475         mem_d(self);
476         return NULL;
477     }
478
479     outtype = field->expression.next;
480     if (!outtype) {
481         mem_d(self);
482         /* Error: field has no type... */
483         return NULL;
484     }
485
486     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
487
488     self->entity = entity;
489     self->field  = field;
490
491     if (!ast_type_adopt(self, outtype)) {
492         ast_entfield_delete(self);
493         return NULL;
494     }
495
496     return self;
497 }
498
499 void ast_entfield_delete(ast_entfield *self)
500 {
501     ast_unref(self->entity);
502     ast_unref(self->field);
503     ast_expression_delete((ast_expression*)self);
504     mem_d(self);
505 }
506
507 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
508 {
509     ast_instantiate(ast_member, ctx, ast_member_delete);
510     if (field >= 3) {
511         mem_d(self);
512         return NULL;
513     }
514
515     if (owner->expression.vtype != TYPE_VECTOR &&
516         owner->expression.vtype != TYPE_FIELD) {
517         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
518         mem_d(self);
519         return NULL;
520     }
521
522     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
523     self->expression.node.keep = true; /* keep */
524
525     if (owner->expression.vtype == TYPE_VECTOR) {
526         self->expression.vtype = TYPE_FLOAT;
527         self->expression.next  = NULL;
528     } else {
529         self->expression.vtype = TYPE_FIELD;
530         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
531     }
532
533     self->owner = owner;
534     self->field = field;
535
536     return self;
537 }
538
539 void ast_member_delete(ast_member *self)
540 {
541     /* The owner is always an ast_value, which has .keep=true,
542      * also: ast_members are usually deleted after the owner, thus
543      * this will cause invalid access
544     ast_unref(self->owner);
545      * once we allow (expression).x to access a vector-member, we need
546      * to change this: preferably by creating an alternate ast node for this
547      * purpose that is not garbage-collected.
548     */
549     ast_expression_delete((ast_expression*)self);
550     mem_d(self);
551 }
552
553 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
554 {
555     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
556     if (!ontrue && !onfalse) {
557         /* because it is invalid */
558         mem_d(self);
559         return NULL;
560     }
561     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
562
563     self->cond     = cond;
564     self->on_true  = ontrue;
565     self->on_false = onfalse;
566
567     return self;
568 }
569
570 void ast_ifthen_delete(ast_ifthen *self)
571 {
572     ast_unref(self->cond);
573     if (self->on_true)
574         ast_unref(self->on_true);
575     if (self->on_false)
576         ast_unref(self->on_false);
577     ast_expression_delete((ast_expression*)self);
578     mem_d(self);
579 }
580
581 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
582 {
583     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
584     /* This time NEITHER must be NULL */
585     if (!ontrue || !onfalse) {
586         mem_d(self);
587         return NULL;
588     }
589     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
590
591     self->cond     = cond;
592     self->on_true  = ontrue;
593     self->on_false = onfalse;
594     self->phi_out  = NULL;
595
596     return self;
597 }
598
599 void ast_ternary_delete(ast_ternary *self)
600 {
601     ast_unref(self->cond);
602     ast_unref(self->on_true);
603     ast_unref(self->on_false);
604     ast_expression_delete((ast_expression*)self);
605     mem_d(self);
606 }
607
608 ast_loop* ast_loop_new(lex_ctx ctx,
609                        ast_expression *initexpr,
610                        ast_expression *precond,
611                        ast_expression *postcond,
612                        ast_expression *increment,
613                        ast_expression *body)
614 {
615     ast_instantiate(ast_loop, ctx, ast_loop_delete);
616     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
617
618     self->initexpr  = initexpr;
619     self->precond   = precond;
620     self->postcond  = postcond;
621     self->increment = increment;
622     self->body      = body;
623
624     return self;
625 }
626
627 void ast_loop_delete(ast_loop *self)
628 {
629     if (self->initexpr)
630         ast_unref(self->initexpr);
631     if (self->precond)
632         ast_unref(self->precond);
633     if (self->postcond)
634         ast_unref(self->postcond);
635     if (self->increment)
636         ast_unref(self->increment);
637     if (self->body)
638         ast_unref(self->body);
639     ast_expression_delete((ast_expression*)self);
640     mem_d(self);
641 }
642
643 ast_call* ast_call_new(lex_ctx ctx,
644                        ast_expression *funcexpr)
645 {
646     ast_instantiate(ast_call, ctx, ast_call_delete);
647     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
648
649     MEM_VECTOR_INIT(self, params);
650
651     self->func = funcexpr;
652
653     self->expression.vtype = funcexpr->expression.next->expression.vtype;
654     if (funcexpr->expression.next->expression.next)
655         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
656
657     return self;
658 }
659 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
660
661 void ast_call_delete(ast_call *self)
662 {
663     size_t i;
664     for (i = 0; i < self->params_count; ++i)
665         ast_unref(self->params[i]);
666     MEM_VECTOR_CLEAR(self, params);
667
668     if (self->func)
669         ast_unref(self->func);
670
671     ast_expression_delete((ast_expression*)self);
672     mem_d(self);
673 }
674
675 bool ast_call_check_types(ast_call *self)
676 {
677     size_t i;
678     bool   retval = true;
679     const  ast_expression *func = self->func;
680     size_t count = self->params_count;
681     if (count > func->expression.params_count)
682         count = func->expression.params_count;
683
684     for (i = 0; i < count; ++i) {
685         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
686             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
687                      (unsigned int)(i+1));
688             /* we don't immediately return */
689             retval = false;
690         }
691     }
692     return retval;
693 }
694
695 ast_store* ast_store_new(lex_ctx ctx, int op,
696                          ast_expression *dest, ast_expression *source)
697 {
698     ast_instantiate(ast_store, ctx, ast_store_delete);
699     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
700
701     self->op = op;
702     self->dest = dest;
703     self->source = source;
704
705     self->expression.vtype = dest->expression.vtype;
706     if (dest->expression.next) {
707         self->expression.next = ast_type_copy(ctx, dest);
708         if (!self->expression.next) {
709             ast_delete(self);
710             return NULL;
711         }
712     }
713     else
714         self->expression.next = NULL;
715
716     return self;
717 }
718
719 void ast_store_delete(ast_store *self)
720 {
721     ast_unref(self->dest);
722     ast_unref(self->source);
723     ast_expression_delete((ast_expression*)self);
724     mem_d(self);
725 }
726
727 ast_block* ast_block_new(lex_ctx ctx)
728 {
729     ast_instantiate(ast_block, ctx, ast_block_delete);
730     ast_expression_init((ast_expression*)self,
731                         (ast_expression_codegen*)&ast_block_codegen);
732
733     MEM_VECTOR_INIT(self, locals);
734     MEM_VECTOR_INIT(self, exprs);
735     MEM_VECTOR_INIT(self, collect);
736
737     return self;
738 }
739 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
740 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
741 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
742
743 bool ast_block_collect(ast_block *self, ast_expression *expr)
744 {
745     if (!ast_block_collect_add(self, expr))
746         return false;
747     expr->expression.node.keep = true;
748     return true;
749 }
750
751 void ast_block_delete(ast_block *self)
752 {
753     size_t i;
754     for (i = 0; i < self->exprs_count; ++i)
755         ast_unref(self->exprs[i]);
756     MEM_VECTOR_CLEAR(self, exprs);
757     for (i = 0; i < self->locals_count; ++i)
758         ast_delete(self->locals[i]);
759     MEM_VECTOR_CLEAR(self, locals);
760     for (i = 0; i < self->collect_count; ++i)
761         ast_delete(self->collect[i]);
762     MEM_VECTOR_CLEAR(self, collect);
763     ast_expression_delete((ast_expression*)self);
764     mem_d(self);
765 }
766
767 bool ast_block_set_type(ast_block *self, ast_expression *from)
768 {
769     if (self->expression.next)
770         ast_delete(self->expression.next);
771     self->expression.vtype = from->expression.vtype;
772     if (from->expression.next) {
773         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
774         if (!self->expression.next)
775             return false;
776     }
777     else
778         self->expression.next = NULL;
779     return true;
780 }
781
782 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
783 {
784     ast_instantiate(ast_function, ctx, ast_function_delete);
785
786     if (!vtype ||
787         vtype->isconst ||
788         vtype->expression.vtype != TYPE_FUNCTION)
789     {
790         mem_d(self);
791         return NULL;
792     }
793
794     self->vtype = vtype;
795     self->name = name ? util_strdup(name) : NULL;
796     MEM_VECTOR_INIT(self, blocks);
797
798     self->labelcount = 0;
799     self->builtin = 0;
800
801     self->ir_func = NULL;
802     self->curblock = NULL;
803
804     self->breakblock    = NULL;
805     self->continueblock = NULL;
806
807     vtype->isconst = true;
808     vtype->constval.vfunc = self;
809
810     return self;
811 }
812
813 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
814
815 void ast_function_delete(ast_function *self)
816 {
817     size_t i;
818     if (self->name)
819         mem_d((void*)self->name);
820     if (self->vtype) {
821         /* ast_value_delete(self->vtype); */
822         self->vtype->isconst = false;
823         self->vtype->constval.vfunc = NULL;
824         /* We use unref - if it was stored in a global table it is supposed
825          * to be deleted from *there*
826          */
827         ast_unref(self->vtype);
828     }
829     for (i = 0; i < self->blocks_count; ++i)
830         ast_delete(self->blocks[i]);
831     MEM_VECTOR_CLEAR(self, blocks);
832     mem_d(self);
833 }
834
835 const char* ast_function_label(ast_function *self, const char *prefix)
836 {
837     size_t id;
838     size_t len;
839     char  *from;
840
841     if (!opts_dump)
842         return NULL;
843
844     id  = (self->labelcount++);
845     len = strlen(prefix);
846
847     from = self->labelbuf + sizeof(self->labelbuf)-1;
848     *from-- = 0;
849     do {
850         unsigned int digit = id % 10;
851         *from = digit + '0';
852         id /= 10;
853     } while (id);
854     memcpy(from - len, prefix, len);
855     return from - len;
856 }
857
858 /*********************************************************************/
859 /* AST codegen part
860  * by convention you must never pass NULL to the 'ir_value **out'
861  * parameter. If you really don't care about the output, pass a dummy.
862  * But I can't imagine a pituation where the output is truly unnecessary.
863  */
864
865 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
866 {
867     /* NOTE: This is the codegen for a variable used in an expression.
868      * It is not the codegen to generate the value. For this purpose,
869      * ast_local_codegen and ast_global_codegen are to be used before this
870      * is executed. ast_function_codegen should take care of its locals,
871      * and the ast-user should take care of ast_global_codegen to be used
872      * on all the globals.
873      */
874     if (!self->ir_v) {
875         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
876         return false;
877     }
878     *out = self->ir_v;
879     return true;
880 }
881
882 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
883 {
884     ir_value *v = NULL;
885     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
886     {
887         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
888         if (!func)
889             return false;
890         func->context = ast_ctx(self);
891         func->value->context = ast_ctx(self);
892
893         self->constval.vfunc->ir_func = func;
894         self->ir_v = func->value;
895         /* The function is filled later on ast_function_codegen... */
896         return true;
897     }
898
899     if (isfield && self->expression.vtype == TYPE_FIELD) {
900         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
901         if (!v)
902             return false;
903         v->context = ast_ctx(self);
904         if (self->isconst) {
905             asterror(ast_ctx(self), "TODO: constant field pointers with value");
906             goto error;
907         }
908         self->ir_v = v;
909         return true;
910     }
911
912     if (self->expression.vtype == TYPE_ARRAY) {
913         size_t ai;
914         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
915         if (!self->expression.count || self->expression.count > opts_max_array_size) {
916             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
917         }
918         for (ai = 0; ai < self->expression.count; ++ai) {
919             asterror(ast_ctx(self), "TODO: array gen");
920         }
921     }
922     else
923     {
924         /* Arrays don't do this since there's no "array" value which spans across the
925          * whole thing.
926          */
927         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
928         if (!v) {
929             asterror(ast_ctx(self), "ir_builder_create_global failed");
930             return false;
931         }
932         if (self->expression.vtype == TYPE_FIELD)
933             v->fieldtype = self->expression.next->expression.vtype;
934         v->context = ast_ctx(self);
935     }
936
937     if (self->isconst) {
938         switch (self->expression.vtype)
939         {
940             case TYPE_FLOAT:
941                 if (!ir_value_set_float(v, self->constval.vfloat))
942                     goto error;
943                 break;
944             case TYPE_VECTOR:
945                 if (!ir_value_set_vector(v, self->constval.vvec))
946                     goto error;
947                 break;
948             case TYPE_STRING:
949                 if (!ir_value_set_string(v, self->constval.vstring))
950                     goto error;
951                 break;
952             case TYPE_ARRAY:
953                 asterror(ast_ctx(self), "TODO: global constant array");
954                 break;
955             case TYPE_FUNCTION:
956                 asterror(ast_ctx(self), "global of type function not properly generated");
957                 goto error;
958                 /* Cannot generate an IR value for a function,
959                  * need a pointer pointing to a function rather.
960                  */
961             default:
962                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
963                 break;
964         }
965     }
966
967     /* link us to the ir_value */
968     self->ir_v = v;
969     return true;
970
971 error: /* clean up */
972     ir_value_delete(v);
973     return false;
974 }
975
976 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
977 {
978     ir_value *v = NULL;
979     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
980     {
981         /* Do we allow local functions? I think not...
982          * this is NOT a function pointer atm.
983          */
984         return false;
985     }
986
987     if (self->expression.vtype == TYPE_ARRAY)
988     {
989         asterror(ast_ctx(self), "TODO: ast_local_codgen for TYPE_ARRAY");
990         return false;
991     }
992
993     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
994     if (!v)
995         return false;
996     if (self->expression.vtype == TYPE_FIELD)
997         v->fieldtype = self->expression.next->expression.vtype;
998     v->context = ast_ctx(self);
999
1000     /* A constant local... hmmm...
1001      * I suppose the IR will have to deal with this
1002      */
1003     if (self->isconst) {
1004         switch (self->expression.vtype)
1005         {
1006             case TYPE_FLOAT:
1007                 if (!ir_value_set_float(v, self->constval.vfloat))
1008                     goto error;
1009                 break;
1010             case TYPE_VECTOR:
1011                 if (!ir_value_set_vector(v, self->constval.vvec))
1012                     goto error;
1013                 break;
1014             case TYPE_STRING:
1015                 if (!ir_value_set_string(v, self->constval.vstring))
1016                     goto error;
1017                 break;
1018             default:
1019                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1020                 break;
1021         }
1022     }
1023
1024     /* link us to the ir_value */
1025     self->ir_v = v;
1026     return true;
1027
1028 error: /* clean up */
1029     ir_value_delete(v);
1030     return false;
1031 }
1032
1033 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1034 {
1035     ir_function *irf;
1036     ir_value    *dummy;
1037     ast_expression_common *ec;
1038     size_t    i;
1039
1040     irf = self->ir_func;
1041     if (!irf) {
1042         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1043         return false;
1044     }
1045
1046     /* fill the parameter list */
1047     ec = &self->vtype->expression;
1048     for (i = 0; i < ec->params_count; ++i)
1049     {
1050         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1051             return false;
1052         if (!self->builtin) {
1053             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1054                 return false;
1055         }
1056     }
1057
1058     if (self->builtin) {
1059         irf->builtin = self->builtin;
1060         return true;
1061     }
1062
1063     if (!self->blocks_count) {
1064         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1065         return false;
1066     }
1067
1068     self->curblock = ir_function_create_block(irf, "entry");
1069     if (!self->curblock) {
1070         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1071         return false;
1072     }
1073
1074     for (i = 0; i < self->blocks_count; ++i) {
1075         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1076         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1077             return false;
1078     }
1079
1080     /* TODO: check return types */
1081     if (!self->curblock->is_return)
1082     {
1083         return ir_block_create_return(self->curblock, NULL);
1084         /* From now on the parser has to handle this situation */
1085 #if 0
1086         if (!self->vtype->expression.next ||
1087             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1088         {
1089             return ir_block_create_return(self->curblock, NULL);
1090         }
1091         else
1092         {
1093             /* error("missing return"); */
1094             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1095             return false;
1096         }
1097 #endif
1098     }
1099     return true;
1100 }
1101
1102 /* Note, you will not see ast_block_codegen generate ir_blocks.
1103  * To the AST and the IR, blocks are 2 different things.
1104  * In the AST it represents a block of code, usually enclosed in
1105  * curly braces {...}.
1106  * While in the IR it represents a block in terms of control-flow.
1107  */
1108 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1109 {
1110     size_t i;
1111
1112     /* We don't use this
1113      * Note: an ast-representation using the comma-operator
1114      * of the form: (a, b, c) = x should not assign to c...
1115      */
1116     if (lvalue) {
1117         asterror(ast_ctx(self), "not an l-value (code-block)");
1118         return false;
1119     }
1120
1121     if (self->expression.outr) {
1122         *out = self->expression.outr;
1123         return true;
1124     }
1125
1126     /* output is NULL at first, we'll have each expression
1127      * assign to out output, thus, a comma-operator represention
1128      * using an ast_block will return the last generated value,
1129      * so: (b, c) + a  executed both b and c, and returns c,
1130      * which is then added to a.
1131      */
1132     *out = NULL;
1133
1134     /* generate locals */
1135     for (i = 0; i < self->locals_count; ++i)
1136     {
1137         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1138             if (opts_debug)
1139                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1140             return false;
1141         }
1142     }
1143
1144     for (i = 0; i < self->exprs_count; ++i)
1145     {
1146         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1147         if (!(*gen)(self->exprs[i], func, false, out))
1148             return false;
1149     }
1150
1151     self->expression.outr = *out;
1152
1153     return true;
1154 }
1155
1156 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1157 {
1158     ast_expression_codegen *cgen;
1159     ir_value *left, *right;
1160
1161     if (lvalue && self->expression.outl) {
1162         *out = self->expression.outl;
1163         return true;
1164     }
1165
1166     if (!lvalue && self->expression.outr) {
1167         *out = self->expression.outr;
1168         return true;
1169     }
1170
1171     cgen = self->dest->expression.codegen;
1172     /* lvalue! */
1173     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1174         return false;
1175     self->expression.outl = left;
1176
1177     cgen = self->source->expression.codegen;
1178     /* rvalue! */
1179     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1180         return false;
1181
1182     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1183         return false;
1184     self->expression.outr = right;
1185
1186     /* Theoretically, an assinment returns its left side as an
1187      * lvalue, if we don't need an lvalue though, we return
1188      * the right side as an rvalue, otherwise we have to
1189      * somehow know whether or not we need to dereference the pointer
1190      * on the left side - that is: OP_LOAD if it was an address.
1191      * Also: in original QC we cannot OP_LOADP *anyway*.
1192      */
1193     *out = (lvalue ? left : right);
1194
1195     return true;
1196 }
1197
1198 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1199 {
1200     ast_expression_codegen *cgen;
1201     ir_value *left, *right;
1202
1203     /* A binary operation cannot yield an l-value */
1204     if (lvalue) {
1205         asterror(ast_ctx(self), "not an l-value (binop)");
1206         return false;
1207     }
1208
1209     if (self->expression.outr) {
1210         *out = self->expression.outr;
1211         return true;
1212     }
1213
1214     cgen = self->left->expression.codegen;
1215     /* lvalue! */
1216     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1217         return false;
1218
1219     cgen = self->right->expression.codegen;
1220     /* rvalue! */
1221     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1222         return false;
1223
1224     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1225                                  self->op, left, right);
1226     if (!*out)
1227         return false;
1228     self->expression.outr = *out;
1229
1230     return true;
1231 }
1232
1233 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1234 {
1235     ast_expression_codegen *cgen;
1236     ir_value *leftl, *leftr, *right, *bin;
1237
1238     if (lvalue && self->expression.outl) {
1239         *out = self->expression.outl;
1240         return true;
1241     }
1242
1243     if (!lvalue && self->expression.outr) {
1244         *out = self->expression.outr;
1245         return true;
1246     }
1247
1248     /* for a binstore we need both an lvalue and an rvalue for the left side */
1249     /* rvalue of destination! */
1250     cgen = self->dest->expression.codegen;
1251     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1252         return false;
1253
1254     /* source as rvalue only */
1255     cgen = self->source->expression.codegen;
1256     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1257         return false;
1258
1259     /* now the binary */
1260     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1261                                 self->opbin, leftr, right);
1262     self->expression.outr = bin;
1263
1264     /* now store them */
1265     cgen = self->dest->expression.codegen;
1266     /* lvalue of destination */
1267     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1268         return false;
1269     self->expression.outl = leftl;
1270
1271     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1272         return false;
1273     self->expression.outr = bin;
1274
1275     /* Theoretically, an assinment returns its left side as an
1276      * lvalue, if we don't need an lvalue though, we return
1277      * the right side as an rvalue, otherwise we have to
1278      * somehow know whether or not we need to dereference the pointer
1279      * on the left side - that is: OP_LOAD if it was an address.
1280      * Also: in original QC we cannot OP_LOADP *anyway*.
1281      */
1282     *out = (lvalue ? leftl : bin);
1283
1284     return true;
1285 }
1286
1287 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1288 {
1289     ast_expression_codegen *cgen;
1290     ir_value *operand;
1291
1292     /* An unary operation cannot yield an l-value */
1293     if (lvalue) {
1294         asterror(ast_ctx(self), "not an l-value (binop)");
1295         return false;
1296     }
1297
1298     if (self->expression.outr) {
1299         *out = self->expression.outr;
1300         return true;
1301     }
1302
1303     cgen = self->operand->expression.codegen;
1304     /* lvalue! */
1305     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1306         return false;
1307
1308     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1309                                  self->op, operand);
1310     if (!*out)
1311         return false;
1312     self->expression.outr = *out;
1313
1314     return true;
1315 }
1316
1317 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1318 {
1319     ast_expression_codegen *cgen;
1320     ir_value *operand;
1321
1322     /* In the context of a return operation, we don't actually return
1323      * anything...
1324      */
1325     if (lvalue) {
1326         asterror(ast_ctx(self), "return-expression is not an l-value");
1327         return false;
1328     }
1329
1330     if (self->expression.outr) {
1331         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1332         return false;
1333     }
1334     self->expression.outr = (ir_value*)1;
1335
1336     if (self->operand) {
1337         cgen = self->operand->expression.codegen;
1338         /* lvalue! */
1339         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1340             return false;
1341
1342         if (!ir_block_create_return(func->curblock, operand))
1343             return false;
1344     } else {
1345         if (!ir_block_create_return(func->curblock, NULL))
1346             return false;
1347     }
1348
1349     return true;
1350 }
1351
1352 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1353 {
1354     ast_expression_codegen *cgen;
1355     ir_value *ent, *field;
1356
1357     /* This function needs to take the 'lvalue' flag into account!
1358      * As lvalue we provide a field-pointer, as rvalue we provide the
1359      * value in a temp.
1360      */
1361
1362     if (lvalue && self->expression.outl) {
1363         *out = self->expression.outl;
1364         return true;
1365     }
1366
1367     if (!lvalue && self->expression.outr) {
1368         *out = self->expression.outr;
1369         return true;
1370     }
1371
1372     cgen = self->entity->expression.codegen;
1373     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1374         return false;
1375
1376     cgen = self->field->expression.codegen;
1377     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1378         return false;
1379
1380     if (lvalue) {
1381         /* address! */
1382         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1383                                             ent, field);
1384     } else {
1385         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1386                                              ent, field, self->expression.vtype);
1387     }
1388     if (!*out) {
1389         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1390                  (lvalue ? "ADDRESS" : "FIELD"),
1391                  type_name[self->expression.vtype]);
1392         return false;
1393     }
1394
1395     if (lvalue)
1396         self->expression.outl = *out;
1397     else
1398         self->expression.outr = *out;
1399
1400     /* Hm that should be it... */
1401     return true;
1402 }
1403
1404 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1405 {
1406     ast_expression_codegen *cgen;
1407     ir_value *vec;
1408
1409     /* in QC this is always an lvalue */
1410     (void)lvalue;
1411     if (self->expression.outl) {
1412         *out = self->expression.outl;
1413         return true;
1414     }
1415
1416     cgen = self->owner->expression.codegen;
1417     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1418         return false;
1419
1420     if (vec->vtype != TYPE_VECTOR &&
1421         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1422     {
1423         return false;
1424     }
1425
1426     *out = ir_value_vector_member(vec, self->field);
1427     self->expression.outl = *out;
1428
1429     return (*out != NULL);
1430 }
1431
1432 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1433 {
1434     ast_expression_codegen *cgen;
1435
1436     ir_value *condval;
1437     ir_value *dummy;
1438
1439     ir_block *cond = func->curblock;
1440     ir_block *ontrue;
1441     ir_block *onfalse;
1442     ir_block *ontrue_endblock = NULL;
1443     ir_block *onfalse_endblock = NULL;
1444     ir_block *merge;
1445
1446     /* We don't output any value, thus also don't care about r/lvalue */
1447     (void)out;
1448     (void)lvalue;
1449
1450     if (self->expression.outr) {
1451         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1452         return false;
1453     }
1454     self->expression.outr = (ir_value*)1;
1455
1456     /* generate the condition */
1457     func->curblock = cond;
1458     cgen = self->cond->expression.codegen;
1459     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1460         return false;
1461
1462     /* on-true path */
1463
1464     if (self->on_true) {
1465         /* create on-true block */
1466         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1467         if (!ontrue)
1468             return false;
1469
1470         /* enter the block */
1471         func->curblock = ontrue;
1472
1473         /* generate */
1474         cgen = self->on_true->expression.codegen;
1475         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1476             return false;
1477
1478         /* we now need to work from the current endpoint */
1479         ontrue_endblock = func->curblock;
1480     } else
1481         ontrue = NULL;
1482
1483     /* on-false path */
1484     if (self->on_false) {
1485         /* create on-false block */
1486         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1487         if (!onfalse)
1488             return false;
1489
1490         /* enter the block */
1491         func->curblock = onfalse;
1492
1493         /* generate */
1494         cgen = self->on_false->expression.codegen;
1495         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1496             return false;
1497
1498         /* we now need to work from the current endpoint */
1499         onfalse_endblock = func->curblock;
1500     } else
1501         onfalse = NULL;
1502
1503     /* Merge block were they all merge in to */
1504     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1505     if (!merge)
1506         return false;
1507
1508     /* add jumps ot the merge block */
1509     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1510         return false;
1511     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1512         return false;
1513
1514     /* we create the if here, that way all blocks are ordered :)
1515      */
1516     if (!ir_block_create_if(cond, condval,
1517                             (ontrue  ? ontrue  : merge),
1518                             (onfalse ? onfalse : merge)))
1519     {
1520         return false;
1521     }
1522
1523     /* Now enter the merge block */
1524     func->curblock = merge;
1525
1526     return true;
1527 }
1528
1529 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1530 {
1531     ast_expression_codegen *cgen;
1532
1533     ir_value *condval;
1534     ir_value *trueval, *falseval;
1535     ir_instr *phi;
1536
1537     ir_block *cond = func->curblock;
1538     ir_block *ontrue;
1539     ir_block *onfalse;
1540     ir_block *merge;
1541
1542     /* Ternary can never create an lvalue... */
1543     if (lvalue)
1544         return false;
1545
1546     /* In theory it shouldn't be possible to pass through a node twice, but
1547      * in case we add any kind of optimization pass for the AST itself, it
1548      * may still happen, thus we remember a created ir_value and simply return one
1549      * if it already exists.
1550      */
1551     if (self->phi_out) {
1552         *out = self->phi_out;
1553         return true;
1554     }
1555
1556     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1557
1558     /* generate the condition */
1559     func->curblock = cond;
1560     cgen = self->cond->expression.codegen;
1561     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1562         return false;
1563
1564     /* create on-true block */
1565     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1566     if (!ontrue)
1567         return false;
1568     else
1569     {
1570         /* enter the block */
1571         func->curblock = ontrue;
1572
1573         /* generate */
1574         cgen = self->on_true->expression.codegen;
1575         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1576             return false;
1577     }
1578
1579     /* create on-false block */
1580     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1581     if (!onfalse)
1582         return false;
1583     else
1584     {
1585         /* enter the block */
1586         func->curblock = onfalse;
1587
1588         /* generate */
1589         cgen = self->on_false->expression.codegen;
1590         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1591             return false;
1592     }
1593
1594     /* create merge block */
1595     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1596     if (!merge)
1597         return false;
1598     /* jump to merge block */
1599     if (!ir_block_create_jump(ontrue, merge))
1600         return false;
1601     if (!ir_block_create_jump(onfalse, merge))
1602         return false;
1603
1604     /* create if instruction */
1605     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1606         return false;
1607
1608     /* Now enter the merge block */
1609     func->curblock = merge;
1610
1611     /* Here, now, we need a PHI node
1612      * but first some sanity checking...
1613      */
1614     if (trueval->vtype != falseval->vtype) {
1615         /* error("ternary with different types on the two sides"); */
1616         return false;
1617     }
1618
1619     /* create PHI */
1620     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1621     if (!phi ||
1622         !ir_phi_add(phi, ontrue,  trueval) ||
1623         !ir_phi_add(phi, onfalse, falseval))
1624     {
1625         return false;
1626     }
1627
1628     self->phi_out = ir_phi_value(phi);
1629     *out = self->phi_out;
1630
1631     return true;
1632 }
1633
1634 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1635 {
1636     ast_expression_codegen *cgen;
1637
1638     ir_value *dummy      = NULL;
1639     ir_value *precond    = NULL;
1640     ir_value *postcond   = NULL;
1641
1642     /* Since we insert some jumps "late" so we have blocks
1643      * ordered "nicely", we need to keep track of the actual end-blocks
1644      * of expressions to add the jumps to.
1645      */
1646     ir_block *bbody      = NULL, *end_bbody      = NULL;
1647     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1648     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1649     ir_block *bincrement = NULL, *end_bincrement = NULL;
1650     ir_block *bout       = NULL, *bin            = NULL;
1651
1652     /* let's at least move the outgoing block to the end */
1653     size_t    bout_id;
1654
1655     /* 'break' and 'continue' need to be able to find the right blocks */
1656     ir_block *bcontinue     = NULL;
1657     ir_block *bbreak        = NULL;
1658
1659     ir_block *old_bcontinue = NULL;
1660     ir_block *old_bbreak    = NULL;
1661
1662     ir_block *tmpblock      = NULL;
1663
1664     (void)lvalue;
1665     (void)out;
1666
1667     if (self->expression.outr) {
1668         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1669         return false;
1670     }
1671     self->expression.outr = (ir_value*)1;
1672
1673     /* NOTE:
1674      * Should we ever need some kind of block ordering, better make this function
1675      * move blocks around than write a block ordering algorithm later... after all
1676      * the ast and ir should work together, not against each other.
1677      */
1678
1679     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1680      * anyway if for example it contains a ternary.
1681      */
1682     if (self->initexpr)
1683     {
1684         cgen = self->initexpr->expression.codegen;
1685         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1686             return false;
1687     }
1688
1689     /* Store the block from which we enter this chaos */
1690     bin = func->curblock;
1691
1692     /* The pre-loop condition needs its own block since we
1693      * need to be able to jump to the start of that expression.
1694      */
1695     if (self->precond)
1696     {
1697         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1698         if (!bprecond)
1699             return false;
1700
1701         /* the pre-loop-condition the least important place to 'continue' at */
1702         bcontinue = bprecond;
1703
1704         /* enter */
1705         func->curblock = bprecond;
1706
1707         /* generate */
1708         cgen = self->precond->expression.codegen;
1709         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1710             return false;
1711
1712         end_bprecond = func->curblock;
1713     } else {
1714         bprecond = end_bprecond = NULL;
1715     }
1716
1717     /* Now the next blocks won't be ordered nicely, but we need to
1718      * generate them this early for 'break' and 'continue'.
1719      */
1720     if (self->increment) {
1721         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1722         if (!bincrement)
1723             return false;
1724         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1725     } else {
1726         bincrement = end_bincrement = NULL;
1727     }
1728
1729     if (self->postcond) {
1730         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1731         if (!bpostcond)
1732             return false;
1733         bcontinue = bpostcond; /* postcond comes before the increment */
1734     } else {
1735         bpostcond = end_bpostcond = NULL;
1736     }
1737
1738     bout_id = func->ir_func->blocks_count;
1739     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1740     if (!bout)
1741         return false;
1742     bbreak = bout;
1743
1744     /* The loop body... */
1745     if (self->body)
1746     {
1747         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1748         if (!bbody)
1749             return false;
1750
1751         /* enter */
1752         func->curblock = bbody;
1753
1754         old_bbreak          = func->breakblock;
1755         old_bcontinue       = func->continueblock;
1756         func->breakblock    = bbreak;
1757         func->continueblock = bcontinue;
1758
1759         /* generate */
1760         cgen = self->body->expression.codegen;
1761         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1762             return false;
1763
1764         end_bbody = func->curblock;
1765         func->breakblock    = old_bbreak;
1766         func->continueblock = old_bcontinue;
1767     }
1768
1769     /* post-loop-condition */
1770     if (self->postcond)
1771     {
1772         /* enter */
1773         func->curblock = bpostcond;
1774
1775         /* generate */
1776         cgen = self->postcond->expression.codegen;
1777         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1778             return false;
1779
1780         end_bpostcond = func->curblock;
1781     }
1782
1783     /* The incrementor */
1784     if (self->increment)
1785     {
1786         /* enter */
1787         func->curblock = bincrement;
1788
1789         /* generate */
1790         cgen = self->increment->expression.codegen;
1791         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1792             return false;
1793
1794         end_bincrement = func->curblock;
1795     }
1796
1797     /* In any case now, we continue from the outgoing block */
1798     func->curblock = bout;
1799
1800     /* Now all blocks are in place */
1801     /* From 'bin' we jump to whatever comes first */
1802     if      (bprecond)   tmpblock = bprecond;
1803     else if (bbody)      tmpblock = bbody;
1804     else if (bpostcond)  tmpblock = bpostcond;
1805     else                 tmpblock = bout;
1806     if (!ir_block_create_jump(bin, tmpblock))
1807         return false;
1808
1809     /* From precond */
1810     if (bprecond)
1811     {
1812         ir_block *ontrue, *onfalse;
1813         if      (bbody)      ontrue = bbody;
1814         else if (bincrement) ontrue = bincrement;
1815         else if (bpostcond)  ontrue = bpostcond;
1816         else                 ontrue = bprecond;
1817         onfalse = bout;
1818         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1819             return false;
1820     }
1821
1822     /* from body */
1823     if (bbody)
1824     {
1825         if      (bincrement) tmpblock = bincrement;
1826         else if (bpostcond)  tmpblock = bpostcond;
1827         else if (bprecond)   tmpblock = bprecond;
1828         else                 tmpblock = bout;
1829         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1830             return false;
1831     }
1832
1833     /* from increment */
1834     if (bincrement)
1835     {
1836         if      (bpostcond)  tmpblock = bpostcond;
1837         else if (bprecond)   tmpblock = bprecond;
1838         else if (bbody)      tmpblock = bbody;
1839         else                 tmpblock = bout;
1840         if (!ir_block_create_jump(end_bincrement, tmpblock))
1841             return false;
1842     }
1843
1844     /* from postcond */
1845     if (bpostcond)
1846     {
1847         ir_block *ontrue, *onfalse;
1848         if      (bprecond)   ontrue = bprecond;
1849         else if (bbody)      ontrue = bbody;
1850         else if (bincrement) ontrue = bincrement;
1851         else                 ontrue = bpostcond;
1852         onfalse = bout;
1853         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1854             return false;
1855     }
1856
1857     /* Move 'bout' to the end */
1858     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1859         !ir_function_blocks_add(func->ir_func, bout))
1860     {
1861         ir_block_delete(bout);
1862         return false;
1863     }
1864
1865     return true;
1866 }
1867
1868 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1869 {
1870     ast_expression_codegen *cgen;
1871     ir_value_vector         params;
1872     ir_instr               *callinstr;
1873     size_t i;
1874
1875     ir_value *funval = NULL;
1876
1877     /* return values are never lvalues */
1878     if (lvalue) {
1879         asterror(ast_ctx(self), "not an l-value (function call)");
1880         return false;
1881     }
1882
1883     if (self->expression.outr) {
1884         *out = self->expression.outr;
1885         return true;
1886     }
1887
1888     cgen = self->func->expression.codegen;
1889     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1890         return false;
1891     if (!funval)
1892         return false;
1893
1894     MEM_VECTOR_INIT(&params, v);
1895
1896     /* parameters */
1897     for (i = 0; i < self->params_count; ++i)
1898     {
1899         ir_value *param;
1900         ast_expression *expr = self->params[i];
1901
1902         cgen = expr->expression.codegen;
1903         if (!(*cgen)(expr, func, false, &param))
1904             goto error;
1905         if (!param)
1906             goto error;
1907         if (!ir_value_vector_v_add(&params, param))
1908             goto error;
1909     }
1910
1911     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1912     if (!callinstr)
1913         goto error;
1914
1915     for (i = 0; i < params.v_count; ++i) {
1916         if (!ir_call_param(callinstr, params.v[i]))
1917             goto error;
1918     }
1919
1920     *out = ir_call_value(callinstr);
1921     self->expression.outr = *out;
1922
1923     MEM_VECTOR_CLEAR(&params, v);
1924     return true;
1925 error:
1926     MEM_VECTOR_CLEAR(&params, v);
1927     return false;
1928 }