]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_store needs to take over the type of its destination
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 bool ast_call_check_types(ast_call *self)
593 {
594     size_t i;
595     bool   retval = true;
596     const ast_expression *func = self->func;
597
598     for (i = 0; i < self->params_count; ++i) {
599         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
600             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
601                      (unsigned int)(i+1));
602             /* we don't immediately return */
603             retval = false;
604         }
605     }
606     return retval;
607 }
608
609 ast_store* ast_store_new(lex_ctx ctx, int op,
610                          ast_expression *dest, ast_expression *source)
611 {
612     ast_instantiate(ast_store, ctx, ast_store_delete);
613     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
614
615     self->op = op;
616     self->dest = dest;
617     self->source = source;
618
619     self->expression.vtype = dest->expression.vtype;
620     if (dest->expression.next) {
621         self->expression.next = ast_type_copy(ctx, dest);
622         if (!self->expression.next) {
623             ast_delete(self);
624             return NULL;
625         }
626     }
627     else
628         self->expression.next = NULL;
629
630     return self;
631 }
632
633 void ast_store_delete(ast_store *self)
634 {
635     ast_unref(self->dest);
636     ast_unref(self->source);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_block* ast_block_new(lex_ctx ctx)
642 {
643     ast_instantiate(ast_block, ctx, ast_block_delete);
644     ast_expression_init((ast_expression*)self,
645                         (ast_expression_codegen*)&ast_block_codegen);
646
647     MEM_VECTOR_INIT(self, locals);
648     MEM_VECTOR_INIT(self, exprs);
649     MEM_VECTOR_INIT(self, collect);
650
651     return self;
652 }
653 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
654 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
655 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
656
657 bool ast_block_collect(ast_block *self, ast_expression *expr)
658 {
659     if (!ast_block_collect_add(self, expr))
660         return false;
661     expr->expression.node.keep = true;
662     return true;
663 }
664
665 void ast_block_delete(ast_block *self)
666 {
667     size_t i;
668     for (i = 0; i < self->exprs_count; ++i)
669         ast_unref(self->exprs[i]);
670     MEM_VECTOR_CLEAR(self, exprs);
671     for (i = 0; i < self->locals_count; ++i)
672         ast_delete(self->locals[i]);
673     MEM_VECTOR_CLEAR(self, locals);
674     for (i = 0; i < self->collect_count; ++i)
675         ast_delete(self->collect[i]);
676     MEM_VECTOR_CLEAR(self, collect);
677     ast_expression_delete((ast_expression*)self);
678     mem_d(self);
679 }
680
681 bool ast_block_set_type(ast_block *self, ast_expression *from)
682 {
683     if (self->expression.next)
684         ast_delete(self->expression.next);
685     self->expression.vtype = from->expression.vtype;
686     if (from->expression.next) {
687         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
688         if (!self->expression.next)
689             return false;
690     }
691     else
692         self->expression.next = NULL;
693     return true;
694 }
695
696 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
697 {
698     ast_instantiate(ast_function, ctx, ast_function_delete);
699
700     if (!vtype ||
701         vtype->isconst ||
702         vtype->expression.vtype != TYPE_FUNCTION)
703     {
704         mem_d(self);
705         return NULL;
706     }
707
708     self->vtype = vtype;
709     self->name = name ? util_strdup(name) : NULL;
710     MEM_VECTOR_INIT(self, blocks);
711
712     self->labelcount = 0;
713     self->builtin = 0;
714
715     self->ir_func = NULL;
716     self->curblock = NULL;
717
718     self->breakblock    = NULL;
719     self->continueblock = NULL;
720
721     vtype->isconst = true;
722     vtype->constval.vfunc = self;
723
724     return self;
725 }
726
727 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
728
729 void ast_function_delete(ast_function *self)
730 {
731     size_t i;
732     if (self->name)
733         mem_d((void*)self->name);
734     if (self->vtype) {
735         /* ast_value_delete(self->vtype); */
736         self->vtype->isconst = false;
737         self->vtype->constval.vfunc = NULL;
738         /* We use unref - if it was stored in a global table it is supposed
739          * to be deleted from *there*
740          */
741         ast_unref(self->vtype);
742     }
743     for (i = 0; i < self->blocks_count; ++i)
744         ast_delete(self->blocks[i]);
745     MEM_VECTOR_CLEAR(self, blocks);
746     mem_d(self);
747 }
748
749 const char* ast_function_label(ast_function *self, const char *prefix)
750 {
751     size_t id;
752     size_t len;
753     char  *from;
754
755     if (!opts_dump)
756         return NULL;
757
758     id  = (self->labelcount++);
759     len = strlen(prefix);
760
761     from = self->labelbuf + sizeof(self->labelbuf)-1;
762     *from-- = 0;
763     do {
764         unsigned int digit = id % 10;
765         *from = digit + '0';
766         id /= 10;
767     } while (id);
768     memcpy(from - len, prefix, len);
769     return from - len;
770 }
771
772 /*********************************************************************/
773 /* AST codegen part
774  * by convention you must never pass NULL to the 'ir_value **out'
775  * parameter. If you really don't care about the output, pass a dummy.
776  * But I can't imagine a pituation where the output is truly unnecessary.
777  */
778
779 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
780 {
781     /* NOTE: This is the codegen for a variable used in an expression.
782      * It is not the codegen to generate the value. For this purpose,
783      * ast_local_codegen and ast_global_codegen are to be used before this
784      * is executed. ast_function_codegen should take care of its locals,
785      * and the ast-user should take care of ast_global_codegen to be used
786      * on all the globals.
787      */
788     if (!self->ir_v) {
789         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
790         return false;
791     }
792     *out = self->ir_v;
793     return true;
794 }
795
796 bool ast_global_codegen(ast_value *self, ir_builder *ir)
797 {
798     ir_value *v = NULL;
799     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
800     {
801         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
802         if (!func)
803             return false;
804         func->context = ast_ctx(self);
805         func->value->context = ast_ctx(self);
806
807         self->constval.vfunc->ir_func = func;
808         self->ir_v = func->value;
809         /* The function is filled later on ast_function_codegen... */
810         return true;
811     }
812
813     if (self->expression.vtype == TYPE_FIELD) {
814         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
815         if (!v)
816             return false;
817         v->context = ast_ctx(self);
818         if (self->isconst) {
819             asterror(ast_ctx(self), "TODO: constant field pointers with value");
820             goto error;
821         }
822         self->ir_v = v;
823         return true;
824     }
825
826     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
827     if (!v) {
828         asterror(ast_ctx(self), "ir_builder_create_global failed");
829         return false;
830     }
831     v->context = ast_ctx(self);
832
833     if (self->isconst) {
834         switch (self->expression.vtype)
835         {
836             case TYPE_FLOAT:
837                 if (!ir_value_set_float(v, self->constval.vfloat))
838                     goto error;
839                 break;
840             case TYPE_VECTOR:
841                 if (!ir_value_set_vector(v, self->constval.vvec))
842                     goto error;
843                 break;
844             case TYPE_STRING:
845                 if (!ir_value_set_string(v, self->constval.vstring))
846                     goto error;
847                 break;
848             case TYPE_FUNCTION:
849                 asterror(ast_ctx(self), "global of type function not properly generated");
850                 goto error;
851                 /* Cannot generate an IR value for a function,
852                  * need a pointer pointing to a function rather.
853                  */
854             default:
855                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
856                 break;
857         }
858     }
859
860     /* link us to the ir_value */
861     self->ir_v = v;
862     return true;
863
864 error: /* clean up */
865     ir_value_delete(v);
866     return false;
867 }
868
869 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
870 {
871     ir_value *v = NULL;
872     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
873     {
874         /* Do we allow local functions? I think not...
875          * this is NOT a function pointer atm.
876          */
877         return false;
878     }
879
880     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
881     if (!v)
882         return false;
883     v->context = ast_ctx(self);
884
885     /* A constant local... hmmm...
886      * I suppose the IR will have to deal with this
887      */
888     if (self->isconst) {
889         switch (self->expression.vtype)
890         {
891             case TYPE_FLOAT:
892                 if (!ir_value_set_float(v, self->constval.vfloat))
893                     goto error;
894                 break;
895             case TYPE_VECTOR:
896                 if (!ir_value_set_vector(v, self->constval.vvec))
897                     goto error;
898                 break;
899             case TYPE_STRING:
900                 if (!ir_value_set_string(v, self->constval.vstring))
901                     goto error;
902                 break;
903             default:
904                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
905                 break;
906         }
907     }
908
909     /* link us to the ir_value */
910     self->ir_v = v;
911     return true;
912
913 error: /* clean up */
914     ir_value_delete(v);
915     return false;
916 }
917
918 bool ast_function_codegen(ast_function *self, ir_builder *ir)
919 {
920     ir_function *irf;
921     ir_value    *dummy;
922     ast_expression_common *ec;
923     size_t    i;
924
925     irf = self->ir_func;
926     if (!irf) {
927         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
928         return false;
929     }
930
931     /* fill the parameter list */
932     ec = &self->vtype->expression;
933     for (i = 0; i < ec->params_count; ++i)
934     {
935         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
936             return false;
937         if (!self->builtin) {
938             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
939                 return false;
940         }
941     }
942
943     if (self->builtin) {
944         irf->builtin = self->builtin;
945         return true;
946     }
947
948     if (!self->blocks_count) {
949         asterror(ast_ctx(self), "function `%s` has no body", self->name);
950         return false;
951     }
952
953     self->curblock = ir_function_create_block(irf, "entry");
954     if (!self->curblock) {
955         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
956         return false;
957     }
958
959     for (i = 0; i < self->blocks_count; ++i) {
960         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
961         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
962             return false;
963     }
964
965     /* TODO: check return types */
966     if (!self->curblock->is_return)
967     {
968         return ir_block_create_return(self->curblock, NULL);
969         /* From now on the parser has to handle this situation */
970 #if 0
971         if (!self->vtype->expression.next ||
972             self->vtype->expression.next->expression.vtype == TYPE_VOID)
973         {
974             return ir_block_create_return(self->curblock, NULL);
975         }
976         else
977         {
978             /* error("missing return"); */
979             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
980             return false;
981         }
982 #endif
983     }
984     return true;
985 }
986
987 /* Note, you will not see ast_block_codegen generate ir_blocks.
988  * To the AST and the IR, blocks are 2 different things.
989  * In the AST it represents a block of code, usually enclosed in
990  * curly braces {...}.
991  * While in the IR it represents a block in terms of control-flow.
992  */
993 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
994 {
995     size_t i;
996
997     /* We don't use this
998      * Note: an ast-representation using the comma-operator
999      * of the form: (a, b, c) = x should not assign to c...
1000      */
1001     (void)lvalue;
1002     if (self->expression.outr) {
1003         *out = self->expression.outr;
1004         return true;
1005     }
1006
1007     /* output is NULL at first, we'll have each expression
1008      * assign to out output, thus, a comma-operator represention
1009      * using an ast_block will return the last generated value,
1010      * so: (b, c) + a  executed both b and c, and returns c,
1011      * which is then added to a.
1012      */
1013     *out = NULL;
1014
1015     /* generate locals */
1016     for (i = 0; i < self->locals_count; ++i)
1017     {
1018         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1019             if (opts_debug)
1020                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1021             return false;
1022         }
1023     }
1024
1025     for (i = 0; i < self->exprs_count; ++i)
1026     {
1027         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1028         if (!(*gen)(self->exprs[i], func, false, out))
1029             return false;
1030     }
1031
1032     self->expression.outr = *out;
1033
1034     return true;
1035 }
1036
1037 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1038 {
1039     ast_expression_codegen *cgen;
1040     ir_value *left, *right;
1041
1042     if (lvalue && self->expression.outl) {
1043         *out = self->expression.outl;
1044         return true;
1045     }
1046
1047     if (!lvalue && self->expression.outr) {
1048         *out = self->expression.outr;
1049         return true;
1050     }
1051
1052     cgen = self->dest->expression.codegen;
1053     /* lvalue! */
1054     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1055         return false;
1056     self->expression.outl = left;
1057
1058     cgen = self->source->expression.codegen;
1059     /* rvalue! */
1060     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1061         return false;
1062
1063     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1064         return false;
1065     self->expression.outr = right;
1066
1067     /* Theoretically, an assinment returns its left side as an
1068      * lvalue, if we don't need an lvalue though, we return
1069      * the right side as an rvalue, otherwise we have to
1070      * somehow know whether or not we need to dereference the pointer
1071      * on the left side - that is: OP_LOAD if it was an address.
1072      * Also: in original QC we cannot OP_LOADP *anyway*.
1073      */
1074     *out = (lvalue ? left : right);
1075
1076     return true;
1077 }
1078
1079 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1080 {
1081     ast_expression_codegen *cgen;
1082     ir_value *left, *right;
1083
1084     /* In the context of a binary operation, we can disregard
1085      * the lvalue flag.
1086      */
1087     (void)lvalue;
1088     if (self->expression.outr) {
1089         *out = self->expression.outr;
1090         return true;
1091     }
1092
1093     cgen = self->left->expression.codegen;
1094     /* lvalue! */
1095     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1096         return false;
1097
1098     cgen = self->right->expression.codegen;
1099     /* rvalue! */
1100     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1101         return false;
1102
1103     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1104                                  self->op, left, right);
1105     if (!*out)
1106         return false;
1107     self->expression.outr = *out;
1108
1109     return true;
1110 }
1111
1112 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1113 {
1114     ast_expression_codegen *cgen;
1115     ir_value *leftl, *leftr, *right, *bin;
1116
1117     if (lvalue && self->expression.outl) {
1118         *out = self->expression.outl;
1119         return true;
1120     }
1121
1122     if (!lvalue && self->expression.outr) {
1123         *out = self->expression.outr;
1124         return true;
1125     }
1126
1127     /* for a binstore we need both an lvalue and an rvalue for the left side */
1128     /* rvalue of destination! */
1129     cgen = self->dest->expression.codegen;
1130     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1131         return false;
1132
1133     /* source as rvalue only */
1134     cgen = self->source->expression.codegen;
1135     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1136         return false;
1137
1138     /* now the binary */
1139     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1140                                 self->opbin, leftr, right);
1141     self->expression.outr = bin;
1142
1143     /* now store them */
1144     cgen = self->dest->expression.codegen;
1145     /* lvalue of destination */
1146     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1147         return false;
1148     self->expression.outl = leftl;
1149
1150     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1151         return false;
1152     self->expression.outr = bin;
1153
1154     /* Theoretically, an assinment returns its left side as an
1155      * lvalue, if we don't need an lvalue though, we return
1156      * the right side as an rvalue, otherwise we have to
1157      * somehow know whether or not we need to dereference the pointer
1158      * on the left side - that is: OP_LOAD if it was an address.
1159      * Also: in original QC we cannot OP_LOADP *anyway*.
1160      */
1161     *out = (lvalue ? leftl : bin);
1162
1163     return true;
1164 }
1165
1166 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1167 {
1168     ast_expression_codegen *cgen;
1169     ir_value *operand;
1170
1171     /* In the context of a unary operation, we can disregard
1172      * the lvalue flag.
1173      */
1174     (void)lvalue;
1175     if (self->expression.outr) {
1176         *out = self->expression.outr;
1177         return true;
1178     }
1179
1180     cgen = self->operand->expression.codegen;
1181     /* lvalue! */
1182     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1183         return false;
1184
1185     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1186                                  self->op, operand);
1187     if (!*out)
1188         return false;
1189     self->expression.outr = *out;
1190
1191     return true;
1192 }
1193
1194 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1195 {
1196     ast_expression_codegen *cgen;
1197     ir_value *operand;
1198
1199     /* In the context of a return operation, we can disregard
1200      * the lvalue flag.
1201      */
1202     (void)lvalue;
1203     if (self->expression.outr) {
1204         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1205         return false;
1206     }
1207     self->expression.outr = (ir_value*)1;
1208
1209     if (self->operand) {
1210         cgen = self->operand->expression.codegen;
1211         /* lvalue! */
1212         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1213             return false;
1214
1215         if (!ir_block_create_return(func->curblock, operand))
1216             return false;
1217     } else {
1218         if (!ir_block_create_return(func->curblock, NULL))
1219             return false;
1220     }
1221
1222     return true;
1223 }
1224
1225 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1226 {
1227     ast_expression_codegen *cgen;
1228     ir_value *ent, *field;
1229
1230     /* This function needs to take the 'lvalue' flag into account!
1231      * As lvalue we provide a field-pointer, as rvalue we provide the
1232      * value in a temp.
1233      */
1234
1235     if (lvalue && self->expression.outl) {
1236         *out = self->expression.outl;
1237         return true;
1238     }
1239
1240     if (!lvalue && self->expression.outr) {
1241         *out = self->expression.outr;
1242         return true;
1243     }
1244
1245     cgen = self->entity->expression.codegen;
1246     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1247         return false;
1248
1249     cgen = self->field->expression.codegen;
1250     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1251         return false;
1252
1253     if (lvalue) {
1254         /* address! */
1255         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1256                                             ent, field);
1257     } else {
1258         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1259                                              ent, field, self->expression.vtype);
1260     }
1261     if (!*out) {
1262         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1263                  (lvalue ? "ADDRESS" : "FIELD"),
1264                  type_name[self->expression.vtype]);
1265         return false;
1266     }
1267
1268     if (lvalue)
1269         self->expression.outl = *out;
1270     else
1271         self->expression.outr = *out;
1272
1273     /* Hm that should be it... */
1274     return true;
1275 }
1276
1277 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1278 {
1279     ast_expression_codegen *cgen;
1280     ir_value *vec;
1281
1282     /* in QC this is always an lvalue */
1283     (void)lvalue;
1284     if (self->expression.outl) {
1285         *out = self->expression.outl;
1286         return true;
1287     }
1288
1289     cgen = self->owner->expression.codegen;
1290     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1291         return false;
1292
1293     if (vec->vtype != TYPE_VECTOR &&
1294         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1295     {
1296         return false;
1297     }
1298
1299     *out = ir_value_vector_member(vec, self->field);
1300     self->expression.outl = *out;
1301
1302     return (*out != NULL);
1303 }
1304
1305 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1306 {
1307     ast_expression_codegen *cgen;
1308
1309     ir_value *condval;
1310     ir_value *dummy;
1311
1312     ir_block *cond = func->curblock;
1313     ir_block *ontrue;
1314     ir_block *onfalse;
1315     ir_block *ontrue_endblock;
1316     ir_block *onfalse_endblock;
1317     ir_block *merge;
1318
1319     /* We don't output any value, thus also don't care about r/lvalue */
1320     (void)out;
1321     (void)lvalue;
1322
1323     if (self->expression.outr) {
1324         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1325         return false;
1326     }
1327     self->expression.outr = (ir_value*)1;
1328
1329     /* generate the condition */
1330     func->curblock = cond;
1331     cgen = self->cond->expression.codegen;
1332     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1333         return false;
1334
1335     /* on-true path */
1336
1337     if (self->on_true) {
1338         /* create on-true block */
1339         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1340         if (!ontrue)
1341             return false;
1342
1343         /* enter the block */
1344         func->curblock = ontrue;
1345
1346         /* generate */
1347         cgen = self->on_true->expression.codegen;
1348         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1349             return false;
1350
1351         /* we now need to work from the current endpoint */
1352         ontrue_endblock = func->curblock;
1353     } else
1354         ontrue = NULL;
1355
1356     /* on-false path */
1357     if (self->on_false) {
1358         /* create on-false block */
1359         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1360         if (!onfalse)
1361             return false;
1362
1363         /* enter the block */
1364         func->curblock = onfalse;
1365
1366         /* generate */
1367         cgen = self->on_false->expression.codegen;
1368         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1369             return false;
1370
1371         /* we now need to work from the current endpoint */
1372         onfalse_endblock = func->curblock;
1373     } else
1374         onfalse = NULL;
1375
1376     /* Merge block were they all merge in to */
1377     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1378     if (!merge)
1379         return false;
1380
1381     /* add jumps ot the merge block */
1382     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1383         return false;
1384     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1385         return false;
1386
1387     /* we create the if here, that way all blocks are ordered :)
1388      */
1389     if (!ir_block_create_if(cond, condval,
1390                             (ontrue  ? ontrue  : merge),
1391                             (onfalse ? onfalse : merge)))
1392     {
1393         return false;
1394     }
1395
1396     /* Now enter the merge block */
1397     func->curblock = merge;
1398
1399     return true;
1400 }
1401
1402 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1403 {
1404     ast_expression_codegen *cgen;
1405
1406     ir_value *condval;
1407     ir_value *trueval, *falseval;
1408     ir_instr *phi;
1409
1410     ir_block *cond = func->curblock;
1411     ir_block *ontrue;
1412     ir_block *onfalse;
1413     ir_block *merge;
1414
1415     /* Ternary can never create an lvalue... */
1416     if (lvalue)
1417         return false;
1418
1419     /* In theory it shouldn't be possible to pass through a node twice, but
1420      * in case we add any kind of optimization pass for the AST itself, it
1421      * may still happen, thus we remember a created ir_value and simply return one
1422      * if it already exists.
1423      */
1424     if (self->phi_out) {
1425         *out = self->phi_out;
1426         return true;
1427     }
1428
1429     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1430
1431     /* generate the condition */
1432     func->curblock = cond;
1433     cgen = self->cond->expression.codegen;
1434     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1435         return false;
1436
1437     /* create on-true block */
1438     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1439     if (!ontrue)
1440         return false;
1441     else
1442     {
1443         /* enter the block */
1444         func->curblock = ontrue;
1445
1446         /* generate */
1447         cgen = self->on_true->expression.codegen;
1448         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1449             return false;
1450     }
1451
1452     /* create on-false block */
1453     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1454     if (!onfalse)
1455         return false;
1456     else
1457     {
1458         /* enter the block */
1459         func->curblock = onfalse;
1460
1461         /* generate */
1462         cgen = self->on_false->expression.codegen;
1463         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1464             return false;
1465     }
1466
1467     /* create merge block */
1468     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1469     if (!merge)
1470         return false;
1471     /* jump to merge block */
1472     if (!ir_block_create_jump(ontrue, merge))
1473         return false;
1474     if (!ir_block_create_jump(onfalse, merge))
1475         return false;
1476
1477     /* create if instruction */
1478     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1479         return false;
1480
1481     /* Now enter the merge block */
1482     func->curblock = merge;
1483
1484     /* Here, now, we need a PHI node
1485      * but first some sanity checking...
1486      */
1487     if (trueval->vtype != falseval->vtype) {
1488         /* error("ternary with different types on the two sides"); */
1489         return false;
1490     }
1491
1492     /* create PHI */
1493     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1494     if (!phi ||
1495         !ir_phi_add(phi, ontrue,  trueval) ||
1496         !ir_phi_add(phi, onfalse, falseval))
1497     {
1498         return false;
1499     }
1500
1501     self->phi_out = ir_phi_value(phi);
1502     *out = self->phi_out;
1503
1504     return true;
1505 }
1506
1507 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1508 {
1509     ast_expression_codegen *cgen;
1510
1511     ir_value *dummy      = NULL;
1512     ir_value *precond    = NULL;
1513     ir_value *postcond   = NULL;
1514
1515     /* Since we insert some jumps "late" so we have blocks
1516      * ordered "nicely", we need to keep track of the actual end-blocks
1517      * of expressions to add the jumps to.
1518      */
1519     ir_block *bbody      = NULL, *end_bbody      = NULL;
1520     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1521     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1522     ir_block *bincrement = NULL, *end_bincrement = NULL;
1523     ir_block *bout       = NULL, *bin            = NULL;
1524
1525     /* let's at least move the outgoing block to the end */
1526     size_t    bout_id;
1527
1528     /* 'break' and 'continue' need to be able to find the right blocks */
1529     ir_block *bcontinue     = NULL;
1530     ir_block *bbreak        = NULL;
1531
1532     ir_block *old_bcontinue = NULL;
1533     ir_block *old_bbreak    = NULL;
1534
1535     ir_block *tmpblock      = NULL;
1536
1537     (void)lvalue;
1538     (void)out;
1539
1540     if (self->expression.outr) {
1541         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1542         return false;
1543     }
1544     self->expression.outr = (ir_value*)1;
1545
1546     /* NOTE:
1547      * Should we ever need some kind of block ordering, better make this function
1548      * move blocks around than write a block ordering algorithm later... after all
1549      * the ast and ir should work together, not against each other.
1550      */
1551
1552     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1553      * anyway if for example it contains a ternary.
1554      */
1555     if (self->initexpr)
1556     {
1557         cgen = self->initexpr->expression.codegen;
1558         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1559             return false;
1560     }
1561
1562     /* Store the block from which we enter this chaos */
1563     bin = func->curblock;
1564
1565     /* The pre-loop condition needs its own block since we
1566      * need to be able to jump to the start of that expression.
1567      */
1568     if (self->precond)
1569     {
1570         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1571         if (!bprecond)
1572             return false;
1573
1574         /* the pre-loop-condition the least important place to 'continue' at */
1575         bcontinue = bprecond;
1576
1577         /* enter */
1578         func->curblock = bprecond;
1579
1580         /* generate */
1581         cgen = self->precond->expression.codegen;
1582         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1583             return false;
1584
1585         end_bprecond = func->curblock;
1586     } else {
1587         bprecond = end_bprecond = NULL;
1588     }
1589
1590     /* Now the next blocks won't be ordered nicely, but we need to
1591      * generate them this early for 'break' and 'continue'.
1592      */
1593     if (self->increment) {
1594         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1595         if (!bincrement)
1596             return false;
1597         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1598     } else {
1599         bincrement = end_bincrement = NULL;
1600     }
1601
1602     if (self->postcond) {
1603         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1604         if (!bpostcond)
1605             return false;
1606         bcontinue = bpostcond; /* postcond comes before the increment */
1607     } else {
1608         bpostcond = end_bpostcond = NULL;
1609     }
1610
1611     bout_id = func->ir_func->blocks_count;
1612     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1613     if (!bout)
1614         return false;
1615     bbreak = bout;
1616
1617     /* The loop body... */
1618     if (self->body)
1619     {
1620         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1621         if (!bbody)
1622             return false;
1623
1624         /* enter */
1625         func->curblock = bbody;
1626
1627         old_bbreak          = func->breakblock;
1628         old_bcontinue       = func->continueblock;
1629         func->breakblock    = bbreak;
1630         func->continueblock = bcontinue;
1631
1632         /* generate */
1633         cgen = self->body->expression.codegen;
1634         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1635             return false;
1636
1637         end_bbody = func->curblock;
1638         func->breakblock    = old_bbreak;
1639         func->continueblock = old_bcontinue;
1640     }
1641
1642     /* post-loop-condition */
1643     if (self->postcond)
1644     {
1645         /* enter */
1646         func->curblock = bpostcond;
1647
1648         /* generate */
1649         cgen = self->postcond->expression.codegen;
1650         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1651             return false;
1652
1653         end_bpostcond = func->curblock;
1654     }
1655
1656     /* The incrementor */
1657     if (self->increment)
1658     {
1659         /* enter */
1660         func->curblock = bincrement;
1661
1662         /* generate */
1663         cgen = self->increment->expression.codegen;
1664         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1665             return false;
1666
1667         end_bincrement = func->curblock;
1668     }
1669
1670     /* In any case now, we continue from the outgoing block */
1671     func->curblock = bout;
1672
1673     /* Now all blocks are in place */
1674     /* From 'bin' we jump to whatever comes first */
1675     if      (bprecond)   tmpblock = bprecond;
1676     else if (bbody)      tmpblock = bbody;
1677     else if (bpostcond)  tmpblock = bpostcond;
1678     else                 tmpblock = bout;
1679     if (!ir_block_create_jump(bin, tmpblock))
1680         return false;
1681
1682     /* From precond */
1683     if (bprecond)
1684     {
1685         ir_block *ontrue, *onfalse;
1686         if      (bbody)      ontrue = bbody;
1687         else if (bincrement) ontrue = bincrement;
1688         else if (bpostcond)  ontrue = bpostcond;
1689         else                 ontrue = bprecond;
1690         onfalse = bout;
1691         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1692             return false;
1693     }
1694
1695     /* from body */
1696     if (bbody)
1697     {
1698         if      (bincrement) tmpblock = bincrement;
1699         else if (bpostcond)  tmpblock = bpostcond;
1700         else if (bprecond)   tmpblock = bprecond;
1701         else                 tmpblock = bout;
1702         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1703             return false;
1704     }
1705
1706     /* from increment */
1707     if (bincrement)
1708     {
1709         if      (bpostcond)  tmpblock = bpostcond;
1710         else if (bprecond)   tmpblock = bprecond;
1711         else if (bbody)      tmpblock = bbody;
1712         else                 tmpblock = bout;
1713         if (!ir_block_create_jump(end_bincrement, tmpblock))
1714             return false;
1715     }
1716
1717     /* from postcond */
1718     if (bpostcond)
1719     {
1720         ir_block *ontrue, *onfalse;
1721         if      (bprecond)   ontrue = bprecond;
1722         else if (bbody)      ontrue = bbody;
1723         else if (bincrement) ontrue = bincrement;
1724         else                 ontrue = bpostcond;
1725         onfalse = bout;
1726         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1727             return false;
1728     }
1729
1730     /* Move 'bout' to the end */
1731     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1732         !ir_function_blocks_add(func->ir_func, bout))
1733     {
1734         ir_block_delete(bout);
1735         return false;
1736     }
1737
1738     return true;
1739 }
1740
1741 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1742 {
1743     ast_expression_codegen *cgen;
1744     ir_value_vector         params;
1745     ir_instr               *callinstr;
1746     size_t i;
1747
1748     ir_value *funval = NULL;
1749
1750     /* return values are never lvalues */
1751     (void)lvalue;
1752
1753     if (self->expression.outr) {
1754         *out = self->expression.outr;
1755         return true;
1756     }
1757
1758     cgen = self->func->expression.codegen;
1759     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1760         return false;
1761     if (!funval)
1762         return false;
1763
1764     MEM_VECTOR_INIT(&params, v);
1765
1766     /* parameters */
1767     for (i = 0; i < self->params_count; ++i)
1768     {
1769         ir_value *param;
1770         ast_expression *expr = self->params[i];
1771
1772         cgen = expr->expression.codegen;
1773         if (!(*cgen)(expr, func, false, &param))
1774             goto error;
1775         if (!param)
1776             goto error;
1777         if (!ir_value_vector_v_add(&params, param))
1778             goto error;
1779     }
1780
1781     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1782     if (!callinstr)
1783         goto error;
1784
1785     for (i = 0; i < params.v_count; ++i) {
1786         if (!ir_call_param(callinstr, params.v[i]))
1787             goto error;
1788     }
1789
1790     *out = ir_call_value(callinstr);
1791     self->expression.outr = *out;
1792
1793     MEM_VECTOR_CLEAR(&params, v);
1794     return true;
1795 error:
1796     MEM_VECTOR_CLEAR(&params, v);
1797     return false;
1798 }