]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_unary needs to set its type
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     for (i = 0; i < fromex->params_count; ++i) {
111         ast_value *v = ast_value_copy(fromex->params[i]);
112         if (!v || !ast_expression_common_params_add(selfex, v)) {
113             ast_value_delete(cp);
114             return NULL;
115         }
116     }
117     return cp;
118 }
119
120 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
121 {
122     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
123     ast_expression_init(self, NULL);
124     self->expression.codegen = NULL;
125     self->expression.next    = NULL;
126     self->expression.vtype   = vtype;
127     return self;
128 }
129
130 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
131 {
132     size_t i;
133     const ast_expression_common *fromex;
134     ast_expression_common *selfex;
135
136     if (!ex)
137         return NULL;
138     else
139     {
140         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
141         ast_expression_init(self, NULL);
142
143         fromex   = &ex->expression;
144         selfex = &self->expression;
145
146         /* This may never be codegen()d */
147         selfex->codegen = NULL;
148
149         selfex->vtype = fromex->vtype;
150         if (fromex->next)
151         {
152             selfex->next = ast_type_copy(ctx, fromex->next);
153             if (!selfex->next) {
154                 ast_expression_delete_full(self);
155                 return NULL;
156             }
157         }
158         else
159             selfex->next = NULL;
160
161         for (i = 0; i < fromex->params_count; ++i) {
162             ast_value *v = ast_value_copy(fromex->params[i]);
163             if (!v || !ast_expression_common_params_add(selfex, v)) {
164                 ast_expression_delete_full(self);
165                 return NULL;
166             }
167         }
168
169         return self;
170     }
171 }
172
173 bool ast_compare_type(ast_expression *a, ast_expression *b)
174 {
175     if (a->expression.vtype != b->expression.vtype)
176         return false;
177     if (!a->expression.next != !b->expression.next)
178         return false;
179     if (a->expression.params_count != b->expression.params_count)
180         return false;
181     if (a->expression.params_count) {
182         size_t i;
183         for (i = 0; i < a->expression.params_count; ++i) {
184             if (!ast_compare_type((ast_expression*)a->expression.params[i],
185                                   (ast_expression*)b->expression.params[i]))
186                 return false;
187         }
188     }
189     if (a->expression.next)
190         return ast_compare_type(a->expression.next, b->expression.next);
191     return true;
192 }
193
194 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
195 {
196     ast_instantiate(ast_value, ctx, ast_value_delete);
197     ast_expression_init((ast_expression*)self,
198                         (ast_expression_codegen*)&ast_value_codegen);
199     self->expression.node.keep = true; /* keep */
200
201     self->name = name ? util_strdup(name) : NULL;
202     self->expression.vtype = t;
203     self->expression.next  = NULL;
204     self->isconst = false;
205     memset(&self->constval, 0, sizeof(self->constval));
206
207     self->ir_v    = NULL;
208
209     return self;
210 }
211
212 void ast_value_delete(ast_value* self)
213 {
214     if (self->name)
215         mem_d((void*)self->name);
216     if (self->isconst) {
217         switch (self->expression.vtype)
218         {
219         case TYPE_STRING:
220             mem_d((void*)self->constval.vstring);
221             break;
222         case TYPE_FUNCTION:
223             /* unlink us from the function node */
224             self->constval.vfunc->vtype = NULL;
225             break;
226         /* NOTE: delete function? currently collected in
227          * the parser structure
228          */
229         default:
230             break;
231         }
232     }
233     ast_expression_delete((ast_expression*)self);
234     mem_d(self);
235 }
236
237 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
238 {
239     return ast_expression_common_params_add(&self->expression, p);
240 }
241
242 bool ast_value_set_name(ast_value *self, const char *name)
243 {
244     if (self->name)
245         mem_d((void*)self->name);
246     self->name = util_strdup(name);
247     return !!self->name;
248 }
249
250 ast_binary* ast_binary_new(lex_ctx ctx, int op,
251                            ast_expression* left, ast_expression* right)
252 {
253     ast_instantiate(ast_binary, ctx, ast_binary_delete);
254     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
255
256     self->op = op;
257     self->left = left;
258     self->right = right;
259
260     if (op >= INSTR_EQ_F && op <= INSTR_GT)
261         self->expression.vtype = TYPE_FLOAT;
262     else if (op == INSTR_AND || op == INSTR_OR ||
263              op == INSTR_BITAND || op == INSTR_BITOR)
264         self->expression.vtype = TYPE_FLOAT;
265     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
266         self->expression.vtype = TYPE_VECTOR;
267     else if (op == INSTR_MUL_V)
268         self->expression.vtype = TYPE_FLOAT;
269     else
270         self->expression.vtype = left->expression.vtype;
271
272     return self;
273 }
274
275 void ast_binary_delete(ast_binary *self)
276 {
277     ast_unref(self->left);
278     ast_unref(self->right);
279     ast_expression_delete((ast_expression*)self);
280     mem_d(self);
281 }
282
283 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
284                                ast_expression* left, ast_expression* right)
285 {
286     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
287     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
288
289     self->opstore = storop;
290     self->opbin   = op;
291     self->dest    = left;
292     self->source  = right;
293
294     self->expression.vtype = left->expression.vtype;
295     if (left->expression.next) {
296         self->expression.next = ast_type_copy(ctx, left);
297         if (!self->expression.next) {
298             ast_delete(self);
299             return NULL;
300         }
301     }
302     else
303         self->expression.next = NULL;
304
305     return self;
306 }
307
308 void ast_binstore_delete(ast_binstore *self)
309 {
310     ast_unref(self->dest);
311     ast_unref(self->source);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_unary* ast_unary_new(lex_ctx ctx, int op,
317                          ast_expression *expr)
318 {
319     ast_instantiate(ast_unary, ctx, ast_unary_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
321
322     self->op = op;
323     self->operand = expr;
324
325     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
326         self->expression.vtype = TYPE_FLOAT;
327     } else
328         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
329
330     return self;
331 }
332
333 void ast_unary_delete(ast_unary *self)
334 {
335     ast_unref(self->operand);
336     ast_expression_delete((ast_expression*)self);
337     mem_d(self);
338 }
339
340 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
341 {
342     ast_instantiate(ast_return, ctx, ast_return_delete);
343     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
344
345     self->operand = expr;
346
347     return self;
348 }
349
350 void ast_return_delete(ast_return *self)
351 {
352     if (self->operand)
353         ast_unref(self->operand);
354     ast_expression_delete((ast_expression*)self);
355     mem_d(self);
356 }
357
358 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
359 {
360     const ast_expression *outtype;
361
362     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
363
364     if (field->expression.vtype != TYPE_FIELD) {
365         mem_d(self);
366         return NULL;
367     }
368
369     outtype = field->expression.next;
370     if (!outtype) {
371         mem_d(self);
372         /* Error: field has no type... */
373         return NULL;
374     }
375
376     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
377
378     self->expression.vtype = outtype->expression.vtype;
379     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
380
381     self->entity = entity;
382     self->field  = field;
383
384     return self;
385 }
386
387 void ast_entfield_delete(ast_entfield *self)
388 {
389     ast_unref(self->entity);
390     ast_unref(self->field);
391     ast_expression_delete((ast_expression*)self);
392     mem_d(self);
393 }
394
395 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
396 {
397     ast_instantiate(ast_member, ctx, ast_member_delete);
398     if (field >= 3) {
399         mem_d(self);
400         return NULL;
401     }
402
403     if (owner->expression.vtype != TYPE_VECTOR &&
404         owner->expression.vtype != TYPE_FIELD) {
405         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
406         mem_d(self);
407         return NULL;
408     }
409
410     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
411     self->expression.node.keep = true; /* keep */
412
413     if (owner->expression.vtype == TYPE_VECTOR) {
414         self->expression.vtype = TYPE_FLOAT;
415         self->expression.next  = NULL;
416     } else {
417         self->expression.vtype = TYPE_FIELD;
418         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
419     }
420
421     self->owner = owner;
422     self->field = field;
423
424     return self;
425 }
426
427 void ast_member_delete(ast_member *self)
428 {
429     /* The owner is always an ast_value, which has .keep=true,
430      * also: ast_members are usually deleted after the owner, thus
431      * this will cause invalid access
432     ast_unref(self->owner);
433      * once we allow (expression).x to access a vector-member, we need
434      * to change this: preferably by creating an alternate ast node for this
435      * purpose that is not garbage-collected.
436     */
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
444     if (!ontrue && !onfalse) {
445         /* because it is invalid */
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454
455     return self;
456 }
457
458 void ast_ifthen_delete(ast_ifthen *self)
459 {
460     ast_unref(self->cond);
461     if (self->on_true)
462         ast_unref(self->on_true);
463     if (self->on_false)
464         ast_unref(self->on_false);
465     ast_expression_delete((ast_expression*)self);
466     mem_d(self);
467 }
468
469 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
470 {
471     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
472     /* This time NEITHER must be NULL */
473     if (!ontrue || !onfalse) {
474         mem_d(self);
475         return NULL;
476     }
477     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
478
479     self->cond     = cond;
480     self->on_true  = ontrue;
481     self->on_false = onfalse;
482     self->phi_out  = NULL;
483
484     return self;
485 }
486
487 void ast_ternary_delete(ast_ternary *self)
488 {
489     ast_unref(self->cond);
490     ast_unref(self->on_true);
491     ast_unref(self->on_false);
492     ast_expression_delete((ast_expression*)self);
493     mem_d(self);
494 }
495
496 ast_loop* ast_loop_new(lex_ctx ctx,
497                        ast_expression *initexpr,
498                        ast_expression *precond,
499                        ast_expression *postcond,
500                        ast_expression *increment,
501                        ast_expression *body)
502 {
503     ast_instantiate(ast_loop, ctx, ast_loop_delete);
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
505
506     self->initexpr  = initexpr;
507     self->precond   = precond;
508     self->postcond  = postcond;
509     self->increment = increment;
510     self->body      = body;
511
512     return self;
513 }
514
515 void ast_loop_delete(ast_loop *self)
516 {
517     if (self->initexpr)
518         ast_unref(self->initexpr);
519     if (self->precond)
520         ast_unref(self->precond);
521     if (self->postcond)
522         ast_unref(self->postcond);
523     if (self->increment)
524         ast_unref(self->increment);
525     if (self->body)
526         ast_unref(self->body);
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_call* ast_call_new(lex_ctx ctx,
532                        ast_expression *funcexpr)
533 {
534     ast_instantiate(ast_call, ctx, ast_call_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
536
537     MEM_VECTOR_INIT(self, params);
538
539     self->func = funcexpr;
540
541     self->expression.vtype = funcexpr->expression.next->expression.vtype;
542     if (funcexpr->expression.next->expression.next)
543         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
544
545     return self;
546 }
547 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
548
549 void ast_call_delete(ast_call *self)
550 {
551     size_t i;
552     for (i = 0; i < self->params_count; ++i)
553         ast_unref(self->params[i]);
554     MEM_VECTOR_CLEAR(self, params);
555
556     if (self->func)
557         ast_unref(self->func);
558
559     ast_expression_delete((ast_expression*)self);
560     mem_d(self);
561 }
562
563 ast_store* ast_store_new(lex_ctx ctx, int op,
564                          ast_expression *dest, ast_expression *source)
565 {
566     ast_instantiate(ast_store, ctx, ast_store_delete);
567     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
568
569     self->op = op;
570     self->dest = dest;
571     self->source = source;
572
573     return self;
574 }
575
576 void ast_store_delete(ast_store *self)
577 {
578     ast_unref(self->dest);
579     ast_unref(self->source);
580     ast_expression_delete((ast_expression*)self);
581     mem_d(self);
582 }
583
584 ast_block* ast_block_new(lex_ctx ctx)
585 {
586     ast_instantiate(ast_block, ctx, ast_block_delete);
587     ast_expression_init((ast_expression*)self,
588                         (ast_expression_codegen*)&ast_block_codegen);
589
590     MEM_VECTOR_INIT(self, locals);
591     MEM_VECTOR_INIT(self, exprs);
592     MEM_VECTOR_INIT(self, collect);
593
594     return self;
595 }
596 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
597 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
598 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
599
600 bool ast_block_collect(ast_block *self, ast_expression *expr)
601 {
602     if (!ast_block_collect_add(self, expr))
603         return false;
604     expr->expression.node.keep = true;
605     return true;
606 }
607
608 void ast_block_delete(ast_block *self)
609 {
610     size_t i;
611     for (i = 0; i < self->exprs_count; ++i)
612         ast_unref(self->exprs[i]);
613     MEM_VECTOR_CLEAR(self, exprs);
614     for (i = 0; i < self->locals_count; ++i)
615         ast_delete(self->locals[i]);
616     MEM_VECTOR_CLEAR(self, locals);
617     for (i = 0; i < self->collect_count; ++i)
618         ast_delete(self->collect[i]);
619     MEM_VECTOR_CLEAR(self, collect);
620     ast_expression_delete((ast_expression*)self);
621     mem_d(self);
622 }
623
624 bool ast_block_set_type(ast_block *self, ast_expression *from)
625 {
626     if (self->expression.next)
627         ast_delete(self->expression.next);
628     self->expression.vtype = from->expression.vtype;
629     if (from->expression.next) {
630         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
631         if (!self->expression.next)
632             return false;
633     }
634     else
635         self->expression.next = NULL;
636     return true;
637 }
638
639 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
640 {
641     ast_instantiate(ast_function, ctx, ast_function_delete);
642
643     if (!vtype ||
644         vtype->isconst ||
645         vtype->expression.vtype != TYPE_FUNCTION)
646     {
647         mem_d(self);
648         return NULL;
649     }
650
651     self->vtype = vtype;
652     self->name = name ? util_strdup(name) : NULL;
653     MEM_VECTOR_INIT(self, blocks);
654
655     self->labelcount = 0;
656     self->builtin = 0;
657
658     self->ir_func = NULL;
659     self->curblock = NULL;
660
661     self->breakblock    = NULL;
662     self->continueblock = NULL;
663
664     vtype->isconst = true;
665     vtype->constval.vfunc = self;
666
667     return self;
668 }
669
670 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
671
672 void ast_function_delete(ast_function *self)
673 {
674     size_t i;
675     if (self->name)
676         mem_d((void*)self->name);
677     if (self->vtype) {
678         /* ast_value_delete(self->vtype); */
679         self->vtype->isconst = false;
680         self->vtype->constval.vfunc = NULL;
681         /* We use unref - if it was stored in a global table it is supposed
682          * to be deleted from *there*
683          */
684         ast_unref(self->vtype);
685     }
686     for (i = 0; i < self->blocks_count; ++i)
687         ast_delete(self->blocks[i]);
688     MEM_VECTOR_CLEAR(self, blocks);
689     mem_d(self);
690 }
691
692 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
693 {
694     unsigned int base = 10;
695 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
696 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
697     if (size < 1)
698         return;
699     checknul();
700     if (!num)
701         addch('0');
702     else {
703         while (num)
704         {
705             int digit = num % base;
706             num /= base;
707             addch('0' + digit);
708         }
709     }
710
711     *buf = 0;
712 #undef addch
713 #undef checknul
714 }
715
716 const char* ast_function_label(ast_function *self, const char *prefix)
717 {
718     size_t id = (self->labelcount++);
719     size_t len = strlen(prefix);
720     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
721     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
722     return self->labelbuf;
723 }
724
725 /*********************************************************************/
726 /* AST codegen part
727  * by convention you must never pass NULL to the 'ir_value **out'
728  * parameter. If you really don't care about the output, pass a dummy.
729  * But I can't imagine a pituation where the output is truly unnecessary.
730  */
731
732 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
733 {
734     /* NOTE: This is the codegen for a variable used in an expression.
735      * It is not the codegen to generate the value. For this purpose,
736      * ast_local_codegen and ast_global_codegen are to be used before this
737      * is executed. ast_function_codegen should take care of its locals,
738      * and the ast-user should take care of ast_global_codegen to be used
739      * on all the globals.
740      */
741     if (!self->ir_v) {
742         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
743         return false;
744     }
745     *out = self->ir_v;
746     return true;
747 }
748
749 bool ast_global_codegen(ast_value *self, ir_builder *ir)
750 {
751     ir_value *v = NULL;
752     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
753     {
754         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
755         if (!func)
756             return false;
757
758         self->constval.vfunc->ir_func = func;
759         self->ir_v = func->value;
760         /* The function is filled later on ast_function_codegen... */
761         return true;
762     }
763
764     if (self->expression.vtype == TYPE_FIELD) {
765         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
766         if (!v)
767             return false;
768         if (self->isconst) {
769             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
770             goto error;
771         }
772         self->ir_v = v;
773         return true;
774     }
775
776     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
777     if (!v) {
778         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
779         return false;
780     }
781
782     if (self->isconst) {
783         switch (self->expression.vtype)
784         {
785             case TYPE_FLOAT:
786                 if (!ir_value_set_float(v, self->constval.vfloat))
787                     goto error;
788                 break;
789             case TYPE_VECTOR:
790                 if (!ir_value_set_vector(v, self->constval.vvec))
791                     goto error;
792                 break;
793             case TYPE_STRING:
794                 if (!ir_value_set_string(v, self->constval.vstring))
795                     goto error;
796                 break;
797             case TYPE_FUNCTION:
798                 asterror(ast_ctx(self), "global of type function not properly generated\n");
799                 goto error;
800                 /* Cannot generate an IR value for a function,
801                  * need a pointer pointing to a function rather.
802                  */
803             default:
804                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
805                 break;
806         }
807     }
808
809     /* link us to the ir_value */
810     self->ir_v = v;
811     return true;
812
813 error: /* clean up */
814     ir_value_delete(v);
815     return false;
816 }
817
818 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
819 {
820     ir_value *v = NULL;
821     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
822     {
823         /* Do we allow local functions? I think not...
824          * this is NOT a function pointer atm.
825          */
826         return false;
827     }
828
829     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
830     if (!v)
831         return false;
832
833     /* A constant local... hmmm...
834      * I suppose the IR will have to deal with this
835      */
836     if (self->isconst) {
837         switch (self->expression.vtype)
838         {
839             case TYPE_FLOAT:
840                 if (!ir_value_set_float(v, self->constval.vfloat))
841                     goto error;
842                 break;
843             case TYPE_VECTOR:
844                 if (!ir_value_set_vector(v, self->constval.vvec))
845                     goto error;
846                 break;
847             case TYPE_STRING:
848                 if (!ir_value_set_string(v, self->constval.vstring))
849                     goto error;
850                 break;
851             default:
852                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
853                 break;
854         }
855     }
856
857     /* link us to the ir_value */
858     self->ir_v = v;
859     return true;
860
861 error: /* clean up */
862     ir_value_delete(v);
863     return false;
864 }
865
866 bool ast_function_codegen(ast_function *self, ir_builder *ir)
867 {
868     ir_function *irf;
869     ir_value    *dummy;
870     ast_expression_common *ec;
871     size_t    i;
872
873     irf = self->ir_func;
874     if (!irf) {
875         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
876         return false;
877     }
878
879     /* fill the parameter list */
880     ec = &self->vtype->expression;
881     for (i = 0; i < ec->params_count; ++i)
882     {
883         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
884             return false;
885         if (!self->builtin) {
886             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
887                 return false;
888         }
889     }
890
891     if (self->builtin) {
892         irf->builtin = self->builtin;
893         return true;
894     }
895
896     if (!self->blocks_count) {
897         asterror(ast_ctx(self), "function `%s` has no body", self->name);
898         return false;
899     }
900
901     self->curblock = ir_function_create_block(irf, "entry");
902     if (!self->curblock)
903         return false;
904
905     for (i = 0; i < self->blocks_count; ++i) {
906         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
907         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
908             return false;
909     }
910
911     /* TODO: check return types */
912     if (!self->curblock->is_return)
913     {
914         if (!self->vtype->expression.next ||
915             self->vtype->expression.next->expression.vtype == TYPE_VOID)
916         {
917             return ir_block_create_return(self->curblock, NULL);
918         }
919         else
920         {
921             /* error("missing return"); */
922             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
923             return false;
924         }
925     }
926     return true;
927 }
928
929 /* Note, you will not see ast_block_codegen generate ir_blocks.
930  * To the AST and the IR, blocks are 2 different things.
931  * In the AST it represents a block of code, usually enclosed in
932  * curly braces {...}.
933  * While in the IR it represents a block in terms of control-flow.
934  */
935 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
936 {
937     size_t i;
938
939     /* We don't use this
940      * Note: an ast-representation using the comma-operator
941      * of the form: (a, b, c) = x should not assign to c...
942      */
943     (void)lvalue;
944     if (self->expression.outr) {
945         *out = self->expression.outr;
946         return true;
947     }
948
949     /* output is NULL at first, we'll have each expression
950      * assign to out output, thus, a comma-operator represention
951      * using an ast_block will return the last generated value,
952      * so: (b, c) + a  executed both b and c, and returns c,
953      * which is then added to a.
954      */
955     *out = NULL;
956
957     /* generate locals */
958     for (i = 0; i < self->locals_count; ++i)
959     {
960         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
961             return false;
962     }
963
964     for (i = 0; i < self->exprs_count; ++i)
965     {
966         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
967         if (!(*gen)(self->exprs[i], func, false, out))
968             return false;
969     }
970
971     self->expression.outr = *out;
972
973     return true;
974 }
975
976 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
977 {
978     ast_expression_codegen *cgen;
979     ir_value *left, *right;
980
981     if (lvalue && self->expression.outl) {
982         *out = self->expression.outl;
983         return true;
984     }
985
986     if (!lvalue && self->expression.outr) {
987         *out = self->expression.outr;
988         return true;
989     }
990
991     cgen = self->dest->expression.codegen;
992     /* lvalue! */
993     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
994         return false;
995     self->expression.outl = left;
996
997     cgen = self->source->expression.codegen;
998     /* rvalue! */
999     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1000         return false;
1001
1002     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1003         return false;
1004     self->expression.outr = right;
1005
1006     /* Theoretically, an assinment returns its left side as an
1007      * lvalue, if we don't need an lvalue though, we return
1008      * the right side as an rvalue, otherwise we have to
1009      * somehow know whether or not we need to dereference the pointer
1010      * on the left side - that is: OP_LOAD if it was an address.
1011      * Also: in original QC we cannot OP_LOADP *anyway*.
1012      */
1013     *out = (lvalue ? left : right);
1014
1015     return true;
1016 }
1017
1018 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1019 {
1020     ast_expression_codegen *cgen;
1021     ir_value *left, *right;
1022
1023     /* In the context of a binary operation, we can disregard
1024      * the lvalue flag.
1025      */
1026     (void)lvalue;
1027     if (self->expression.outr) {
1028         *out = self->expression.outr;
1029         return true;
1030     }
1031
1032     cgen = self->left->expression.codegen;
1033     /* lvalue! */
1034     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1035         return false;
1036
1037     cgen = self->right->expression.codegen;
1038     /* rvalue! */
1039     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1040         return false;
1041
1042     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1043                                  self->op, left, right);
1044     if (!*out)
1045         return false;
1046     self->expression.outr = *out;
1047
1048     return true;
1049 }
1050
1051 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1052 {
1053     ast_expression_codegen *cgen;
1054     ir_value *leftl, *leftr, *right, *bin;
1055
1056     if (lvalue && self->expression.outl) {
1057         *out = self->expression.outl;
1058         return true;
1059     }
1060
1061     if (!lvalue && self->expression.outr) {
1062         *out = self->expression.outr;
1063         return true;
1064     }
1065
1066     /* for a binstore we need both an lvalue and an rvalue for the left side */
1067     /* rvalue of destination! */
1068     cgen = self->dest->expression.codegen;
1069     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1070         return false;
1071
1072     /* source as rvalue only */
1073     cgen = self->source->expression.codegen;
1074     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1075         return false;
1076
1077     /* now the binary */
1078     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1079                                 self->opbin, leftr, right);
1080     self->expression.outr = bin;
1081
1082     /* now store them */
1083     cgen = self->dest->expression.codegen;
1084     /* lvalue of destination */
1085     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1086         return false;
1087     self->expression.outl = leftl;
1088
1089     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1090         return false;
1091     self->expression.outr = bin;
1092
1093     /* Theoretically, an assinment returns its left side as an
1094      * lvalue, if we don't need an lvalue though, we return
1095      * the right side as an rvalue, otherwise we have to
1096      * somehow know whether or not we need to dereference the pointer
1097      * on the left side - that is: OP_LOAD if it was an address.
1098      * Also: in original QC we cannot OP_LOADP *anyway*.
1099      */
1100     *out = (lvalue ? leftl : bin);
1101
1102     return true;
1103 }
1104
1105 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1106 {
1107     ast_expression_codegen *cgen;
1108     ir_value *operand;
1109
1110     /* In the context of a unary operation, we can disregard
1111      * the lvalue flag.
1112      */
1113     (void)lvalue;
1114     if (self->expression.outr) {
1115         *out = self->expression.outr;
1116         return true;
1117     }
1118
1119     cgen = self->operand->expression.codegen;
1120     /* lvalue! */
1121     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1122         return false;
1123
1124     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1125                                  self->op, operand);
1126     if (!*out)
1127         return false;
1128     self->expression.outr = *out;
1129
1130     return true;
1131 }
1132
1133 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1134 {
1135     ast_expression_codegen *cgen;
1136     ir_value *operand;
1137
1138     /* In the context of a return operation, we can disregard
1139      * the lvalue flag.
1140      */
1141     (void)lvalue;
1142     if (self->expression.outr) {
1143         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1144         return false;
1145     }
1146     self->expression.outr = (ir_value*)1;
1147
1148     if (self->operand) {
1149         cgen = self->operand->expression.codegen;
1150         /* lvalue! */
1151         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1152             return false;
1153
1154         if (!ir_block_create_return(func->curblock, operand))
1155             return false;
1156     } else {
1157         if (!ir_block_create_return(func->curblock, NULL))
1158             return false;
1159     }
1160
1161     return true;
1162 }
1163
1164 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1165 {
1166     ast_expression_codegen *cgen;
1167     ir_value *ent, *field;
1168
1169     /* This function needs to take the 'lvalue' flag into account!
1170      * As lvalue we provide a field-pointer, as rvalue we provide the
1171      * value in a temp.
1172      */
1173
1174     if (lvalue && self->expression.outl) {
1175         *out = self->expression.outl;
1176         return true;
1177     }
1178
1179     if (!lvalue && self->expression.outr) {
1180         *out = self->expression.outr;
1181         return true;
1182     }
1183
1184     cgen = self->entity->expression.codegen;
1185     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1186         return false;
1187
1188     cgen = self->field->expression.codegen;
1189     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1190         return false;
1191
1192     if (lvalue) {
1193         /* address! */
1194         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1195                                             ent, field);
1196     } else {
1197         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1198                                              ent, field, self->expression.vtype);
1199     }
1200     if (!*out) {
1201         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1202                  (lvalue ? "ADDRESS" : "FIELD"),
1203                  type_name[self->expression.vtype]);
1204         return false;
1205     }
1206
1207     if (lvalue)
1208         self->expression.outl = *out;
1209     else
1210         self->expression.outr = *out;
1211
1212     /* Hm that should be it... */
1213     return true;
1214 }
1215
1216 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1217 {
1218     ast_expression_codegen *cgen;
1219     ir_value *vec;
1220
1221     /* in QC this is always an lvalue */
1222     (void)lvalue;
1223     if (self->expression.outl) {
1224         *out = self->expression.outl;
1225         return true;
1226     }
1227
1228     cgen = self->owner->expression.codegen;
1229     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1230         return false;
1231
1232     if (vec->vtype != TYPE_VECTOR &&
1233         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1234     {
1235         return false;
1236     }
1237
1238     *out = ir_value_vector_member(vec, self->field);
1239     self->expression.outl = *out;
1240
1241     return (*out != NULL);
1242 }
1243
1244 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1245 {
1246     ast_expression_codegen *cgen;
1247
1248     ir_value *condval;
1249     ir_value *dummy;
1250
1251     ir_block *cond = func->curblock;
1252     ir_block *ontrue;
1253     ir_block *onfalse;
1254     ir_block *merge;
1255
1256     /* We don't output any value, thus also don't care about r/lvalue */
1257     (void)out;
1258     (void)lvalue;
1259
1260     if (self->expression.outr) {
1261         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1262         return false;
1263     }
1264     self->expression.outr = (ir_value*)1;
1265
1266     /* generate the condition */
1267     func->curblock = cond;
1268     cgen = self->cond->expression.codegen;
1269     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1270         return false;
1271
1272     /* on-true path */
1273
1274     if (self->on_true) {
1275         /* create on-true block */
1276         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1277         if (!ontrue)
1278             return false;
1279
1280         /* enter the block */
1281         func->curblock = ontrue;
1282
1283         /* generate */
1284         cgen = self->on_true->expression.codegen;
1285         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1286             return false;
1287     } else
1288         ontrue = NULL;
1289
1290     /* on-false path */
1291     if (self->on_false) {
1292         /* create on-false block */
1293         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1294         if (!onfalse)
1295             return false;
1296
1297         /* enter the block */
1298         func->curblock = onfalse;
1299
1300         /* generate */
1301         cgen = self->on_false->expression.codegen;
1302         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1303             return false;
1304     } else
1305         onfalse = NULL;
1306
1307     /* Merge block were they all merge in to */
1308     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1309     if (!merge)
1310         return false;
1311
1312     /* add jumps ot the merge block */
1313     if (ontrue && !ir_block_create_jump(ontrue, merge))
1314         return false;
1315     if (onfalse && !ir_block_create_jump(onfalse, merge))
1316         return false;
1317
1318     /* we create the if here, that way all blocks are ordered :)
1319      */
1320     if (!ir_block_create_if(cond, condval,
1321                             (ontrue  ? ontrue  : merge),
1322                             (onfalse ? onfalse : merge)))
1323     {
1324         return false;
1325     }
1326
1327     /* Now enter the merge block */
1328     func->curblock = merge;
1329
1330     return true;
1331 }
1332
1333 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1334 {
1335     ast_expression_codegen *cgen;
1336
1337     ir_value *condval;
1338     ir_value *trueval, *falseval;
1339     ir_instr *phi;
1340
1341     ir_block *cond = func->curblock;
1342     ir_block *ontrue;
1343     ir_block *onfalse;
1344     ir_block *merge;
1345
1346     /* Ternary can never create an lvalue... */
1347     if (lvalue)
1348         return false;
1349
1350     /* In theory it shouldn't be possible to pass through a node twice, but
1351      * in case we add any kind of optimization pass for the AST itself, it
1352      * may still happen, thus we remember a created ir_value and simply return one
1353      * if it already exists.
1354      */
1355     if (self->phi_out) {
1356         *out = self->phi_out;
1357         return true;
1358     }
1359
1360     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1361
1362     /* generate the condition */
1363     func->curblock = cond;
1364     cgen = self->cond->expression.codegen;
1365     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1366         return false;
1367
1368     /* create on-true block */
1369     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1370     if (!ontrue)
1371         return false;
1372     else
1373     {
1374         /* enter the block */
1375         func->curblock = ontrue;
1376
1377         /* generate */
1378         cgen = self->on_true->expression.codegen;
1379         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1380             return false;
1381     }
1382
1383     /* create on-false block */
1384     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1385     if (!onfalse)
1386         return false;
1387     else
1388     {
1389         /* enter the block */
1390         func->curblock = onfalse;
1391
1392         /* generate */
1393         cgen = self->on_false->expression.codegen;
1394         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1395             return false;
1396     }
1397
1398     /* create merge block */
1399     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1400     if (!merge)
1401         return false;
1402     /* jump to merge block */
1403     if (!ir_block_create_jump(ontrue, merge))
1404         return false;
1405     if (!ir_block_create_jump(onfalse, merge))
1406         return false;
1407
1408     /* create if instruction */
1409     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1410         return false;
1411
1412     /* Now enter the merge block */
1413     func->curblock = merge;
1414
1415     /* Here, now, we need a PHI node
1416      * but first some sanity checking...
1417      */
1418     if (trueval->vtype != falseval->vtype) {
1419         /* error("ternary with different types on the two sides"); */
1420         return false;
1421     }
1422
1423     /* create PHI */
1424     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1425     if (!phi ||
1426         !ir_phi_add(phi, ontrue,  trueval) ||
1427         !ir_phi_add(phi, onfalse, falseval))
1428     {
1429         return false;
1430     }
1431
1432     self->phi_out = ir_phi_value(phi);
1433     *out = self->phi_out;
1434
1435     return true;
1436 }
1437
1438 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1439 {
1440     ast_expression_codegen *cgen;
1441
1442     ir_value *dummy      = NULL;
1443     ir_value *precond    = NULL;
1444     ir_value *postcond   = NULL;
1445
1446     /* Since we insert some jumps "late" so we have blocks
1447      * ordered "nicely", we need to keep track of the actual end-blocks
1448      * of expressions to add the jumps to.
1449      */
1450     ir_block *bbody      = NULL, *end_bbody      = NULL;
1451     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1452     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1453     ir_block *bincrement = NULL, *end_bincrement = NULL;
1454     ir_block *bout       = NULL, *bin            = NULL;
1455
1456     /* let's at least move the outgoing block to the end */
1457     size_t    bout_id;
1458
1459     /* 'break' and 'continue' need to be able to find the right blocks */
1460     ir_block *bcontinue     = NULL;
1461     ir_block *bbreak        = NULL;
1462
1463     ir_block *old_bcontinue = NULL;
1464     ir_block *old_bbreak    = NULL;
1465
1466     ir_block *tmpblock      = NULL;
1467
1468     (void)lvalue;
1469     (void)out;
1470
1471     if (self->expression.outr) {
1472         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1473         return false;
1474     }
1475     self->expression.outr = (ir_value*)1;
1476
1477     /* NOTE:
1478      * Should we ever need some kind of block ordering, better make this function
1479      * move blocks around than write a block ordering algorithm later... after all
1480      * the ast and ir should work together, not against each other.
1481      */
1482
1483     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1484      * anyway if for example it contains a ternary.
1485      */
1486     if (self->initexpr)
1487     {
1488         cgen = self->initexpr->expression.codegen;
1489         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1490             return false;
1491     }
1492
1493     /* Store the block from which we enter this chaos */
1494     bin = func->curblock;
1495
1496     /* The pre-loop condition needs its own block since we
1497      * need to be able to jump to the start of that expression.
1498      */
1499     if (self->precond)
1500     {
1501         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1502         if (!bprecond)
1503             return false;
1504
1505         /* the pre-loop-condition the least important place to 'continue' at */
1506         bcontinue = bprecond;
1507
1508         /* enter */
1509         func->curblock = bprecond;
1510
1511         /* generate */
1512         cgen = self->precond->expression.codegen;
1513         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1514             return false;
1515
1516         end_bprecond = func->curblock;
1517     } else {
1518         bprecond = end_bprecond = NULL;
1519     }
1520
1521     /* Now the next blocks won't be ordered nicely, but we need to
1522      * generate them this early for 'break' and 'continue'.
1523      */
1524     if (self->increment) {
1525         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1526         if (!bincrement)
1527             return false;
1528         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1529     } else {
1530         bincrement = end_bincrement = NULL;
1531     }
1532
1533     if (self->postcond) {
1534         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1535         if (!bpostcond)
1536             return false;
1537         bcontinue = bpostcond; /* postcond comes before the increment */
1538     } else {
1539         bpostcond = end_bpostcond = NULL;
1540     }
1541
1542     bout_id = func->ir_func->blocks_count;
1543     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1544     if (!bout)
1545         return false;
1546     bbreak = bout;
1547
1548     /* The loop body... */
1549     if (self->body)
1550     {
1551         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1552         if (!bbody)
1553             return false;
1554
1555         /* enter */
1556         func->curblock = bbody;
1557
1558         old_bbreak          = func->breakblock;
1559         old_bcontinue       = func->continueblock;
1560         func->breakblock    = bbreak;
1561         func->continueblock = bcontinue;
1562
1563         /* generate */
1564         cgen = self->body->expression.codegen;
1565         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1566             return false;
1567
1568         end_bbody = func->curblock;
1569         func->breakblock    = old_bbreak;
1570         func->continueblock = old_bcontinue;
1571     }
1572
1573     /* post-loop-condition */
1574     if (self->postcond)
1575     {
1576         /* enter */
1577         func->curblock = bpostcond;
1578
1579         /* generate */
1580         cgen = self->postcond->expression.codegen;
1581         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1582             return false;
1583
1584         end_bpostcond = func->curblock;
1585     }
1586
1587     /* The incrementor */
1588     if (self->increment)
1589     {
1590         /* enter */
1591         func->curblock = bincrement;
1592
1593         /* generate */
1594         cgen = self->increment->expression.codegen;
1595         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1596             return false;
1597
1598         end_bincrement = func->curblock;
1599     }
1600
1601     /* In any case now, we continue from the outgoing block */
1602     func->curblock = bout;
1603
1604     /* Now all blocks are in place */
1605     /* From 'bin' we jump to whatever comes first */
1606     if      (bprecond)   tmpblock = bprecond;
1607     else if (bbody)      tmpblock = bbody;
1608     else if (bpostcond)  tmpblock = bpostcond;
1609     else                 tmpblock = bout;
1610     if (!ir_block_create_jump(bin, tmpblock))
1611         return false;
1612
1613     /* From precond */
1614     if (bprecond)
1615     {
1616         ir_block *ontrue, *onfalse;
1617         if      (bbody)      ontrue = bbody;
1618         else if (bincrement) ontrue = bincrement;
1619         else if (bpostcond)  ontrue = bpostcond;
1620         else                 ontrue = bprecond;
1621         onfalse = bout;
1622         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1623             return false;
1624     }
1625
1626     /* from body */
1627     if (bbody)
1628     {
1629         if      (bincrement) tmpblock = bincrement;
1630         else if (bpostcond)  tmpblock = bpostcond;
1631         else if (bprecond)   tmpblock = bprecond;
1632         else                 tmpblock = bout;
1633         if (!ir_block_create_jump(end_bbody, tmpblock))
1634             return false;
1635     }
1636
1637     /* from increment */
1638     if (bincrement)
1639     {
1640         if      (bpostcond)  tmpblock = bpostcond;
1641         else if (bprecond)   tmpblock = bprecond;
1642         else if (bbody)      tmpblock = bbody;
1643         else                 tmpblock = bout;
1644         if (!ir_block_create_jump(end_bincrement, tmpblock))
1645             return false;
1646     }
1647
1648     /* from postcond */
1649     if (bpostcond)
1650     {
1651         ir_block *ontrue, *onfalse;
1652         if      (bprecond)   ontrue = bprecond;
1653         else if (bbody)      ontrue = bbody;
1654         else if (bincrement) ontrue = bincrement;
1655         else                 ontrue = bpostcond;
1656         onfalse = bout;
1657         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1658             return false;
1659     }
1660
1661     /* Move 'bout' to the end */
1662     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1663         !ir_function_blocks_add(func->ir_func, bout))
1664     {
1665         ir_block_delete(bout);
1666         return false;
1667     }
1668
1669     return true;
1670 }
1671
1672 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1673 {
1674     ast_expression_codegen *cgen;
1675     ir_value_vector         params;
1676     ir_instr               *callinstr;
1677     size_t i;
1678
1679     ir_value *funval = NULL;
1680
1681     /* return values are never lvalues */
1682     (void)lvalue;
1683
1684     if (self->expression.outr) {
1685         *out = self->expression.outr;
1686         return true;
1687     }
1688
1689     cgen = self->func->expression.codegen;
1690     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1691         return false;
1692     if (!funval)
1693         return false;
1694
1695     MEM_VECTOR_INIT(&params, v);
1696
1697     /* parameters */
1698     for (i = 0; i < self->params_count; ++i)
1699     {
1700         ir_value *param;
1701         ast_expression *expr = self->params[i];
1702
1703         cgen = expr->expression.codegen;
1704         if (!(*cgen)(expr, func, false, &param))
1705             goto error;
1706         if (!param)
1707             goto error;
1708         if (!ir_value_vector_v_add(&params, param))
1709             goto error;
1710     }
1711
1712     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1713     if (!callinstr)
1714         goto error;
1715
1716     for (i = 0; i < params.v_count; ++i) {
1717         if (!ir_call_param(callinstr, params.v[i]))
1718             goto error;
1719     }
1720
1721     *out = ir_call_value(callinstr);
1722     self->expression.outr = *out;
1723
1724     MEM_VECTOR_CLEAR(&params, v);
1725     return true;
1726 error:
1727     MEM_VECTOR_CLEAR(&params, v);
1728     return false;
1729 }