]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
fix an uninitialized value
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         mem_d(self);
492         return NULL;
493     }
494
495     outtype = field->expression.next;
496     if (!outtype) {
497         mem_d(self);
498         /* Error: field has no type... */
499         return NULL;
500     }
501
502     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
503
504     self->entity = entity;
505     self->field  = field;
506
507     if (!ast_type_adopt(self, outtype)) {
508         ast_entfield_delete(self);
509         return NULL;
510     }
511
512     return self;
513 }
514
515 void ast_entfield_delete(ast_entfield *self)
516 {
517     ast_unref(self->entity);
518     ast_unref(self->field);
519     ast_expression_delete((ast_expression*)self);
520     mem_d(self);
521 }
522
523 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
524 {
525     ast_instantiate(ast_member, ctx, ast_member_delete);
526     if (field >= 3) {
527         mem_d(self);
528         return NULL;
529     }
530
531     if (owner->expression.vtype != TYPE_VECTOR &&
532         owner->expression.vtype != TYPE_FIELD) {
533         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
534         mem_d(self);
535         return NULL;
536     }
537
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
539     self->expression.node.keep = true; /* keep */
540
541     if (owner->expression.vtype == TYPE_VECTOR) {
542         self->expression.vtype = TYPE_FLOAT;
543         self->expression.next  = NULL;
544     } else {
545         self->expression.vtype = TYPE_FIELD;
546         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
547     }
548
549     self->owner = owner;
550     self->field = field;
551
552     return self;
553 }
554
555 void ast_member_delete(ast_member *self)
556 {
557     /* The owner is always an ast_value, which has .keep=true,
558      * also: ast_members are usually deleted after the owner, thus
559      * this will cause invalid access
560     ast_unref(self->owner);
561      * once we allow (expression).x to access a vector-member, we need
562      * to change this: preferably by creating an alternate ast node for this
563      * purpose that is not garbage-collected.
564     */
565     ast_expression_delete((ast_expression*)self);
566     mem_d(self);
567 }
568
569 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
570 {
571     const ast_expression *outtype;
572     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
573
574     outtype = array->expression.next;
575     if (!outtype) {
576         mem_d(self);
577         /* Error: field has no type... */
578         return NULL;
579     }
580
581     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
582
583     self->array = array;
584     self->index = index;
585
586     if (!ast_type_adopt(self, outtype)) {
587         ast_array_index_delete(self);
588         return NULL;
589     }
590
591     return self;
592 }
593
594 void ast_array_index_delete(ast_array_index *self)
595 {
596     ast_unref(self->array);
597     ast_unref(self->index);
598     ast_expression_delete((ast_expression*)self);
599     mem_d(self);
600 }
601
602 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
603 {
604     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
605     if (!ontrue && !onfalse) {
606         /* because it is invalid */
607         mem_d(self);
608         return NULL;
609     }
610     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
611
612     self->cond     = cond;
613     self->on_true  = ontrue;
614     self->on_false = onfalse;
615
616     return self;
617 }
618
619 void ast_ifthen_delete(ast_ifthen *self)
620 {
621     ast_unref(self->cond);
622     if (self->on_true)
623         ast_unref(self->on_true);
624     if (self->on_false)
625         ast_unref(self->on_false);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
631 {
632     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
633     /* This time NEITHER must be NULL */
634     if (!ontrue || !onfalse) {
635         mem_d(self);
636         return NULL;
637     }
638     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
639
640     self->cond     = cond;
641     self->on_true  = ontrue;
642     self->on_false = onfalse;
643     self->phi_out  = NULL;
644
645     return self;
646 }
647
648 void ast_ternary_delete(ast_ternary *self)
649 {
650     ast_unref(self->cond);
651     ast_unref(self->on_true);
652     ast_unref(self->on_false);
653     ast_expression_delete((ast_expression*)self);
654     mem_d(self);
655 }
656
657 ast_loop* ast_loop_new(lex_ctx ctx,
658                        ast_expression *initexpr,
659                        ast_expression *precond,
660                        ast_expression *postcond,
661                        ast_expression *increment,
662                        ast_expression *body)
663 {
664     ast_instantiate(ast_loop, ctx, ast_loop_delete);
665     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
666
667     self->initexpr  = initexpr;
668     self->precond   = precond;
669     self->postcond  = postcond;
670     self->increment = increment;
671     self->body      = body;
672
673     return self;
674 }
675
676 void ast_loop_delete(ast_loop *self)
677 {
678     if (self->initexpr)
679         ast_unref(self->initexpr);
680     if (self->precond)
681         ast_unref(self->precond);
682     if (self->postcond)
683         ast_unref(self->postcond);
684     if (self->increment)
685         ast_unref(self->increment);
686     if (self->body)
687         ast_unref(self->body);
688     ast_expression_delete((ast_expression*)self);
689     mem_d(self);
690 }
691
692 ast_call* ast_call_new(lex_ctx ctx,
693                        ast_expression *funcexpr)
694 {
695     ast_instantiate(ast_call, ctx, ast_call_delete);
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
697
698     MEM_VECTOR_INIT(self, params);
699
700     self->func = funcexpr;
701
702     self->expression.vtype = funcexpr->expression.next->expression.vtype;
703     if (funcexpr->expression.next->expression.next)
704         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
705
706     return self;
707 }
708 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
709
710 void ast_call_delete(ast_call *self)
711 {
712     size_t i;
713     for (i = 0; i < self->params_count; ++i)
714         ast_unref(self->params[i]);
715     MEM_VECTOR_CLEAR(self, params);
716
717     if (self->func)
718         ast_unref(self->func);
719
720     ast_expression_delete((ast_expression*)self);
721     mem_d(self);
722 }
723
724 bool ast_call_check_types(ast_call *self)
725 {
726     size_t i;
727     bool   retval = true;
728     const  ast_expression *func = self->func;
729     size_t count = self->params_count;
730     if (count > func->expression.params_count)
731         count = func->expression.params_count;
732
733     for (i = 0; i < count; ++i) {
734         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
735             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
736                      (unsigned int)(i+1));
737             /* we don't immediately return */
738             retval = false;
739         }
740     }
741     return retval;
742 }
743
744 ast_store* ast_store_new(lex_ctx ctx, int op,
745                          ast_expression *dest, ast_expression *source)
746 {
747     ast_instantiate(ast_store, ctx, ast_store_delete);
748     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
749
750     self->op = op;
751     self->dest = dest;
752     self->source = source;
753
754     self->expression.vtype = dest->expression.vtype;
755     if (dest->expression.next) {
756         self->expression.next = ast_type_copy(ctx, dest);
757         if (!self->expression.next) {
758             ast_delete(self);
759             return NULL;
760         }
761     }
762     else
763         self->expression.next = NULL;
764
765     return self;
766 }
767
768 void ast_store_delete(ast_store *self)
769 {
770     ast_unref(self->dest);
771     ast_unref(self->source);
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 ast_block* ast_block_new(lex_ctx ctx)
777 {
778     ast_instantiate(ast_block, ctx, ast_block_delete);
779     ast_expression_init((ast_expression*)self,
780                         (ast_expression_codegen*)&ast_block_codegen);
781
782     MEM_VECTOR_INIT(self, locals);
783     MEM_VECTOR_INIT(self, exprs);
784     MEM_VECTOR_INIT(self, collect);
785
786     return self;
787 }
788 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
789 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
791
792 bool ast_block_collect(ast_block *self, ast_expression *expr)
793 {
794     if (!ast_block_collect_add(self, expr))
795         return false;
796     expr->expression.node.keep = true;
797     return true;
798 }
799
800 void ast_block_delete(ast_block *self)
801 {
802     size_t i;
803     for (i = 0; i < self->exprs_count; ++i)
804         ast_unref(self->exprs[i]);
805     MEM_VECTOR_CLEAR(self, exprs);
806     for (i = 0; i < self->locals_count; ++i)
807         ast_delete(self->locals[i]);
808     MEM_VECTOR_CLEAR(self, locals);
809     for (i = 0; i < self->collect_count; ++i)
810         ast_delete(self->collect[i]);
811     MEM_VECTOR_CLEAR(self, collect);
812     ast_expression_delete((ast_expression*)self);
813     mem_d(self);
814 }
815
816 bool ast_block_set_type(ast_block *self, ast_expression *from)
817 {
818     if (self->expression.next)
819         ast_delete(self->expression.next);
820     self->expression.vtype = from->expression.vtype;
821     if (from->expression.next) {
822         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
823         if (!self->expression.next)
824             return false;
825     }
826     else
827         self->expression.next = NULL;
828     return true;
829 }
830
831 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
832 {
833     ast_instantiate(ast_function, ctx, ast_function_delete);
834
835     if (!vtype ||
836         vtype->isconst ||
837         vtype->expression.vtype != TYPE_FUNCTION)
838     {
839         mem_d(self);
840         return NULL;
841     }
842
843     self->vtype = vtype;
844     self->name = name ? util_strdup(name) : NULL;
845     MEM_VECTOR_INIT(self, blocks);
846
847     self->labelcount = 0;
848     self->builtin = 0;
849
850     self->ir_func = NULL;
851     self->curblock = NULL;
852
853     self->breakblock    = NULL;
854     self->continueblock = NULL;
855
856     vtype->isconst = true;
857     vtype->constval.vfunc = self;
858
859     return self;
860 }
861
862 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
863
864 void ast_function_delete(ast_function *self)
865 {
866     size_t i;
867     if (self->name)
868         mem_d((void*)self->name);
869     if (self->vtype) {
870         /* ast_value_delete(self->vtype); */
871         self->vtype->isconst = false;
872         self->vtype->constval.vfunc = NULL;
873         /* We use unref - if it was stored in a global table it is supposed
874          * to be deleted from *there*
875          */
876         ast_unref(self->vtype);
877     }
878     for (i = 0; i < self->blocks_count; ++i)
879         ast_delete(self->blocks[i]);
880     MEM_VECTOR_CLEAR(self, blocks);
881     mem_d(self);
882 }
883
884 const char* ast_function_label(ast_function *self, const char *prefix)
885 {
886     size_t id;
887     size_t len;
888     char  *from;
889
890     if (!opts_dump)
891         return NULL;
892
893     id  = (self->labelcount++);
894     len = strlen(prefix);
895
896     from = self->labelbuf + sizeof(self->labelbuf)-1;
897     *from-- = 0;
898     do {
899         unsigned int digit = id % 10;
900         *from = digit + '0';
901         id /= 10;
902     } while (id);
903     memcpy(from - len, prefix, len);
904     return from - len;
905 }
906
907 /*********************************************************************/
908 /* AST codegen part
909  * by convention you must never pass NULL to the 'ir_value **out'
910  * parameter. If you really don't care about the output, pass a dummy.
911  * But I can't imagine a pituation where the output is truly unnecessary.
912  */
913
914 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     /* NOTE: This is the codegen for a variable used in an expression.
917      * It is not the codegen to generate the value. For this purpose,
918      * ast_local_codegen and ast_global_codegen are to be used before this
919      * is executed. ast_function_codegen should take care of its locals,
920      * and the ast-user should take care of ast_global_codegen to be used
921      * on all the globals.
922      */
923     if (!self->ir_v) {
924         char typename[1024];
925         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
926         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
927         return false;
928     }
929     *out = self->ir_v;
930     return true;
931 }
932
933 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
934 {
935     ir_value *v = NULL;
936
937     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
938     {
939         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
940         if (!func)
941             return false;
942         func->context = ast_ctx(self);
943         func->value->context = ast_ctx(self);
944
945         self->constval.vfunc->ir_func = func;
946         self->ir_v = func->value;
947         /* The function is filled later on ast_function_codegen... */
948         return true;
949     }
950
951     if (isfield && self->expression.vtype == TYPE_FIELD) {
952         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
953         if (!v)
954             return false;
955         v->context = ast_ctx(self);
956         if (self->isconst) {
957             asterror(ast_ctx(self), "TODO: constant field pointers with value");
958             goto error;
959         }
960         self->ir_v = v;
961         return true;
962     }
963
964     if (self->expression.vtype == TYPE_ARRAY) {
965         size_t ai;
966         char   *name;
967         size_t  namelen;
968
969         ast_expression_common *elemtype = &self->expression.next->expression;
970         int vtype = elemtype->vtype;
971         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
972         if (!self->expression.count || self->expression.count > opts_max_array_size) {
973             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
974         }
975
976         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
977         if (!self->ir_values) {
978             asterror(ast_ctx(self), "failed to allocate array values");
979             return false;
980         }
981
982         v = ir_builder_create_global(ir, self->name, vtype);
983         if (!v) {
984             asterror(ast_ctx(self), "ir_builder_create_global failed");
985             return false;
986         }
987         if (vtype == TYPE_FIELD)
988             v->fieldtype = elemtype->next->expression.vtype;
989         v->context = ast_ctx(self);
990
991         namelen = strlen(self->name);
992         name    = (char*)mem_a(namelen + 16);
993         strcpy(name, self->name);
994
995         self->ir_values[0] = v;
996         for (ai = 1; ai < self->expression.count; ++ai) {
997             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
998             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
999             if (!self->ir_values[ai]) {
1000                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1001                 return false;
1002             }
1003             if (vtype == TYPE_FIELD)
1004                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1005             self->ir_values[ai]->context = ast_ctx(self);
1006         }
1007     }
1008     else
1009     {
1010         /* Arrays don't do this since there's no "array" value which spans across the
1011          * whole thing.
1012          */
1013         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1014         if (!v) {
1015             asterror(ast_ctx(self), "ir_builder_create_global failed");
1016             return false;
1017         }
1018         if (self->expression.vtype == TYPE_FIELD)
1019             v->fieldtype = self->expression.next->expression.vtype;
1020         v->context = ast_ctx(self);
1021     }
1022
1023     if (self->isconst) {
1024         switch (self->expression.vtype)
1025         {
1026             case TYPE_FLOAT:
1027                 if (!ir_value_set_float(v, self->constval.vfloat))
1028                     goto error;
1029                 break;
1030             case TYPE_VECTOR:
1031                 if (!ir_value_set_vector(v, self->constval.vvec))
1032                     goto error;
1033                 break;
1034             case TYPE_STRING:
1035                 if (!ir_value_set_string(v, self->constval.vstring))
1036                     goto error;
1037                 break;
1038             case TYPE_ARRAY:
1039                 asterror(ast_ctx(self), "TODO: global constant array");
1040                 break;
1041             case TYPE_FUNCTION:
1042                 asterror(ast_ctx(self), "global of type function not properly generated");
1043                 goto error;
1044                 /* Cannot generate an IR value for a function,
1045                  * need a pointer pointing to a function rather.
1046                  */
1047             default:
1048                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1049                 break;
1050         }
1051     }
1052
1053     /* link us to the ir_value */
1054     self->ir_v = v;
1055     return true;
1056
1057 error: /* clean up */
1058     ir_value_delete(v);
1059     return false;
1060 }
1061
1062 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1063 {
1064     ir_value *v = NULL;
1065     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1066     {
1067         /* Do we allow local functions? I think not...
1068          * this is NOT a function pointer atm.
1069          */
1070         return false;
1071     }
1072
1073     if (self->expression.vtype == TYPE_ARRAY)
1074     {
1075         asterror(ast_ctx(self), "TODO: ast_local_codgen for TYPE_ARRAY");
1076         return false;
1077     }
1078
1079     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1080     if (!v)
1081         return false;
1082     if (self->expression.vtype == TYPE_FIELD)
1083         v->fieldtype = self->expression.next->expression.vtype;
1084     v->context = ast_ctx(self);
1085
1086     /* A constant local... hmmm...
1087      * I suppose the IR will have to deal with this
1088      */
1089     if (self->isconst) {
1090         switch (self->expression.vtype)
1091         {
1092             case TYPE_FLOAT:
1093                 if (!ir_value_set_float(v, self->constval.vfloat))
1094                     goto error;
1095                 break;
1096             case TYPE_VECTOR:
1097                 if (!ir_value_set_vector(v, self->constval.vvec))
1098                     goto error;
1099                 break;
1100             case TYPE_STRING:
1101                 if (!ir_value_set_string(v, self->constval.vstring))
1102                     goto error;
1103                 break;
1104             default:
1105                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1106                 break;
1107         }
1108     }
1109
1110     /* link us to the ir_value */
1111     self->ir_v = v;
1112     return true;
1113
1114 error: /* clean up */
1115     ir_value_delete(v);
1116     return false;
1117 }
1118
1119 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1120 {
1121     ir_function *irf;
1122     ir_value    *dummy;
1123     ast_expression_common *ec;
1124     size_t    i;
1125
1126     irf = self->ir_func;
1127     if (!irf) {
1128         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1129         return false;
1130     }
1131
1132     /* fill the parameter list */
1133     ec = &self->vtype->expression;
1134     for (i = 0; i < ec->params_count; ++i)
1135     {
1136         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1137             return false;
1138         if (!self->builtin) {
1139             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1140                 return false;
1141         }
1142     }
1143
1144     if (self->builtin) {
1145         irf->builtin = self->builtin;
1146         return true;
1147     }
1148
1149     if (!self->blocks_count) {
1150         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1151         return false;
1152     }
1153
1154     self->curblock = ir_function_create_block(irf, "entry");
1155     if (!self->curblock) {
1156         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1157         return false;
1158     }
1159
1160     for (i = 0; i < self->blocks_count; ++i) {
1161         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1162         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1163             return false;
1164     }
1165
1166     /* TODO: check return types */
1167     if (!self->curblock->is_return)
1168     {
1169         return ir_block_create_return(self->curblock, NULL);
1170         /* From now on the parser has to handle this situation */
1171 #if 0
1172         if (!self->vtype->expression.next ||
1173             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1174         {
1175             return ir_block_create_return(self->curblock, NULL);
1176         }
1177         else
1178         {
1179             /* error("missing return"); */
1180             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1181             return false;
1182         }
1183 #endif
1184     }
1185     return true;
1186 }
1187
1188 /* Note, you will not see ast_block_codegen generate ir_blocks.
1189  * To the AST and the IR, blocks are 2 different things.
1190  * In the AST it represents a block of code, usually enclosed in
1191  * curly braces {...}.
1192  * While in the IR it represents a block in terms of control-flow.
1193  */
1194 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1195 {
1196     size_t i;
1197
1198     /* We don't use this
1199      * Note: an ast-representation using the comma-operator
1200      * of the form: (a, b, c) = x should not assign to c...
1201      */
1202     if (lvalue) {
1203         asterror(ast_ctx(self), "not an l-value (code-block)");
1204         return false;
1205     }
1206
1207     if (self->expression.outr) {
1208         *out = self->expression.outr;
1209         return true;
1210     }
1211
1212     /* output is NULL at first, we'll have each expression
1213      * assign to out output, thus, a comma-operator represention
1214      * using an ast_block will return the last generated value,
1215      * so: (b, c) + a  executed both b and c, and returns c,
1216      * which is then added to a.
1217      */
1218     *out = NULL;
1219
1220     /* generate locals */
1221     for (i = 0; i < self->locals_count; ++i)
1222     {
1223         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1224             if (opts_debug)
1225                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1226             return false;
1227         }
1228     }
1229
1230     for (i = 0; i < self->exprs_count; ++i)
1231     {
1232         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1233         if (!(*gen)(self->exprs[i], func, false, out))
1234             return false;
1235     }
1236
1237     self->expression.outr = *out;
1238
1239     return true;
1240 }
1241
1242 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1243 {
1244     ast_expression_codegen *cgen;
1245     ir_value *left, *right;
1246
1247     ast_value       *arr;
1248     ast_value       *idx;
1249     ast_array_index *ai = NULL;
1250
1251     if (lvalue && self->expression.outl) {
1252         *out = self->expression.outl;
1253         return true;
1254     }
1255
1256     if (!lvalue && self->expression.outr) {
1257         *out = self->expression.outr;
1258         return true;
1259     }
1260
1261     if (ast_istype(self->dest, ast_array_index))
1262     {
1263
1264         ai = (ast_array_index*)self->dest;
1265         idx = (ast_value*)ai->index;
1266
1267         if (ast_istype(ai->index, ast_value) && idx->isconst)
1268             ai = NULL;
1269     }
1270
1271     if (ai) {
1272         /* we need to call the setter */
1273         ir_value  *iridx, *funval;
1274         ir_instr  *call;
1275
1276         if (lvalue) {
1277             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1278             return false;
1279         }
1280
1281         arr = (ast_value*)ai->array;
1282         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1283             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1284             return false;
1285         }
1286
1287         cgen = idx->expression.codegen;
1288         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1289             return false;
1290
1291         cgen = arr->setter->expression.codegen;
1292         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1293             return false;
1294
1295         cgen = self->source->expression.codegen;
1296         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1297             return false;
1298
1299         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1300         if (!call)
1301             return false;
1302         if (!ir_call_param(call, iridx))
1303             return false;
1304         if (!ir_call_param(call, right))
1305             return false;
1306         self->expression.outr = right;
1307     }
1308     else
1309     {
1310         /* regular code */
1311
1312         cgen = self->dest->expression.codegen;
1313         /* lvalue! */
1314         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1315             return false;
1316         self->expression.outl = left;
1317
1318         cgen = self->source->expression.codegen;
1319         /* rvalue! */
1320         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1321             return false;
1322
1323         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1324             return false;
1325         self->expression.outr = right;
1326     }
1327
1328     /* Theoretically, an assinment returns its left side as an
1329      * lvalue, if we don't need an lvalue though, we return
1330      * the right side as an rvalue, otherwise we have to
1331      * somehow know whether or not we need to dereference the pointer
1332      * on the left side - that is: OP_LOAD if it was an address.
1333      * Also: in original QC we cannot OP_LOADP *anyway*.
1334      */
1335     *out = (lvalue ? left : right);
1336
1337     return true;
1338 }
1339
1340 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1341 {
1342     ast_expression_codegen *cgen;
1343     ir_value *left, *right;
1344
1345     /* A binary operation cannot yield an l-value */
1346     if (lvalue) {
1347         asterror(ast_ctx(self), "not an l-value (binop)");
1348         return false;
1349     }
1350
1351     if (self->expression.outr) {
1352         *out = self->expression.outr;
1353         return true;
1354     }
1355
1356     cgen = self->left->expression.codegen;
1357     /* lvalue! */
1358     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1359         return false;
1360
1361     cgen = self->right->expression.codegen;
1362     /* rvalue! */
1363     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1364         return false;
1365
1366     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1367                                  self->op, left, right);
1368     if (!*out)
1369         return false;
1370     self->expression.outr = *out;
1371
1372     return true;
1373 }
1374
1375 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1376 {
1377     ast_expression_codegen *cgen;
1378     ir_value *leftl, *leftr, *right, *bin;
1379
1380     if (lvalue && self->expression.outl) {
1381         *out = self->expression.outl;
1382         return true;
1383     }
1384
1385     if (!lvalue && self->expression.outr) {
1386         *out = self->expression.outr;
1387         return true;
1388     }
1389
1390     /* for a binstore we need both an lvalue and an rvalue for the left side */
1391     /* rvalue of destination! */
1392     cgen = self->dest->expression.codegen;
1393     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1394         return false;
1395
1396     /* source as rvalue only */
1397     cgen = self->source->expression.codegen;
1398     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1399         return false;
1400
1401     /* now the binary */
1402     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1403                                 self->opbin, leftr, right);
1404     self->expression.outr = bin;
1405
1406     /* now store them */
1407     cgen = self->dest->expression.codegen;
1408     /* lvalue of destination */
1409     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1410         return false;
1411     self->expression.outl = leftl;
1412
1413     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1414         return false;
1415     self->expression.outr = bin;
1416
1417     /* Theoretically, an assinment returns its left side as an
1418      * lvalue, if we don't need an lvalue though, we return
1419      * the right side as an rvalue, otherwise we have to
1420      * somehow know whether or not we need to dereference the pointer
1421      * on the left side - that is: OP_LOAD if it was an address.
1422      * Also: in original QC we cannot OP_LOADP *anyway*.
1423      */
1424     *out = (lvalue ? leftl : bin);
1425
1426     return true;
1427 }
1428
1429 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1430 {
1431     ast_expression_codegen *cgen;
1432     ir_value *operand;
1433
1434     /* An unary operation cannot yield an l-value */
1435     if (lvalue) {
1436         asterror(ast_ctx(self), "not an l-value (binop)");
1437         return false;
1438     }
1439
1440     if (self->expression.outr) {
1441         *out = self->expression.outr;
1442         return true;
1443     }
1444
1445     cgen = self->operand->expression.codegen;
1446     /* lvalue! */
1447     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1448         return false;
1449
1450     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1451                                  self->op, operand);
1452     if (!*out)
1453         return false;
1454     self->expression.outr = *out;
1455
1456     return true;
1457 }
1458
1459 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1460 {
1461     ast_expression_codegen *cgen;
1462     ir_value *operand;
1463
1464     /* In the context of a return operation, we don't actually return
1465      * anything...
1466      */
1467     if (lvalue) {
1468         asterror(ast_ctx(self), "return-expression is not an l-value");
1469         return false;
1470     }
1471
1472     if (self->expression.outr) {
1473         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1474         return false;
1475     }
1476     self->expression.outr = (ir_value*)1;
1477
1478     if (self->operand) {
1479         cgen = self->operand->expression.codegen;
1480         /* lvalue! */
1481         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1482             return false;
1483
1484         if (!ir_block_create_return(func->curblock, operand))
1485             return false;
1486     } else {
1487         if (!ir_block_create_return(func->curblock, NULL))
1488             return false;
1489     }
1490
1491     return true;
1492 }
1493
1494 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1495 {
1496     ast_expression_codegen *cgen;
1497     ir_value *ent, *field;
1498
1499     /* This function needs to take the 'lvalue' flag into account!
1500      * As lvalue we provide a field-pointer, as rvalue we provide the
1501      * value in a temp.
1502      */
1503
1504     if (lvalue && self->expression.outl) {
1505         *out = self->expression.outl;
1506         return true;
1507     }
1508
1509     if (!lvalue && self->expression.outr) {
1510         *out = self->expression.outr;
1511         return true;
1512     }
1513
1514     cgen = self->entity->expression.codegen;
1515     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1516         return false;
1517
1518     cgen = self->field->expression.codegen;
1519     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1520         return false;
1521
1522     if (lvalue) {
1523         /* address! */
1524         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1525                                             ent, field);
1526     } else {
1527         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1528                                              ent, field, self->expression.vtype);
1529     }
1530     if (!*out) {
1531         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1532                  (lvalue ? "ADDRESS" : "FIELD"),
1533                  type_name[self->expression.vtype]);
1534         return false;
1535     }
1536
1537     if (lvalue)
1538         self->expression.outl = *out;
1539     else
1540         self->expression.outr = *out;
1541
1542     /* Hm that should be it... */
1543     return true;
1544 }
1545
1546 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1547 {
1548     ast_expression_codegen *cgen;
1549     ir_value *vec;
1550
1551     /* in QC this is always an lvalue */
1552     (void)lvalue;
1553     if (self->expression.outl) {
1554         *out = self->expression.outl;
1555         return true;
1556     }
1557
1558     cgen = self->owner->expression.codegen;
1559     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1560         return false;
1561
1562     if (vec->vtype != TYPE_VECTOR &&
1563         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1564     {
1565         return false;
1566     }
1567
1568     *out = ir_value_vector_member(vec, self->field);
1569     self->expression.outl = *out;
1570
1571     return (*out != NULL);
1572 }
1573
1574 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1575 {
1576     ast_value *arr;
1577     ast_value *idx;
1578
1579     if (!lvalue && self->expression.outr) {
1580         *out = self->expression.outr;
1581     }
1582     if (lvalue && self->expression.outl) {
1583         *out = self->expression.outl;
1584     }
1585
1586     if (!ast_istype(self->array, ast_value)) {
1587         asterror(ast_ctx(self), "array indexing this way is not supported");
1588         /* note this would actually be pointer indexing because the left side is
1589          * not an actual array but (hopefully) an indexable expression.
1590          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1591          * support this path will be filled.
1592          */
1593         return false;
1594     }
1595
1596     arr = (ast_value*)self->array;
1597     idx = (ast_value*)self->index;
1598
1599     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1600         /* Time to use accessor functions */
1601         ast_expression_codegen *cgen;
1602         ir_value               *iridx, *funval;
1603         ir_instr               *call;
1604
1605         if (lvalue) {
1606             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1607             return false;
1608         }
1609
1610         if (!arr->getter) {
1611             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1612             return false;
1613         }
1614
1615         cgen = self->index->expression.codegen;
1616         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1617             return false;
1618
1619         cgen = arr->getter->expression.codegen;
1620         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1621             return false;
1622
1623         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1624         if (!call)
1625             return false;
1626         if (!ir_call_param(call, iridx))
1627             return false;
1628
1629         *out = ir_call_value(call);
1630         self->expression.outr = *out;
1631         return true;
1632     }
1633
1634     if (idx->expression.vtype == TYPE_FLOAT)
1635         *out = arr->ir_values[(int)idx->constval.vfloat];
1636     else if (idx->expression.vtype == TYPE_INTEGER)
1637         *out = arr->ir_values[idx->constval.vint];
1638     else {
1639         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1640         return false;
1641     }
1642     return true;
1643 }
1644
1645 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1646 {
1647     ast_expression_codegen *cgen;
1648
1649     ir_value *condval;
1650     ir_value *dummy;
1651
1652     ir_block *cond = func->curblock;
1653     ir_block *ontrue;
1654     ir_block *onfalse;
1655     ir_block *ontrue_endblock = NULL;
1656     ir_block *onfalse_endblock = NULL;
1657     ir_block *merge;
1658
1659     /* We don't output any value, thus also don't care about r/lvalue */
1660     (void)out;
1661     (void)lvalue;
1662
1663     if (self->expression.outr) {
1664         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1665         return false;
1666     }
1667     self->expression.outr = (ir_value*)1;
1668
1669     /* generate the condition */
1670     func->curblock = cond;
1671     cgen = self->cond->expression.codegen;
1672     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1673         return false;
1674
1675     /* on-true path */
1676
1677     if (self->on_true) {
1678         /* create on-true block */
1679         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1680         if (!ontrue)
1681             return false;
1682
1683         /* enter the block */
1684         func->curblock = ontrue;
1685
1686         /* generate */
1687         cgen = self->on_true->expression.codegen;
1688         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1689             return false;
1690
1691         /* we now need to work from the current endpoint */
1692         ontrue_endblock = func->curblock;
1693     } else
1694         ontrue = NULL;
1695
1696     /* on-false path */
1697     if (self->on_false) {
1698         /* create on-false block */
1699         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1700         if (!onfalse)
1701             return false;
1702
1703         /* enter the block */
1704         func->curblock = onfalse;
1705
1706         /* generate */
1707         cgen = self->on_false->expression.codegen;
1708         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1709             return false;
1710
1711         /* we now need to work from the current endpoint */
1712         onfalse_endblock = func->curblock;
1713     } else
1714         onfalse = NULL;
1715
1716     /* Merge block were they all merge in to */
1717     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1718     if (!merge)
1719         return false;
1720
1721     /* add jumps ot the merge block */
1722     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1723         return false;
1724     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1725         return false;
1726
1727     /* we create the if here, that way all blocks are ordered :)
1728      */
1729     if (!ir_block_create_if(cond, condval,
1730                             (ontrue  ? ontrue  : merge),
1731                             (onfalse ? onfalse : merge)))
1732     {
1733         return false;
1734     }
1735
1736     /* Now enter the merge block */
1737     func->curblock = merge;
1738
1739     return true;
1740 }
1741
1742 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1743 {
1744     ast_expression_codegen *cgen;
1745
1746     ir_value *condval;
1747     ir_value *trueval, *falseval;
1748     ir_instr *phi;
1749
1750     ir_block *cond = func->curblock;
1751     ir_block *ontrue;
1752     ir_block *onfalse;
1753     ir_block *merge;
1754
1755     /* Ternary can never create an lvalue... */
1756     if (lvalue)
1757         return false;
1758
1759     /* In theory it shouldn't be possible to pass through a node twice, but
1760      * in case we add any kind of optimization pass for the AST itself, it
1761      * may still happen, thus we remember a created ir_value and simply return one
1762      * if it already exists.
1763      */
1764     if (self->phi_out) {
1765         *out = self->phi_out;
1766         return true;
1767     }
1768
1769     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1770
1771     /* generate the condition */
1772     func->curblock = cond;
1773     cgen = self->cond->expression.codegen;
1774     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1775         return false;
1776
1777     /* create on-true block */
1778     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1779     if (!ontrue)
1780         return false;
1781     else
1782     {
1783         /* enter the block */
1784         func->curblock = ontrue;
1785
1786         /* generate */
1787         cgen = self->on_true->expression.codegen;
1788         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1789             return false;
1790     }
1791
1792     /* create on-false block */
1793     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1794     if (!onfalse)
1795         return false;
1796     else
1797     {
1798         /* enter the block */
1799         func->curblock = onfalse;
1800
1801         /* generate */
1802         cgen = self->on_false->expression.codegen;
1803         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1804             return false;
1805     }
1806
1807     /* create merge block */
1808     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1809     if (!merge)
1810         return false;
1811     /* jump to merge block */
1812     if (!ir_block_create_jump(ontrue, merge))
1813         return false;
1814     if (!ir_block_create_jump(onfalse, merge))
1815         return false;
1816
1817     /* create if instruction */
1818     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1819         return false;
1820
1821     /* Now enter the merge block */
1822     func->curblock = merge;
1823
1824     /* Here, now, we need a PHI node
1825      * but first some sanity checking...
1826      */
1827     if (trueval->vtype != falseval->vtype) {
1828         /* error("ternary with different types on the two sides"); */
1829         return false;
1830     }
1831
1832     /* create PHI */
1833     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1834     if (!phi ||
1835         !ir_phi_add(phi, ontrue,  trueval) ||
1836         !ir_phi_add(phi, onfalse, falseval))
1837     {
1838         return false;
1839     }
1840
1841     self->phi_out = ir_phi_value(phi);
1842     *out = self->phi_out;
1843
1844     return true;
1845 }
1846
1847 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1848 {
1849     ast_expression_codegen *cgen;
1850
1851     ir_value *dummy      = NULL;
1852     ir_value *precond    = NULL;
1853     ir_value *postcond   = NULL;
1854
1855     /* Since we insert some jumps "late" so we have blocks
1856      * ordered "nicely", we need to keep track of the actual end-blocks
1857      * of expressions to add the jumps to.
1858      */
1859     ir_block *bbody      = NULL, *end_bbody      = NULL;
1860     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1861     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1862     ir_block *bincrement = NULL, *end_bincrement = NULL;
1863     ir_block *bout       = NULL, *bin            = NULL;
1864
1865     /* let's at least move the outgoing block to the end */
1866     size_t    bout_id;
1867
1868     /* 'break' and 'continue' need to be able to find the right blocks */
1869     ir_block *bcontinue     = NULL;
1870     ir_block *bbreak        = NULL;
1871
1872     ir_block *old_bcontinue = NULL;
1873     ir_block *old_bbreak    = NULL;
1874
1875     ir_block *tmpblock      = NULL;
1876
1877     (void)lvalue;
1878     (void)out;
1879
1880     if (self->expression.outr) {
1881         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1882         return false;
1883     }
1884     self->expression.outr = (ir_value*)1;
1885
1886     /* NOTE:
1887      * Should we ever need some kind of block ordering, better make this function
1888      * move blocks around than write a block ordering algorithm later... after all
1889      * the ast and ir should work together, not against each other.
1890      */
1891
1892     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1893      * anyway if for example it contains a ternary.
1894      */
1895     if (self->initexpr)
1896     {
1897         cgen = self->initexpr->expression.codegen;
1898         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1899             return false;
1900     }
1901
1902     /* Store the block from which we enter this chaos */
1903     bin = func->curblock;
1904
1905     /* The pre-loop condition needs its own block since we
1906      * need to be able to jump to the start of that expression.
1907      */
1908     if (self->precond)
1909     {
1910         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1911         if (!bprecond)
1912             return false;
1913
1914         /* the pre-loop-condition the least important place to 'continue' at */
1915         bcontinue = bprecond;
1916
1917         /* enter */
1918         func->curblock = bprecond;
1919
1920         /* generate */
1921         cgen = self->precond->expression.codegen;
1922         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1923             return false;
1924
1925         end_bprecond = func->curblock;
1926     } else {
1927         bprecond = end_bprecond = NULL;
1928     }
1929
1930     /* Now the next blocks won't be ordered nicely, but we need to
1931      * generate them this early for 'break' and 'continue'.
1932      */
1933     if (self->increment) {
1934         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1935         if (!bincrement)
1936             return false;
1937         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1938     } else {
1939         bincrement = end_bincrement = NULL;
1940     }
1941
1942     if (self->postcond) {
1943         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1944         if (!bpostcond)
1945             return false;
1946         bcontinue = bpostcond; /* postcond comes before the increment */
1947     } else {
1948         bpostcond = end_bpostcond = NULL;
1949     }
1950
1951     bout_id = func->ir_func->blocks_count;
1952     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1953     if (!bout)
1954         return false;
1955     bbreak = bout;
1956
1957     /* The loop body... */
1958     if (self->body)
1959     {
1960         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1961         if (!bbody)
1962             return false;
1963
1964         /* enter */
1965         func->curblock = bbody;
1966
1967         old_bbreak          = func->breakblock;
1968         old_bcontinue       = func->continueblock;
1969         func->breakblock    = bbreak;
1970         func->continueblock = bcontinue;
1971
1972         /* generate */
1973         cgen = self->body->expression.codegen;
1974         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1975             return false;
1976
1977         end_bbody = func->curblock;
1978         func->breakblock    = old_bbreak;
1979         func->continueblock = old_bcontinue;
1980     }
1981
1982     /* post-loop-condition */
1983     if (self->postcond)
1984     {
1985         /* enter */
1986         func->curblock = bpostcond;
1987
1988         /* generate */
1989         cgen = self->postcond->expression.codegen;
1990         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1991             return false;
1992
1993         end_bpostcond = func->curblock;
1994     }
1995
1996     /* The incrementor */
1997     if (self->increment)
1998     {
1999         /* enter */
2000         func->curblock = bincrement;
2001
2002         /* generate */
2003         cgen = self->increment->expression.codegen;
2004         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2005             return false;
2006
2007         end_bincrement = func->curblock;
2008     }
2009
2010     /* In any case now, we continue from the outgoing block */
2011     func->curblock = bout;
2012
2013     /* Now all blocks are in place */
2014     /* From 'bin' we jump to whatever comes first */
2015     if      (bprecond)   tmpblock = bprecond;
2016     else if (bbody)      tmpblock = bbody;
2017     else if (bpostcond)  tmpblock = bpostcond;
2018     else                 tmpblock = bout;
2019     if (!ir_block_create_jump(bin, tmpblock))
2020         return false;
2021
2022     /* From precond */
2023     if (bprecond)
2024     {
2025         ir_block *ontrue, *onfalse;
2026         if      (bbody)      ontrue = bbody;
2027         else if (bincrement) ontrue = bincrement;
2028         else if (bpostcond)  ontrue = bpostcond;
2029         else                 ontrue = bprecond;
2030         onfalse = bout;
2031         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2032             return false;
2033     }
2034
2035     /* from body */
2036     if (bbody)
2037     {
2038         if      (bincrement) tmpblock = bincrement;
2039         else if (bpostcond)  tmpblock = bpostcond;
2040         else if (bprecond)   tmpblock = bprecond;
2041         else                 tmpblock = bout;
2042         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2043             return false;
2044     }
2045
2046     /* from increment */
2047     if (bincrement)
2048     {
2049         if      (bpostcond)  tmpblock = bpostcond;
2050         else if (bprecond)   tmpblock = bprecond;
2051         else if (bbody)      tmpblock = bbody;
2052         else                 tmpblock = bout;
2053         if (!ir_block_create_jump(end_bincrement, tmpblock))
2054             return false;
2055     }
2056
2057     /* from postcond */
2058     if (bpostcond)
2059     {
2060         ir_block *ontrue, *onfalse;
2061         if      (bprecond)   ontrue = bprecond;
2062         else if (bbody)      ontrue = bbody;
2063         else if (bincrement) ontrue = bincrement;
2064         else                 ontrue = bpostcond;
2065         onfalse = bout;
2066         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2067             return false;
2068     }
2069
2070     /* Move 'bout' to the end */
2071     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2072         !ir_function_blocks_add(func->ir_func, bout))
2073     {
2074         ir_block_delete(bout);
2075         return false;
2076     }
2077
2078     return true;
2079 }
2080
2081 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2082 {
2083     ast_expression_codegen *cgen;
2084     ir_value_vector         params;
2085     ir_instr               *callinstr;
2086     size_t i;
2087
2088     ir_value *funval = NULL;
2089
2090     /* return values are never lvalues */
2091     if (lvalue) {
2092         asterror(ast_ctx(self), "not an l-value (function call)");
2093         return false;
2094     }
2095
2096     if (self->expression.outr) {
2097         *out = self->expression.outr;
2098         return true;
2099     }
2100
2101     cgen = self->func->expression.codegen;
2102     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2103         return false;
2104     if (!funval)
2105         return false;
2106
2107     MEM_VECTOR_INIT(&params, v);
2108
2109     /* parameters */
2110     for (i = 0; i < self->params_count; ++i)
2111     {
2112         ir_value *param;
2113         ast_expression *expr = self->params[i];
2114
2115         cgen = expr->expression.codegen;
2116         if (!(*cgen)(expr, func, false, &param))
2117             goto error;
2118         if (!param)
2119             goto error;
2120         if (!ir_value_vector_v_add(&params, param))
2121             goto error;
2122     }
2123
2124     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2125     if (!callinstr)
2126         goto error;
2127
2128     for (i = 0; i < params.v_count; ++i) {
2129         if (!ir_call_param(callinstr, params.v[i]))
2130             goto error;
2131     }
2132
2133     *out = ir_call_value(callinstr);
2134     self->expression.outr = *out;
2135
2136     MEM_VECTOR_CLEAR(&params, v);
2137     return true;
2138 error:
2139     MEM_VECTOR_CLEAR(&params, v);
2140     return false;
2141 }