]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_function_label now takes a labelname to prefix the id with
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     ast_unref(self->on_true);
242     ast_unref(self->on_false);
243     ast_expression_delete((ast_expression*)self);
244     mem_d(self);
245 }
246
247 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
248 {
249     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
250     /* This time NEITHER must be NULL */
251     if (!ontrue || !onfalse) {
252         mem_d(self);
253         return NULL;
254     }
255     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
256
257     self->cond     = cond;
258     self->on_true  = ontrue;
259     self->on_false = onfalse;
260     self->phi_out  = NULL;
261
262     return self;
263 }
264
265 void ast_ternary_delete(ast_ternary *self)
266 {
267     ast_unref(self->cond);
268     ast_unref(self->on_true);
269     ast_unref(self->on_false);
270     ast_expression_delete((ast_expression*)self);
271     mem_d(self);
272 }
273
274 ast_store* ast_store_new(lex_ctx ctx, int op,
275                          ast_value *dest, ast_expression *source)
276 {
277     ast_instantiate(ast_store, ctx, ast_store_delete);
278     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
279
280     self->op = op;
281     self->dest = dest;
282     self->source = source;
283
284     return self;
285 }
286
287 void ast_store_delete(ast_store *self)
288 {
289     ast_unref(self->dest);
290     ast_unref(self->source);
291     ast_expression_delete((ast_expression*)self);
292     mem_d(self);
293 }
294
295 ast_block* ast_block_new(lex_ctx ctx)
296 {
297     ast_instantiate(ast_block, ctx, ast_block_delete);
298     ast_expression_init((ast_expression*)self,
299                         (ast_expression_codegen*)&ast_block_codegen);
300
301     MEM_VECTOR_INIT(self, locals);
302     MEM_VECTOR_INIT(self, exprs);
303
304     return self;
305 }
306 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
307 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
308
309 void ast_block_delete(ast_block *self)
310 {
311     size_t i;
312     for (i = 0; i < self->exprs_count; ++i)
313         ast_unref(self->exprs[i]);
314     MEM_VECTOR_CLEAR(self, exprs);
315     for (i = 0; i < self->locals_count; ++i)
316         ast_delete(self->locals[i]);
317     MEM_VECTOR_CLEAR(self, locals);
318     ast_expression_delete((ast_expression*)self);
319     mem_d(self);
320 }
321
322 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
323 {
324     ast_instantiate(ast_function, ctx, ast_function_delete);
325
326     if (!vtype ||
327         vtype->isconst ||
328         vtype->expression.vtype != TYPE_FUNCTION)
329     {
330         mem_d(self);
331         return NULL;
332     }
333
334     self->vtype = vtype;
335     self->name = name ? util_strdup(name) : NULL;
336     MEM_VECTOR_INIT(self, blocks);
337
338     self->labelcount = 0;
339
340     self->ir_func = NULL;
341     self->curblock = NULL;
342
343     vtype->isconst = true;
344     vtype->constval.vfunc = self;
345
346     return self;
347 }
348
349 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
350
351 void ast_function_delete(ast_function *self)
352 {
353     size_t i;
354     if (self->name)
355         mem_d((void*)self->name);
356     if (self->vtype) {
357         /* ast_value_delete(self->vtype); */
358         self->vtype->isconst = false;
359         self->vtype->constval.vfunc = NULL;
360         /* We use unref - if it was stored in a global table it is supposed
361          * to be deleted from *there*
362          */
363         ast_unref(self->vtype);
364     }
365     for (i = 0; i < self->blocks_count; ++i)
366         ast_delete(self->blocks[i]);
367     MEM_VECTOR_CLEAR(self, blocks);
368     mem_d(self);
369 }
370
371 const char* ast_function_label(ast_function *self, const char *prefix)
372 {
373     size_t id = (self->labelcount++);
374     sprintf(self->labelbuf, "%16s%8u", prefix, (unsigned int)id);
375     return self->labelbuf;
376 }
377
378 /*********************************************************************/
379 /* AST codegen part
380  * by convention you must never pass NULL to the 'ir_value **out'
381  * parameter. If you really don't care about the output, pass a dummy.
382  * But I can't imagine a pituation where the output is truly unnecessary.
383  */
384
385 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
386 {
387     /* NOTE: This is the codegen for a variable used in an expression.
388      * It is not the codegen to generate the value. For this purpose,
389      * ast_local_codegen and ast_global_codegen are to be used before this
390      * is executed. ast_function_codegen should take care of its locals,
391      * and the ast-user should take care of ast_global_codegen to be used
392      * on all the globals.
393      */
394     if (!self->ir_v)
395         return false;
396     *out = self->ir_v;
397     return true;
398 }
399
400 bool ast_global_codegen(ast_value *self, ir_builder *ir)
401 {
402     ir_value *v = NULL;
403     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
404     {
405         ir_function *func = ir_builder_create_function(ir, self->name);
406         if (!func)
407             return false;
408
409         self->constval.vfunc->ir_func = func;
410         /* The function is filled later on ast_function_codegen... */
411         return true;
412     }
413
414     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
415     if (!v)
416         return false;
417
418     if (self->isconst) {
419         switch (self->expression.vtype)
420         {
421             case TYPE_FLOAT:
422                 if (!ir_value_set_float(v, self->constval.vfloat))
423                     goto error;
424                 break;
425             case TYPE_VECTOR:
426                 if (!ir_value_set_vector(v, self->constval.vvec))
427                     goto error;
428                 break;
429             case TYPE_STRING:
430                 if (!ir_value_set_string(v, self->constval.vstring))
431                     goto error;
432                 break;
433             case TYPE_FUNCTION:
434                 /* Cannot generate an IR value for a function,
435                  * need a pointer pointing to a function rather.
436                  */
437                 goto error;
438             default:
439                 printf("TODO: global constant type %i\n", self->expression.vtype);
440                 break;
441         }
442     }
443
444     /* link us to the ir_value */
445     self->ir_v = v;
446     return true;
447
448 error: /* clean up */
449     ir_value_delete(v);
450     return false;
451 }
452
453 bool ast_local_codegen(ast_value *self, ir_function *func)
454 {
455     ir_value *v = NULL;
456     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
457     {
458         /* Do we allow local functions? I think not...
459          * this is NOT a function pointer atm.
460          */
461         return false;
462     }
463
464     v = ir_function_create_local(func, self->name, self->expression.vtype);
465     if (!v)
466         return false;
467
468     /* A constant local... hmmm...
469      * I suppose the IR will have to deal with this
470      */
471     if (self->isconst) {
472         switch (self->expression.vtype)
473         {
474             case TYPE_FLOAT:
475                 if (!ir_value_set_float(v, self->constval.vfloat))
476                     goto error;
477                 break;
478             case TYPE_VECTOR:
479                 if (!ir_value_set_vector(v, self->constval.vvec))
480                     goto error;
481                 break;
482             case TYPE_STRING:
483                 if (!ir_value_set_string(v, self->constval.vstring))
484                     goto error;
485                 break;
486             default:
487                 printf("TODO: global constant type %i\n", self->expression.vtype);
488                 break;
489         }
490     }
491
492     /* link us to the ir_value */
493     self->ir_v = v;
494     return true;
495
496 error: /* clean up */
497     ir_value_delete(v);
498     return false;
499 }
500
501 bool ast_function_codegen(ast_function *self, ir_builder *ir)
502 {
503     ir_function *irf;
504     ir_value    *dummy;
505     size_t    i;
506
507     irf = self->ir_func;
508     if (!irf) {
509         printf("ast_function's related ast_value was not generated yet\n");
510         return false;
511     }
512
513     self->curblock = ir_function_create_block(irf, "entry");
514     if (!self->curblock)
515         return false;
516
517     for (i = 0; i < self->blocks_count; ++i) {
518         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
519         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
520             return false;
521     }
522     return true;
523 }
524
525 /* Note, you will not see ast_block_codegen generate ir_blocks.
526  * To the AST and the IR, blocks are 2 different things.
527  * In the AST it represents a block of code, usually enclosed in
528  * curly braces {...}.
529  * While in the IR it represents a block in terms of control-flow.
530  */
531 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
532 {
533     size_t i;
534
535     /* We don't use this
536      * Note: an ast-representation using the comma-operator
537      * of the form: (a, b, c) = x should not assign to c...
538      */
539     (void)lvalue;
540
541     /* output is NULL at first, we'll have each expression
542      * assign to out output, thus, a comma-operator represention
543      * using an ast_block will return the last generated value,
544      * so: (b, c) + a  executed both b and c, and returns c,
545      * which is then added to a.
546      */
547     *out = NULL;
548
549     /* generate locals */
550     for (i = 0; i < self->locals_count; ++i)
551     {
552         if (!ast_local_codegen(self->locals[i], func->ir_func))
553             return false;
554     }
555
556     for (i = 0; i < self->exprs_count; ++i)
557     {
558         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
559         if (!(*gen)(self->exprs[i], func, false, out))
560             return false;
561     }
562
563     return true;
564 }
565
566 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
567 {
568     ast_expression_codegen *cgen;
569     ir_value *left, *right;
570
571     cgen = self->dest->expression.codegen;
572     /* lvalue! */
573     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
574         return false;
575
576     cgen = self->source->expression.codegen;
577     /* rvalue! */
578     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
579         return false;
580
581     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
582         return false;
583
584     /* Theoretically, an assinment returns its left side as an
585      * lvalue, if we don't need an lvalue though, we return
586      * the right side as an rvalue, otherwise we have to
587      * somehow know whether or not we need to dereference the pointer
588      * on the left side - that is: OP_LOAD if it was an address.
589      * Also: in original QC we cannot OP_LOADP *anyway*.
590      */
591     *out = (lvalue ? left : right);
592
593     return true;
594 }
595
596 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
597 {
598     ast_expression_codegen *cgen;
599     ir_value *left, *right;
600
601     /* In the context of a binary operation, we can disregard
602      * the lvalue flag.
603      */
604      (void)lvalue;
605
606     cgen = self->left->expression.codegen;
607     /* lvalue! */
608     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
609         return false;
610
611     cgen = self->right->expression.codegen;
612     /* rvalue! */
613     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
614         return false;
615
616     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
617                                  self->op, left, right);
618     if (!*out)
619         return false;
620
621     return true;
622 }
623
624 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
625 {
626     ast_expression_codegen *cgen;
627     ir_value *ent, *field;
628
629     /* This function needs to take the 'lvalue' flag into account!
630      * As lvalue we provide a field-pointer, as rvalue we provide the
631      * value in a temp.
632      */
633
634     cgen = self->entity->expression.codegen;
635     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
636         return false;
637
638     cgen = self->field->expression.codegen;
639     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
640         return false;
641
642     if (lvalue) {
643         /* address! */
644         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
645                                             ent, field);
646     } else {
647         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
648                                              ent, field, self->expression.vtype);
649     }
650     if (!*out)
651         return false;
652
653     /* Hm that should be it... */
654     return true;
655 }
656
657 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
658 {
659     ast_expression_codegen *cgen;
660
661     ir_value *condval;
662     ir_value *dummy;
663
664     ir_block *cond = func->curblock;
665     ir_block *ontrue;
666     ir_block *onfalse;
667     ir_block *merge;
668
669     /* We don't output any value, thus also don't care about r/lvalue */
670     (void)out;
671     (void)lvalue;
672
673     /* create blocks first, it's nicer if they're ordered */
674
675     if (self->on_true) {
676         /* create on-true block */
677         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
678         if (!ontrue)
679             return false;
680     } else
681         ontrue = NULL;
682     
683     if (self->on_false) {
684         /* create on-false block */
685         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
686         if (!onfalse)
687             return false;
688     } else
689         onfalse = NULL;
690
691     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
692     if (!merge)
693         return NULL;
694
695     /* generate the condition */
696     func->curblock = cond;
697     cgen = self->cond->expression.codegen;
698     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
699         return false;
700
701     if (!ir_block_create_if(cond, condval,
702                             (ontrue  ? ontrue  : merge),
703                             (onfalse ? onfalse : merge)))
704     {
705         return false;
706     }
707
708     /* on-true path */
709     if (ontrue) {
710         /* enter the block */
711         func->curblock = ontrue;
712
713         /* generate */
714         cgen = self->on_true->expression.codegen;
715         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
716             return false;
717
718         /* jump to merge block */
719         if (!ir_block_create_jump(ontrue, merge))
720             return false;
721     }
722
723     /* on-false path */
724     if (onfalse) {
725         /* enter the block */
726         func->curblock = onfalse;
727
728         /* generate */
729         cgen = self->on_false->expression.codegen;
730         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
731             return false;
732
733         /* jump to merge block */
734         if (!ir_block_create_jump(ontrue, merge))
735             return false;
736     }
737
738     /* Now enter the merge block */
739     func->curblock = merge;
740
741     return true;
742 }
743
744 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
745 {
746     /* In theory it shouldn't be possible to pass through a node twice, but
747      * in case we add any kind of optimization pass for the AST itself, it
748      * may still happen, thus we remember a created ir_value and simply return one
749      * if it already exists.
750      */
751     if (self->phi_out) {
752         *out = self->phi_out;
753         return true;
754     }
755     return false;
756 }