]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Add an error output in the ast where I missed one (there are probably more places...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     ast_unref(self->owner);
409     ast_expression_delete((ast_expression*)self);
410     mem_d(self);
411 }
412
413 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
414 {
415     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
416     if (!ontrue && !onfalse) {
417         /* because it is invalid */
418         mem_d(self);
419         return NULL;
420     }
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
422
423     self->cond     = cond;
424     self->on_true  = ontrue;
425     self->on_false = onfalse;
426
427     return self;
428 }
429
430 void ast_ifthen_delete(ast_ifthen *self)
431 {
432     ast_unref(self->cond);
433     if (self->on_true)
434         ast_unref(self->on_true);
435     if (self->on_false)
436         ast_unref(self->on_false);
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
444     /* This time NEITHER must be NULL */
445     if (!ontrue || !onfalse) {
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454     self->phi_out  = NULL;
455
456     return self;
457 }
458
459 void ast_ternary_delete(ast_ternary *self)
460 {
461     ast_unref(self->cond);
462     ast_unref(self->on_true);
463     ast_unref(self->on_false);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_loop* ast_loop_new(lex_ctx ctx,
469                        ast_expression *initexpr,
470                        ast_expression *precond,
471                        ast_expression *postcond,
472                        ast_expression *increment,
473                        ast_expression *body)
474 {
475     ast_instantiate(ast_loop, ctx, ast_loop_delete);
476     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
477
478     self->initexpr  = initexpr;
479     self->precond   = precond;
480     self->postcond  = postcond;
481     self->increment = increment;
482     self->body      = body;
483
484     return self;
485 }
486
487 void ast_loop_delete(ast_loop *self)
488 {
489     if (self->initexpr)
490         ast_unref(self->initexpr);
491     if (self->precond)
492         ast_unref(self->precond);
493     if (self->postcond)
494         ast_unref(self->postcond);
495     if (self->increment)
496         ast_unref(self->increment);
497     if (self->body)
498         ast_unref(self->body);
499     ast_expression_delete((ast_expression*)self);
500     mem_d(self);
501 }
502
503 ast_call* ast_call_new(lex_ctx ctx,
504                        ast_expression *funcexpr)
505 {
506     ast_instantiate(ast_call, ctx, ast_call_delete);
507     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
508
509     MEM_VECTOR_INIT(self, params);
510
511     self->func = funcexpr;
512
513     return self;
514 }
515 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
516
517 void ast_call_delete(ast_call *self)
518 {
519     size_t i;
520     for (i = 0; i < self->params_count; ++i)
521         ast_unref(self->params[i]);
522     MEM_VECTOR_CLEAR(self, params);
523
524     if (self->func)
525         ast_unref(self->func);
526
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_store* ast_store_new(lex_ctx ctx, int op,
532                          ast_expression *dest, ast_expression *source)
533 {
534     ast_instantiate(ast_store, ctx, ast_store_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
536
537     self->op = op;
538     self->dest = dest;
539     self->source = source;
540
541     return self;
542 }
543
544 void ast_store_delete(ast_store *self)
545 {
546     ast_unref(self->dest);
547     ast_unref(self->source);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_block* ast_block_new(lex_ctx ctx)
553 {
554     ast_instantiate(ast_block, ctx, ast_block_delete);
555     ast_expression_init((ast_expression*)self,
556                         (ast_expression_codegen*)&ast_block_codegen);
557
558     MEM_VECTOR_INIT(self, locals);
559     MEM_VECTOR_INIT(self, exprs);
560
561     return self;
562 }
563 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
564 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
565
566 void ast_block_delete(ast_block *self)
567 {
568     size_t i;
569     for (i = 0; i < self->exprs_count; ++i)
570         ast_unref(self->exprs[i]);
571     MEM_VECTOR_CLEAR(self, exprs);
572     for (i = 0; i < self->locals_count; ++i)
573         ast_delete(self->locals[i]);
574     MEM_VECTOR_CLEAR(self, locals);
575     ast_expression_delete((ast_expression*)self);
576     mem_d(self);
577 }
578
579 bool ast_block_set_type(ast_block *self, ast_expression *from)
580 {
581     if (self->expression.next)
582         ast_delete(self->expression.next);
583     self->expression.vtype = from->expression.vtype;
584     if (from->expression.next) {
585         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
586         if (!self->expression.next)
587             return false;
588     }
589     return true;
590 }
591
592 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
593 {
594     ast_instantiate(ast_function, ctx, ast_function_delete);
595
596     if (!vtype ||
597         vtype->isconst ||
598         vtype->expression.vtype != TYPE_FUNCTION)
599     {
600         mem_d(self);
601         return NULL;
602     }
603
604     self->vtype = vtype;
605     self->name = name ? util_strdup(name) : NULL;
606     MEM_VECTOR_INIT(self, blocks);
607
608     self->labelcount = 0;
609     self->builtin = 0;
610
611     self->ir_func = NULL;
612     self->curblock = NULL;
613
614     self->breakblock    = NULL;
615     self->continueblock = NULL;
616
617     vtype->isconst = true;
618     vtype->constval.vfunc = self;
619
620     return self;
621 }
622
623 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
624
625 void ast_function_delete(ast_function *self)
626 {
627     size_t i;
628     if (self->name)
629         mem_d((void*)self->name);
630     if (self->vtype) {
631         /* ast_value_delete(self->vtype); */
632         self->vtype->isconst = false;
633         self->vtype->constval.vfunc = NULL;
634         /* We use unref - if it was stored in a global table it is supposed
635          * to be deleted from *there*
636          */
637         ast_unref(self->vtype);
638     }
639     for (i = 0; i < self->blocks_count; ++i)
640         ast_delete(self->blocks[i]);
641     MEM_VECTOR_CLEAR(self, blocks);
642     mem_d(self);
643 }
644
645 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
646 {
647     unsigned int base = 10;
648 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
649 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
650     if (size < 1)
651         return;
652     checknul();
653     if (!num)
654         addch('0');
655     else {
656         while (num)
657         {
658             int digit = num % base;
659             num /= base;
660             addch('0' + digit);
661         }
662     }
663
664     *buf = 0;
665 #undef addch
666 #undef checknul
667 }
668
669 const char* ast_function_label(ast_function *self, const char *prefix)
670 {
671     size_t id = (self->labelcount++);
672     size_t len = strlen(prefix);
673     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
674     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
675     return self->labelbuf;
676 }
677
678 /*********************************************************************/
679 /* AST codegen part
680  * by convention you must never pass NULL to the 'ir_value **out'
681  * parameter. If you really don't care about the output, pass a dummy.
682  * But I can't imagine a pituation where the output is truly unnecessary.
683  */
684
685 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
686 {
687     /* NOTE: This is the codegen for a variable used in an expression.
688      * It is not the codegen to generate the value. For this purpose,
689      * ast_local_codegen and ast_global_codegen are to be used before this
690      * is executed. ast_function_codegen should take care of its locals,
691      * and the ast-user should take care of ast_global_codegen to be used
692      * on all the globals.
693      */
694     if (!self->ir_v) {
695         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
696         return false;
697     }
698     *out = self->ir_v;
699     return true;
700 }
701
702 bool ast_global_codegen(ast_value *self, ir_builder *ir)
703 {
704     ir_value *v = NULL;
705     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
706     {
707         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
708         if (!func)
709             return false;
710
711         self->constval.vfunc->ir_func = func;
712         self->ir_v = func->value;
713         /* The function is filled later on ast_function_codegen... */
714         return true;
715     }
716
717     if (self->expression.vtype == TYPE_FIELD) {
718         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
719         if (!v)
720             return false;
721         if (self->isconst) {
722             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
723             goto error;
724         }
725         self->ir_v = v;
726         return true;
727     }
728
729     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
730     if (!v) {
731         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
732         return false;
733     }
734
735     if (self->isconst) {
736         switch (self->expression.vtype)
737         {
738             case TYPE_FLOAT:
739                 if (!ir_value_set_float(v, self->constval.vfloat))
740                     goto error;
741                 break;
742             case TYPE_VECTOR:
743                 if (!ir_value_set_vector(v, self->constval.vvec))
744                     goto error;
745                 break;
746             case TYPE_STRING:
747                 if (!ir_value_set_string(v, self->constval.vstring))
748                     goto error;
749                 break;
750             case TYPE_FUNCTION:
751                 asterror(ast_ctx(self), "global of type function not properly generated\n");
752                 goto error;
753                 /* Cannot generate an IR value for a function,
754                  * need a pointer pointing to a function rather.
755                  */
756             default:
757                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
758                 break;
759         }
760     }
761
762     /* link us to the ir_value */
763     self->ir_v = v;
764     return true;
765
766 error: /* clean up */
767     ir_value_delete(v);
768     return false;
769 }
770
771 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
772 {
773     ir_value *v = NULL;
774     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
775     {
776         /* Do we allow local functions? I think not...
777          * this is NOT a function pointer atm.
778          */
779         return false;
780     }
781
782     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
783     if (!v)
784         return false;
785
786     /* A constant local... hmmm...
787      * I suppose the IR will have to deal with this
788      */
789     if (self->isconst) {
790         switch (self->expression.vtype)
791         {
792             case TYPE_FLOAT:
793                 if (!ir_value_set_float(v, self->constval.vfloat))
794                     goto error;
795                 break;
796             case TYPE_VECTOR:
797                 if (!ir_value_set_vector(v, self->constval.vvec))
798                     goto error;
799                 break;
800             case TYPE_STRING:
801                 if (!ir_value_set_string(v, self->constval.vstring))
802                     goto error;
803                 break;
804             default:
805                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
806                 break;
807         }
808     }
809
810     /* link us to the ir_value */
811     self->ir_v = v;
812     return true;
813
814 error: /* clean up */
815     ir_value_delete(v);
816     return false;
817 }
818
819 bool ast_function_codegen(ast_function *self, ir_builder *ir)
820 {
821     ir_function *irf;
822     ir_value    *dummy;
823     ast_expression_common *ec;
824     size_t    i;
825
826     irf = self->ir_func;
827     if (!irf) {
828         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
829         return false;
830     }
831
832     /* fill the parameter list */
833     ec = &self->vtype->expression;
834     for (i = 0; i < ec->params_count; ++i)
835     {
836         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
837             return false;
838         if (!self->builtin) {
839             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
840                 return false;
841         }
842     }
843
844     if (self->builtin) {
845         irf->builtin = self->builtin;
846         return true;
847     }
848
849     if (!self->blocks_count) {
850         asterror(ast_ctx(self), "function `%s` has no body", self->name);
851         return false;
852     }
853
854     self->curblock = ir_function_create_block(irf, "entry");
855     if (!self->curblock)
856         return false;
857
858     for (i = 0; i < self->blocks_count; ++i) {
859         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
860         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
861             return false;
862     }
863
864     /* TODO: check return types */
865     if (!self->curblock->is_return)
866     {
867         if (!self->vtype->expression.next ||
868             self->vtype->expression.next->expression.vtype == TYPE_VOID)
869         {
870             return ir_block_create_return(self->curblock, NULL);
871         }
872         else
873         {
874             /* error("missing return"); */
875             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
876             return false;
877         }
878     }
879     return true;
880 }
881
882 /* Note, you will not see ast_block_codegen generate ir_blocks.
883  * To the AST and the IR, blocks are 2 different things.
884  * In the AST it represents a block of code, usually enclosed in
885  * curly braces {...}.
886  * While in the IR it represents a block in terms of control-flow.
887  */
888 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
889 {
890     size_t i;
891
892     /* We don't use this
893      * Note: an ast-representation using the comma-operator
894      * of the form: (a, b, c) = x should not assign to c...
895      */
896     (void)lvalue;
897     if (self->expression.outr) {
898         *out = self->expression.outr;
899         return true;
900     }
901
902     /* output is NULL at first, we'll have each expression
903      * assign to out output, thus, a comma-operator represention
904      * using an ast_block will return the last generated value,
905      * so: (b, c) + a  executed both b and c, and returns c,
906      * which is then added to a.
907      */
908     *out = NULL;
909
910     /* generate locals */
911     for (i = 0; i < self->locals_count; ++i)
912     {
913         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
914             return false;
915     }
916
917     for (i = 0; i < self->exprs_count; ++i)
918     {
919         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
920         if (!(*gen)(self->exprs[i], func, false, out))
921             return false;
922     }
923
924     self->expression.outr = *out;
925
926     return true;
927 }
928
929 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
930 {
931     ast_expression_codegen *cgen;
932     ir_value *left, *right;
933
934     if (lvalue && self->expression.outl) {
935         *out = self->expression.outl;
936         return true;
937     }
938
939     if (!lvalue && self->expression.outr) {
940         *out = self->expression.outr;
941         return true;
942     }
943
944     cgen = self->dest->expression.codegen;
945     /* lvalue! */
946     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
947         return false;
948     self->expression.outl = left;
949
950     cgen = self->source->expression.codegen;
951     /* rvalue! */
952     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
953         return false;
954
955     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
956         return false;
957     self->expression.outr = right;
958
959     /* Theoretically, an assinment returns its left side as an
960      * lvalue, if we don't need an lvalue though, we return
961      * the right side as an rvalue, otherwise we have to
962      * somehow know whether or not we need to dereference the pointer
963      * on the left side - that is: OP_LOAD if it was an address.
964      * Also: in original QC we cannot OP_LOADP *anyway*.
965      */
966     *out = (lvalue ? left : right);
967
968     return true;
969 }
970
971 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
972 {
973     ast_expression_codegen *cgen;
974     ir_value *left, *right;
975
976     /* In the context of a binary operation, we can disregard
977      * the lvalue flag.
978      */
979     (void)lvalue;
980     if (self->expression.outr) {
981         *out = self->expression.outr;
982         return true;
983     }
984
985     cgen = self->left->expression.codegen;
986     /* lvalue! */
987     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
988         return false;
989
990     cgen = self->right->expression.codegen;
991     /* rvalue! */
992     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
993         return false;
994
995     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
996                                  self->op, left, right);
997     if (!*out)
998         return false;
999     self->expression.outr = *out;
1000
1001     return true;
1002 }
1003
1004 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1005 {
1006     ast_expression_codegen *cgen;
1007     ir_value *leftl, *leftr, *right, *bin;
1008
1009     if (lvalue && self->expression.outl) {
1010         *out = self->expression.outl;
1011         return true;
1012     }
1013
1014     if (!lvalue && self->expression.outr) {
1015         *out = self->expression.outr;
1016         return true;
1017     }
1018
1019     /* for a binstore we need both an lvalue and an rvalue for the left side */
1020     /* rvalue of destination! */
1021     cgen = self->dest->expression.codegen;
1022     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1023         return false;
1024
1025     /* source as rvalue only */
1026     cgen = self->source->expression.codegen;
1027     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1028         return false;
1029
1030     /* now the binary */
1031     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1032                                 self->opbin, leftr, right);
1033     self->expression.outr = bin;
1034
1035     /* now store them */
1036     cgen = self->dest->expression.codegen;
1037     /* lvalue of destination */
1038     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1039         return false;
1040     self->expression.outl = leftl;
1041
1042     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1043         return false;
1044     self->expression.outr = bin;
1045
1046     /* Theoretically, an assinment returns its left side as an
1047      * lvalue, if we don't need an lvalue though, we return
1048      * the right side as an rvalue, otherwise we have to
1049      * somehow know whether or not we need to dereference the pointer
1050      * on the left side - that is: OP_LOAD if it was an address.
1051      * Also: in original QC we cannot OP_LOADP *anyway*.
1052      */
1053     *out = (lvalue ? leftl : bin);
1054
1055     return true;
1056 }
1057
1058 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1059 {
1060     ast_expression_codegen *cgen;
1061     ir_value *operand;
1062
1063     /* In the context of a unary operation, we can disregard
1064      * the lvalue flag.
1065      */
1066     (void)lvalue;
1067     if (self->expression.outr) {
1068         *out = self->expression.outr;
1069         return true;
1070     }
1071
1072     cgen = self->operand->expression.codegen;
1073     /* lvalue! */
1074     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1075         return false;
1076
1077     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1078                                  self->op, operand);
1079     if (!*out)
1080         return false;
1081     self->expression.outr = *out;
1082
1083     return true;
1084 }
1085
1086 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1087 {
1088     ast_expression_codegen *cgen;
1089     ir_value *operand;
1090
1091     /* In the context of a return operation, we can disregard
1092      * the lvalue flag.
1093      */
1094     (void)lvalue;
1095     if (self->expression.outr) {
1096         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1097         return false;
1098     }
1099     self->expression.outr = (ir_value*)1;
1100
1101     cgen = self->operand->expression.codegen;
1102     /* lvalue! */
1103     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1104         return false;
1105
1106     if (!ir_block_create_return(func->curblock, operand))
1107         return false;
1108
1109     return true;
1110 }
1111
1112 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1113 {
1114     ast_expression_codegen *cgen;
1115     ir_value *ent, *field;
1116
1117     /* This function needs to take the 'lvalue' flag into account!
1118      * As lvalue we provide a field-pointer, as rvalue we provide the
1119      * value in a temp.
1120      */
1121
1122     if (lvalue && self->expression.outl) {
1123         *out = self->expression.outl;
1124         return true;
1125     }
1126
1127     if (!lvalue && self->expression.outr) {
1128         *out = self->expression.outr;
1129         return true;
1130     }
1131
1132     cgen = self->entity->expression.codegen;
1133     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1134         return false;
1135
1136     cgen = self->field->expression.codegen;
1137     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1138         return false;
1139
1140     if (lvalue) {
1141         /* address! */
1142         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1143                                             ent, field);
1144     } else {
1145         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1146                                              ent, field, self->expression.vtype);
1147     }
1148     if (!*out) {
1149         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1150                  (lvalue ? "ADDRESS" : "FIELD"),
1151                  type_name[self->expression.vtype]);
1152         return false;
1153     }
1154
1155     if (lvalue)
1156         self->expression.outl = *out;
1157     else
1158         self->expression.outr = *out;
1159
1160     /* Hm that should be it... */
1161     return true;
1162 }
1163
1164 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1165 {
1166     ast_expression_codegen *cgen;
1167     ir_value *vec;
1168
1169     /* in QC this is always an lvalue */
1170     (void)lvalue;
1171     if (self->expression.outl) {
1172         *out = self->expression.outl;
1173         return true;
1174     }
1175
1176     cgen = self->owner->expression.codegen;
1177     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1178         return false;
1179
1180     if (vec->vtype != TYPE_VECTOR &&
1181         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1182     {
1183         return false;
1184     }
1185
1186     *out = ir_value_vector_member(vec, self->field);
1187     self->expression.outl = *out;
1188
1189     return (*out != NULL);
1190 }
1191
1192 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1193 {
1194     ast_expression_codegen *cgen;
1195
1196     ir_value *condval;
1197     ir_value *dummy;
1198
1199     ir_block *cond = func->curblock;
1200     ir_block *ontrue;
1201     ir_block *onfalse;
1202     ir_block *merge;
1203
1204     /* We don't output any value, thus also don't care about r/lvalue */
1205     (void)out;
1206     (void)lvalue;
1207
1208     if (self->expression.outr) {
1209         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1210         return false;
1211     }
1212     self->expression.outr = (ir_value*)1;
1213
1214     /* generate the condition */
1215     func->curblock = cond;
1216     cgen = self->cond->expression.codegen;
1217     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1218         return false;
1219
1220     /* on-true path */
1221
1222     if (self->on_true) {
1223         /* create on-true block */
1224         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1225         if (!ontrue)
1226             return false;
1227
1228         /* enter the block */
1229         func->curblock = ontrue;
1230
1231         /* generate */
1232         cgen = self->on_true->expression.codegen;
1233         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1234             return false;
1235     } else
1236         ontrue = NULL;
1237
1238     /* on-false path */
1239     if (self->on_false) {
1240         /* create on-false block */
1241         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1242         if (!onfalse)
1243             return false;
1244
1245         /* enter the block */
1246         func->curblock = onfalse;
1247
1248         /* generate */
1249         cgen = self->on_false->expression.codegen;
1250         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1251             return false;
1252     } else
1253         onfalse = NULL;
1254
1255     /* Merge block were they all merge in to */
1256     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1257     if (!merge)
1258         return false;
1259
1260     /* add jumps ot the merge block */
1261     if (ontrue && !ir_block_create_jump(ontrue, merge))
1262         return false;
1263     if (onfalse && !ir_block_create_jump(onfalse, merge))
1264         return false;
1265
1266     /* we create the if here, that way all blocks are ordered :)
1267      */
1268     if (!ir_block_create_if(cond, condval,
1269                             (ontrue  ? ontrue  : merge),
1270                             (onfalse ? onfalse : merge)))
1271     {
1272         return false;
1273     }
1274
1275     /* Now enter the merge block */
1276     func->curblock = merge;
1277
1278     return true;
1279 }
1280
1281 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1282 {
1283     ast_expression_codegen *cgen;
1284
1285     ir_value *condval;
1286     ir_value *trueval, *falseval;
1287     ir_instr *phi;
1288
1289     ir_block *cond = func->curblock;
1290     ir_block *ontrue;
1291     ir_block *onfalse;
1292     ir_block *merge;
1293
1294     /* Ternary can never create an lvalue... */
1295     if (lvalue)
1296         return false;
1297
1298     /* In theory it shouldn't be possible to pass through a node twice, but
1299      * in case we add any kind of optimization pass for the AST itself, it
1300      * may still happen, thus we remember a created ir_value and simply return one
1301      * if it already exists.
1302      */
1303     if (self->phi_out) {
1304         *out = self->phi_out;
1305         return true;
1306     }
1307
1308     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1309
1310     /* generate the condition */
1311     func->curblock = cond;
1312     cgen = self->cond->expression.codegen;
1313     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1314         return false;
1315
1316     /* create on-true block */
1317     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1318     if (!ontrue)
1319         return false;
1320     else
1321     {
1322         /* enter the block */
1323         func->curblock = ontrue;
1324
1325         /* generate */
1326         cgen = self->on_true->expression.codegen;
1327         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1328             return false;
1329     }
1330
1331     /* create on-false block */
1332     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1333     if (!onfalse)
1334         return false;
1335     else
1336     {
1337         /* enter the block */
1338         func->curblock = onfalse;
1339
1340         /* generate */
1341         cgen = self->on_false->expression.codegen;
1342         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1343             return false;
1344     }
1345
1346     /* create merge block */
1347     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1348     if (!merge)
1349         return false;
1350     /* jump to merge block */
1351     if (!ir_block_create_jump(ontrue, merge))
1352         return false;
1353     if (!ir_block_create_jump(onfalse, merge))
1354         return false;
1355
1356     /* create if instruction */
1357     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1358         return false;
1359
1360     /* Now enter the merge block */
1361     func->curblock = merge;
1362
1363     /* Here, now, we need a PHI node
1364      * but first some sanity checking...
1365      */
1366     if (trueval->vtype != falseval->vtype) {
1367         /* error("ternary with different types on the two sides"); */
1368         return false;
1369     }
1370
1371     /* create PHI */
1372     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1373     if (!phi ||
1374         !ir_phi_add(phi, ontrue,  trueval) ||
1375         !ir_phi_add(phi, onfalse, falseval))
1376     {
1377         return false;
1378     }
1379
1380     self->phi_out = ir_phi_value(phi);
1381     *out = self->phi_out;
1382
1383     return true;
1384 }
1385
1386 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1387 {
1388     ast_expression_codegen *cgen;
1389
1390     ir_value *dummy      = NULL;
1391     ir_value *precond    = NULL;
1392     ir_value *postcond   = NULL;
1393
1394     /* Since we insert some jumps "late" so we have blocks
1395      * ordered "nicely", we need to keep track of the actual end-blocks
1396      * of expressions to add the jumps to.
1397      */
1398     ir_block *bbody      = NULL, *end_bbody      = NULL;
1399     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1400     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1401     ir_block *bincrement = NULL, *end_bincrement = NULL;
1402     ir_block *bout       = NULL, *bin            = NULL;
1403
1404     /* let's at least move the outgoing block to the end */
1405     size_t    bout_id;
1406
1407     /* 'break' and 'continue' need to be able to find the right blocks */
1408     ir_block *bcontinue     = NULL;
1409     ir_block *bbreak        = NULL;
1410
1411     ir_block *old_bcontinue = NULL;
1412     ir_block *old_bbreak    = NULL;
1413
1414     ir_block *tmpblock      = NULL;
1415
1416     (void)lvalue;
1417     (void)out;
1418
1419     if (self->expression.outr) {
1420         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1421         return false;
1422     }
1423     self->expression.outr = (ir_value*)1;
1424
1425     /* NOTE:
1426      * Should we ever need some kind of block ordering, better make this function
1427      * move blocks around than write a block ordering algorithm later... after all
1428      * the ast and ir should work together, not against each other.
1429      */
1430
1431     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1432      * anyway if for example it contains a ternary.
1433      */
1434     if (self->initexpr)
1435     {
1436         cgen = self->initexpr->expression.codegen;
1437         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1438             return false;
1439     }
1440
1441     /* Store the block from which we enter this chaos */
1442     bin = func->curblock;
1443
1444     /* The pre-loop condition needs its own block since we
1445      * need to be able to jump to the start of that expression.
1446      */
1447     if (self->precond)
1448     {
1449         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1450         if (!bprecond)
1451             return false;
1452
1453         /* the pre-loop-condition the least important place to 'continue' at */
1454         bcontinue = bprecond;
1455
1456         /* enter */
1457         func->curblock = bprecond;
1458
1459         /* generate */
1460         cgen = self->precond->expression.codegen;
1461         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1462             return false;
1463
1464         end_bprecond = func->curblock;
1465     } else {
1466         bprecond = end_bprecond = NULL;
1467     }
1468
1469     /* Now the next blocks won't be ordered nicely, but we need to
1470      * generate them this early for 'break' and 'continue'.
1471      */
1472     if (self->increment) {
1473         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1474         if (!bincrement)
1475             return false;
1476         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1477     } else {
1478         bincrement = end_bincrement = NULL;
1479     }
1480
1481     if (self->postcond) {
1482         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1483         if (!bpostcond)
1484             return false;
1485         bcontinue = bpostcond; /* postcond comes before the increment */
1486     } else {
1487         bpostcond = end_bpostcond = NULL;
1488     }
1489
1490     bout_id = func->ir_func->blocks_count;
1491     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1492     if (!bout)
1493         return false;
1494     bbreak = bout;
1495
1496     /* The loop body... */
1497     if (self->body)
1498     {
1499         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1500         if (!bbody)
1501             return false;
1502
1503         /* enter */
1504         func->curblock = bbody;
1505
1506         old_bbreak          = func->breakblock;
1507         old_bcontinue       = func->continueblock;
1508         func->breakblock    = bbreak;
1509         func->continueblock = bcontinue;
1510
1511         /* generate */
1512         cgen = self->body->expression.codegen;
1513         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1514             return false;
1515
1516         end_bbody = func->curblock;
1517         func->breakblock    = old_bbreak;
1518         func->continueblock = old_bcontinue;
1519     }
1520
1521     /* post-loop-condition */
1522     if (self->postcond)
1523     {
1524         /* enter */
1525         func->curblock = bpostcond;
1526
1527         /* generate */
1528         cgen = self->postcond->expression.codegen;
1529         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1530             return false;
1531
1532         end_bpostcond = func->curblock;
1533     }
1534
1535     /* The incrementor */
1536     if (self->increment)
1537     {
1538         /* enter */
1539         func->curblock = bincrement;
1540
1541         /* generate */
1542         cgen = self->increment->expression.codegen;
1543         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1544             return false;
1545
1546         end_bincrement = func->curblock;
1547     }
1548
1549     /* In any case now, we continue from the outgoing block */
1550     func->curblock = bout;
1551
1552     /* Now all blocks are in place */
1553     /* From 'bin' we jump to whatever comes first */
1554     if      (bprecond)   tmpblock = bprecond;
1555     else if (bbody)      tmpblock = bbody;
1556     else if (bpostcond)  tmpblock = bpostcond;
1557     else                 tmpblock = bout;
1558     if (!ir_block_create_jump(bin, tmpblock))
1559         return false;
1560
1561     /* From precond */
1562     if (bprecond)
1563     {
1564         ir_block *ontrue, *onfalse;
1565         if      (bbody)      ontrue = bbody;
1566         else if (bincrement) ontrue = bincrement;
1567         else if (bpostcond)  ontrue = bpostcond;
1568         else                 ontrue = bprecond;
1569         onfalse = bout;
1570         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1571             return false;
1572     }
1573
1574     /* from body */
1575     if (bbody)
1576     {
1577         if      (bincrement) tmpblock = bincrement;
1578         else if (bpostcond)  tmpblock = bpostcond;
1579         else if (bprecond)   tmpblock = bprecond;
1580         else                 tmpblock = bout;
1581         if (!ir_block_create_jump(end_bbody, tmpblock))
1582             return false;
1583     }
1584
1585     /* from increment */
1586     if (bincrement)
1587     {
1588         if      (bpostcond)  tmpblock = bpostcond;
1589         else if (bprecond)   tmpblock = bprecond;
1590         else if (bbody)      tmpblock = bbody;
1591         else                 tmpblock = bout;
1592         if (!ir_block_create_jump(end_bincrement, tmpblock))
1593             return false;
1594     }
1595
1596     /* from postcond */
1597     if (bpostcond)
1598     {
1599         ir_block *ontrue, *onfalse;
1600         if      (bprecond)   ontrue = bprecond;
1601         else if (bbody)      ontrue = bbody;
1602         else if (bincrement) ontrue = bincrement;
1603         else                 ontrue = bpostcond;
1604         onfalse = bout;
1605         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1606             return false;
1607     }
1608
1609     /* Move 'bout' to the end */
1610     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1611         !ir_function_blocks_add(func->ir_func, bout))
1612     {
1613         ir_block_delete(bout);
1614         return false;
1615     }
1616
1617     return true;
1618 }
1619
1620 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1621 {
1622     ast_expression_codegen *cgen;
1623     ir_value_vector         params;
1624     ir_instr               *callinstr;
1625     size_t i;
1626
1627     ir_value *funval = NULL;
1628
1629     /* return values are never lvalues */
1630     (void)lvalue;
1631
1632     if (self->expression.outr) {
1633         *out = self->expression.outr;
1634         return true;
1635     }
1636
1637     cgen = self->func->expression.codegen;
1638     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1639         return false;
1640     if (!funval)
1641         return false;
1642
1643     MEM_VECTOR_INIT(&params, v);
1644
1645     /* parameters */
1646     for (i = 0; i < self->params_count; ++i)
1647     {
1648         ir_value *param;
1649         ast_expression *expr = self->params[i];
1650
1651         cgen = expr->expression.codegen;
1652         if (!(*cgen)(expr, func, false, &param))
1653             goto error;
1654         if (!param)
1655             goto error;
1656         if (!ir_value_vector_v_add(&params, param))
1657             goto error;
1658     }
1659
1660     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1661     if (!callinstr)
1662         goto error;
1663
1664     for (i = 0; i < params.v_count; ++i) {
1665         if (!ir_call_param(callinstr, params.v[i]))
1666             goto error;
1667     }
1668
1669     *out = ir_call_value(callinstr);
1670     self->expression.outr = *out;
1671
1672     MEM_VECTOR_CLEAR(&params, v);
1673     return true;
1674 error:
1675     MEM_VECTOR_CLEAR(&params, v);
1676     return false;
1677 }