]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
call ir_function_finalize on array accessors otherwise they'll blow up stuff
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         mem_d(self);
492         return NULL;
493     }
494
495     outtype = field->expression.next;
496     if (!outtype) {
497         mem_d(self);
498         /* Error: field has no type... */
499         return NULL;
500     }
501
502     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
503
504     self->entity = entity;
505     self->field  = field;
506
507     if (!ast_type_adopt(self, outtype)) {
508         ast_entfield_delete(self);
509         return NULL;
510     }
511
512     return self;
513 }
514
515 void ast_entfield_delete(ast_entfield *self)
516 {
517     ast_unref(self->entity);
518     ast_unref(self->field);
519     ast_expression_delete((ast_expression*)self);
520     mem_d(self);
521 }
522
523 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
524 {
525     ast_instantiate(ast_member, ctx, ast_member_delete);
526     if (field >= 3) {
527         mem_d(self);
528         return NULL;
529     }
530
531     if (owner->expression.vtype != TYPE_VECTOR &&
532         owner->expression.vtype != TYPE_FIELD) {
533         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
534         mem_d(self);
535         return NULL;
536     }
537
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
539     self->expression.node.keep = true; /* keep */
540
541     if (owner->expression.vtype == TYPE_VECTOR) {
542         self->expression.vtype = TYPE_FLOAT;
543         self->expression.next  = NULL;
544     } else {
545         self->expression.vtype = TYPE_FIELD;
546         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
547     }
548
549     self->owner = owner;
550     self->field = field;
551
552     return self;
553 }
554
555 void ast_member_delete(ast_member *self)
556 {
557     /* The owner is always an ast_value, which has .keep=true,
558      * also: ast_members are usually deleted after the owner, thus
559      * this will cause invalid access
560     ast_unref(self->owner);
561      * once we allow (expression).x to access a vector-member, we need
562      * to change this: preferably by creating an alternate ast node for this
563      * purpose that is not garbage-collected.
564     */
565     ast_expression_delete((ast_expression*)self);
566     mem_d(self);
567 }
568
569 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
570 {
571     const ast_expression *outtype;
572     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
573
574     outtype = array->expression.next;
575     if (!outtype) {
576         mem_d(self);
577         /* Error: field has no type... */
578         return NULL;
579     }
580
581     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
582
583     self->array = array;
584     self->index = index;
585
586     if (!ast_type_adopt(self, outtype)) {
587         ast_array_index_delete(self);
588         return NULL;
589     }
590
591     return self;
592 }
593
594 void ast_array_index_delete(ast_array_index *self)
595 {
596     ast_unref(self->array);
597     ast_unref(self->index);
598     ast_expression_delete((ast_expression*)self);
599     mem_d(self);
600 }
601
602 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
603 {
604     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
605     if (!ontrue && !onfalse) {
606         /* because it is invalid */
607         mem_d(self);
608         return NULL;
609     }
610     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
611
612     self->cond     = cond;
613     self->on_true  = ontrue;
614     self->on_false = onfalse;
615
616     return self;
617 }
618
619 void ast_ifthen_delete(ast_ifthen *self)
620 {
621     ast_unref(self->cond);
622     if (self->on_true)
623         ast_unref(self->on_true);
624     if (self->on_false)
625         ast_unref(self->on_false);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
631 {
632     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
633     /* This time NEITHER must be NULL */
634     if (!ontrue || !onfalse) {
635         mem_d(self);
636         return NULL;
637     }
638     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
639
640     self->cond     = cond;
641     self->on_true  = ontrue;
642     self->on_false = onfalse;
643     self->phi_out  = NULL;
644
645     return self;
646 }
647
648 void ast_ternary_delete(ast_ternary *self)
649 {
650     ast_unref(self->cond);
651     ast_unref(self->on_true);
652     ast_unref(self->on_false);
653     ast_expression_delete((ast_expression*)self);
654     mem_d(self);
655 }
656
657 ast_loop* ast_loop_new(lex_ctx ctx,
658                        ast_expression *initexpr,
659                        ast_expression *precond,
660                        ast_expression *postcond,
661                        ast_expression *increment,
662                        ast_expression *body)
663 {
664     ast_instantiate(ast_loop, ctx, ast_loop_delete);
665     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
666
667     self->initexpr  = initexpr;
668     self->precond   = precond;
669     self->postcond  = postcond;
670     self->increment = increment;
671     self->body      = body;
672
673     return self;
674 }
675
676 void ast_loop_delete(ast_loop *self)
677 {
678     if (self->initexpr)
679         ast_unref(self->initexpr);
680     if (self->precond)
681         ast_unref(self->precond);
682     if (self->postcond)
683         ast_unref(self->postcond);
684     if (self->increment)
685         ast_unref(self->increment);
686     if (self->body)
687         ast_unref(self->body);
688     ast_expression_delete((ast_expression*)self);
689     mem_d(self);
690 }
691
692 ast_call* ast_call_new(lex_ctx ctx,
693                        ast_expression *funcexpr)
694 {
695     ast_instantiate(ast_call, ctx, ast_call_delete);
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
697
698     MEM_VECTOR_INIT(self, params);
699
700     self->func = funcexpr;
701
702     self->expression.vtype = funcexpr->expression.next->expression.vtype;
703     if (funcexpr->expression.next->expression.next)
704         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
705
706     return self;
707 }
708 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
709
710 void ast_call_delete(ast_call *self)
711 {
712     size_t i;
713     for (i = 0; i < self->params_count; ++i)
714         ast_unref(self->params[i]);
715     MEM_VECTOR_CLEAR(self, params);
716
717     if (self->func)
718         ast_unref(self->func);
719
720     ast_expression_delete((ast_expression*)self);
721     mem_d(self);
722 }
723
724 bool ast_call_check_types(ast_call *self)
725 {
726     size_t i;
727     bool   retval = true;
728     const  ast_expression *func = self->func;
729     size_t count = self->params_count;
730     if (count > func->expression.params_count)
731         count = func->expression.params_count;
732
733     for (i = 0; i < count; ++i) {
734         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
735             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
736                      (unsigned int)(i+1));
737             /* we don't immediately return */
738             retval = false;
739         }
740     }
741     return retval;
742 }
743
744 ast_store* ast_store_new(lex_ctx ctx, int op,
745                          ast_expression *dest, ast_expression *source)
746 {
747     ast_instantiate(ast_store, ctx, ast_store_delete);
748     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
749
750     self->op = op;
751     self->dest = dest;
752     self->source = source;
753
754     self->expression.vtype = dest->expression.vtype;
755     if (dest->expression.next) {
756         self->expression.next = ast_type_copy(ctx, dest);
757         if (!self->expression.next) {
758             ast_delete(self);
759             return NULL;
760         }
761     }
762     else
763         self->expression.next = NULL;
764
765     return self;
766 }
767
768 void ast_store_delete(ast_store *self)
769 {
770     ast_unref(self->dest);
771     ast_unref(self->source);
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 ast_block* ast_block_new(lex_ctx ctx)
777 {
778     ast_instantiate(ast_block, ctx, ast_block_delete);
779     ast_expression_init((ast_expression*)self,
780                         (ast_expression_codegen*)&ast_block_codegen);
781
782     MEM_VECTOR_INIT(self, locals);
783     MEM_VECTOR_INIT(self, exprs);
784     MEM_VECTOR_INIT(self, collect);
785
786     return self;
787 }
788 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
789 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
791
792 bool ast_block_collect(ast_block *self, ast_expression *expr)
793 {
794     if (!ast_block_collect_add(self, expr))
795         return false;
796     expr->expression.node.keep = true;
797     return true;
798 }
799
800 void ast_block_delete(ast_block *self)
801 {
802     size_t i;
803     for (i = 0; i < self->exprs_count; ++i)
804         ast_unref(self->exprs[i]);
805     MEM_VECTOR_CLEAR(self, exprs);
806     for (i = 0; i < self->locals_count; ++i)
807         ast_delete(self->locals[i]);
808     MEM_VECTOR_CLEAR(self, locals);
809     for (i = 0; i < self->collect_count; ++i)
810         ast_delete(self->collect[i]);
811     MEM_VECTOR_CLEAR(self, collect);
812     ast_expression_delete((ast_expression*)self);
813     mem_d(self);
814 }
815
816 bool ast_block_set_type(ast_block *self, ast_expression *from)
817 {
818     if (self->expression.next)
819         ast_delete(self->expression.next);
820     self->expression.vtype = from->expression.vtype;
821     if (from->expression.next) {
822         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
823         if (!self->expression.next)
824             return false;
825     }
826     else
827         self->expression.next = NULL;
828     return true;
829 }
830
831 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
832 {
833     ast_instantiate(ast_function, ctx, ast_function_delete);
834
835     if (!vtype ||
836         vtype->isconst ||
837         vtype->expression.vtype != TYPE_FUNCTION)
838     {
839         mem_d(self);
840         return NULL;
841     }
842
843     self->vtype = vtype;
844     self->name = name ? util_strdup(name) : NULL;
845     MEM_VECTOR_INIT(self, blocks);
846
847     self->labelcount = 0;
848     self->builtin = 0;
849
850     self->ir_func = NULL;
851     self->curblock = NULL;
852
853     self->breakblock    = NULL;
854     self->continueblock = NULL;
855
856     vtype->isconst = true;
857     vtype->constval.vfunc = self;
858
859     return self;
860 }
861
862 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
863
864 void ast_function_delete(ast_function *self)
865 {
866     size_t i;
867     if (self->name)
868         mem_d((void*)self->name);
869     if (self->vtype) {
870         /* ast_value_delete(self->vtype); */
871         self->vtype->isconst = false;
872         self->vtype->constval.vfunc = NULL;
873         /* We use unref - if it was stored in a global table it is supposed
874          * to be deleted from *there*
875          */
876         ast_unref(self->vtype);
877     }
878     for (i = 0; i < self->blocks_count; ++i)
879         ast_delete(self->blocks[i]);
880     MEM_VECTOR_CLEAR(self, blocks);
881     mem_d(self);
882 }
883
884 const char* ast_function_label(ast_function *self, const char *prefix)
885 {
886     size_t id;
887     size_t len;
888     char  *from;
889
890     if (!opts_dump)
891         return NULL;
892
893     id  = (self->labelcount++);
894     len = strlen(prefix);
895
896     from = self->labelbuf + sizeof(self->labelbuf)-1;
897     *from-- = 0;
898     do {
899         unsigned int digit = id % 10;
900         *from = digit + '0';
901         id /= 10;
902     } while (id);
903     memcpy(from - len, prefix, len);
904     return from - len;
905 }
906
907 /*********************************************************************/
908 /* AST codegen part
909  * by convention you must never pass NULL to the 'ir_value **out'
910  * parameter. If you really don't care about the output, pass a dummy.
911  * But I can't imagine a pituation where the output is truly unnecessary.
912  */
913
914 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     /* NOTE: This is the codegen for a variable used in an expression.
917      * It is not the codegen to generate the value. For this purpose,
918      * ast_local_codegen and ast_global_codegen are to be used before this
919      * is executed. ast_function_codegen should take care of its locals,
920      * and the ast-user should take care of ast_global_codegen to be used
921      * on all the globals.
922      */
923     if (!self->ir_v) {
924         char typename[1024];
925         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
926         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
927         return false;
928     }
929     *out = self->ir_v;
930     return true;
931 }
932
933 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
934 {
935     ir_value *v = NULL;
936
937     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
938     {
939         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
940         if (!func)
941             return false;
942         func->context = ast_ctx(self);
943         func->value->context = ast_ctx(self);
944
945         self->constval.vfunc->ir_func = func;
946         self->ir_v = func->value;
947         /* The function is filled later on ast_function_codegen... */
948         return true;
949     }
950
951     if (isfield && self->expression.vtype == TYPE_FIELD) {
952         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
953         if (!v)
954             return false;
955         v->context = ast_ctx(self);
956         if (self->isconst) {
957             asterror(ast_ctx(self), "TODO: constant field pointers with value");
958             goto error;
959         }
960         self->ir_v = v;
961         return true;
962     }
963
964     if (self->expression.vtype == TYPE_ARRAY) {
965         size_t ai;
966         char   *name;
967         size_t  namelen;
968
969         ast_expression_common *elemtype = &self->expression.next->expression;
970         int vtype = elemtype->vtype;
971
972         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
973         if (!self->expression.count || self->expression.count > opts_max_array_size) {
974             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
975         }
976
977         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
978         if (!self->ir_values) {
979             asterror(ast_ctx(self), "failed to allocate array values");
980             return false;
981         }
982
983         v = ir_builder_create_global(ir, self->name, vtype);
984         if (!v) {
985             asterror(ast_ctx(self), "ir_builder_create_global failed");
986             return false;
987         }
988         if (vtype == TYPE_FIELD)
989             v->fieldtype = elemtype->next->expression.vtype;
990         v->context = ast_ctx(self);
991
992         namelen = strlen(self->name);
993         name    = (char*)mem_a(namelen + 16);
994         strcpy(name, self->name);
995
996         self->ir_values[0] = v;
997         for (ai = 1; ai < self->expression.count; ++ai) {
998             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
999             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1000             if (!self->ir_values[ai]) {
1001                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1002                 return false;
1003             }
1004             if (vtype == TYPE_FIELD)
1005                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1006             self->ir_values[ai]->context = ast_ctx(self);
1007         }
1008     }
1009     else
1010     {
1011         /* Arrays don't do this since there's no "array" value which spans across the
1012          * whole thing.
1013          */
1014         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1015         if (!v) {
1016             asterror(ast_ctx(self), "ir_builder_create_global failed");
1017             return false;
1018         }
1019         if (self->expression.vtype == TYPE_FIELD)
1020             v->fieldtype = self->expression.next->expression.vtype;
1021         v->context = ast_ctx(self);
1022     }
1023
1024     if (self->isconst) {
1025         switch (self->expression.vtype)
1026         {
1027             case TYPE_FLOAT:
1028                 if (!ir_value_set_float(v, self->constval.vfloat))
1029                     goto error;
1030                 break;
1031             case TYPE_VECTOR:
1032                 if (!ir_value_set_vector(v, self->constval.vvec))
1033                     goto error;
1034                 break;
1035             case TYPE_STRING:
1036                 if (!ir_value_set_string(v, self->constval.vstring))
1037                     goto error;
1038                 break;
1039             case TYPE_ARRAY:
1040                 asterror(ast_ctx(self), "TODO: global constant array");
1041                 break;
1042             case TYPE_FUNCTION:
1043                 asterror(ast_ctx(self), "global of type function not properly generated");
1044                 goto error;
1045                 /* Cannot generate an IR value for a function,
1046                  * need a pointer pointing to a function rather.
1047                  */
1048             default:
1049                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1050                 break;
1051         }
1052     }
1053
1054     /* link us to the ir_value */
1055     self->ir_v = v;
1056     return true;
1057
1058 error: /* clean up */
1059     ir_value_delete(v);
1060     return false;
1061 }
1062
1063 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1064 {
1065     ir_value *v = NULL;
1066     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1067     {
1068         /* Do we allow local functions? I think not...
1069          * this is NOT a function pointer atm.
1070          */
1071         return false;
1072     }
1073
1074     if (self->expression.vtype == TYPE_ARRAY) {
1075         size_t ai;
1076         char   *name;
1077         size_t  namelen;
1078
1079         ast_expression_common *elemtype = &self->expression.next->expression;
1080         int vtype = elemtype->vtype;
1081
1082         if (param) {
1083             asterror(ast_ctx(self), "array-parameters are not supported");
1084             return false;
1085         }
1086
1087         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1088         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1089             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1090         }
1091
1092         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1093         if (!self->ir_values) {
1094             asterror(ast_ctx(self), "failed to allocate array values");
1095             return false;
1096         }
1097
1098         v = ir_function_create_local(func, self->name, vtype, param);
1099         if (!v) {
1100             asterror(ast_ctx(self), "ir_function_create_local failed");
1101             return false;
1102         }
1103         if (vtype == TYPE_FIELD)
1104             v->fieldtype = elemtype->next->expression.vtype;
1105         v->context = ast_ctx(self);
1106
1107         namelen = strlen(self->name);
1108         name    = (char*)mem_a(namelen + 16);
1109         strcpy(name, self->name);
1110
1111         self->ir_values[0] = v;
1112         for (ai = 1; ai < self->expression.count; ++ai) {
1113             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1114             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1115             if (!self->ir_values[ai]) {
1116                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1117                 return false;
1118             }
1119             if (vtype == TYPE_FIELD)
1120                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1121             self->ir_values[ai]->context = ast_ctx(self);
1122         }
1123     }
1124     else
1125     {
1126         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1127         if (!v)
1128             return false;
1129         if (self->expression.vtype == TYPE_FIELD)
1130             v->fieldtype = self->expression.next->expression.vtype;
1131         v->context = ast_ctx(self);
1132     }
1133
1134     /* A constant local... hmmm...
1135      * I suppose the IR will have to deal with this
1136      */
1137     if (self->isconst) {
1138         switch (self->expression.vtype)
1139         {
1140             case TYPE_FLOAT:
1141                 if (!ir_value_set_float(v, self->constval.vfloat))
1142                     goto error;
1143                 break;
1144             case TYPE_VECTOR:
1145                 if (!ir_value_set_vector(v, self->constval.vvec))
1146                     goto error;
1147                 break;
1148             case TYPE_STRING:
1149                 if (!ir_value_set_string(v, self->constval.vstring))
1150                     goto error;
1151                 break;
1152             default:
1153                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1154                 break;
1155         }
1156     }
1157
1158     /* link us to the ir_value */
1159     self->ir_v = v;
1160
1161     if (self->setter) {
1162         if (!ast_global_codegen(self->setter, func->owner, false) ||
1163             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1164             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1165             return false;
1166     }
1167     if (self->getter) {
1168         if (!ast_global_codegen(self->getter, func->owner, false) ||
1169             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1170             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1171             return false;
1172     }
1173     return true;
1174
1175 error: /* clean up */
1176     ir_value_delete(v);
1177     return false;
1178 }
1179
1180 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1181 {
1182     ir_function *irf;
1183     ir_value    *dummy;
1184     ast_expression_common *ec;
1185     size_t    i;
1186
1187     irf = self->ir_func;
1188     if (!irf) {
1189         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1190         return false;
1191     }
1192
1193     /* fill the parameter list */
1194     ec = &self->vtype->expression;
1195     for (i = 0; i < ec->params_count; ++i)
1196     {
1197         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1198             return false;
1199         if (!self->builtin) {
1200             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1201                 return false;
1202         }
1203     }
1204
1205     if (self->builtin) {
1206         irf->builtin = self->builtin;
1207         return true;
1208     }
1209
1210     if (!self->blocks_count) {
1211         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1212         return false;
1213     }
1214
1215     self->curblock = ir_function_create_block(irf, "entry");
1216     if (!self->curblock) {
1217         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1218         return false;
1219     }
1220
1221     for (i = 0; i < self->blocks_count; ++i) {
1222         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1223         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1224             return false;
1225     }
1226
1227     /* TODO: check return types */
1228     if (!self->curblock->is_return)
1229     {
1230         return ir_block_create_return(self->curblock, NULL);
1231         /* From now on the parser has to handle this situation */
1232 #if 0
1233         if (!self->vtype->expression.next ||
1234             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1235         {
1236             return ir_block_create_return(self->curblock, NULL);
1237         }
1238         else
1239         {
1240             /* error("missing return"); */
1241             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1242             return false;
1243         }
1244 #endif
1245     }
1246     return true;
1247 }
1248
1249 /* Note, you will not see ast_block_codegen generate ir_blocks.
1250  * To the AST and the IR, blocks are 2 different things.
1251  * In the AST it represents a block of code, usually enclosed in
1252  * curly braces {...}.
1253  * While in the IR it represents a block in terms of control-flow.
1254  */
1255 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1256 {
1257     size_t i;
1258
1259     /* We don't use this
1260      * Note: an ast-representation using the comma-operator
1261      * of the form: (a, b, c) = x should not assign to c...
1262      */
1263     if (lvalue) {
1264         asterror(ast_ctx(self), "not an l-value (code-block)");
1265         return false;
1266     }
1267
1268     if (self->expression.outr) {
1269         *out = self->expression.outr;
1270         return true;
1271     }
1272
1273     /* output is NULL at first, we'll have each expression
1274      * assign to out output, thus, a comma-operator represention
1275      * using an ast_block will return the last generated value,
1276      * so: (b, c) + a  executed both b and c, and returns c,
1277      * which is then added to a.
1278      */
1279     *out = NULL;
1280
1281     /* generate locals */
1282     for (i = 0; i < self->locals_count; ++i)
1283     {
1284         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1285             if (opts_debug)
1286                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1287             return false;
1288         }
1289     }
1290
1291     for (i = 0; i < self->exprs_count; ++i)
1292     {
1293         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1294         if (!(*gen)(self->exprs[i], func, false, out))
1295             return false;
1296     }
1297
1298     self->expression.outr = *out;
1299
1300     return true;
1301 }
1302
1303 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1304 {
1305     ast_expression_codegen *cgen;
1306     ir_value *left, *right;
1307
1308     ast_value       *arr;
1309     ast_value       *idx;
1310     ast_array_index *ai = NULL;
1311
1312     if (lvalue && self->expression.outl) {
1313         *out = self->expression.outl;
1314         return true;
1315     }
1316
1317     if (!lvalue && self->expression.outr) {
1318         *out = self->expression.outr;
1319         return true;
1320     }
1321
1322     if (ast_istype(self->dest, ast_array_index))
1323     {
1324
1325         ai = (ast_array_index*)self->dest;
1326         idx = (ast_value*)ai->index;
1327
1328         if (ast_istype(ai->index, ast_value) && idx->isconst)
1329             ai = NULL;
1330     }
1331
1332     if (ai) {
1333         /* we need to call the setter */
1334         ir_value  *iridx, *funval;
1335         ir_instr  *call;
1336
1337         if (lvalue) {
1338             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1339             return false;
1340         }
1341
1342         arr = (ast_value*)ai->array;
1343         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1344             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1345             return false;
1346         }
1347
1348         cgen = idx->expression.codegen;
1349         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1350             return false;
1351
1352         cgen = arr->setter->expression.codegen;
1353         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1354             return false;
1355
1356         cgen = self->source->expression.codegen;
1357         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1358             return false;
1359
1360         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1361         if (!call)
1362             return false;
1363         if (!ir_call_param(call, iridx))
1364             return false;
1365         if (!ir_call_param(call, right))
1366             return false;
1367         self->expression.outr = right;
1368     }
1369     else
1370     {
1371         /* regular code */
1372
1373         cgen = self->dest->expression.codegen;
1374         /* lvalue! */
1375         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1376             return false;
1377         self->expression.outl = left;
1378
1379         cgen = self->source->expression.codegen;
1380         /* rvalue! */
1381         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1382             return false;
1383
1384         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1385             return false;
1386         self->expression.outr = right;
1387     }
1388
1389     /* Theoretically, an assinment returns its left side as an
1390      * lvalue, if we don't need an lvalue though, we return
1391      * the right side as an rvalue, otherwise we have to
1392      * somehow know whether or not we need to dereference the pointer
1393      * on the left side - that is: OP_LOAD if it was an address.
1394      * Also: in original QC we cannot OP_LOADP *anyway*.
1395      */
1396     *out = (lvalue ? left : right);
1397
1398     return true;
1399 }
1400
1401 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1402 {
1403     ast_expression_codegen *cgen;
1404     ir_value *left, *right;
1405
1406     /* A binary operation cannot yield an l-value */
1407     if (lvalue) {
1408         asterror(ast_ctx(self), "not an l-value (binop)");
1409         return false;
1410     }
1411
1412     if (self->expression.outr) {
1413         *out = self->expression.outr;
1414         return true;
1415     }
1416
1417     cgen = self->left->expression.codegen;
1418     /* lvalue! */
1419     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1420         return false;
1421
1422     cgen = self->right->expression.codegen;
1423     /* rvalue! */
1424     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1425         return false;
1426
1427     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1428                                  self->op, left, right);
1429     if (!*out)
1430         return false;
1431     self->expression.outr = *out;
1432
1433     return true;
1434 }
1435
1436 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1437 {
1438     ast_expression_codegen *cgen;
1439     ir_value *leftl, *leftr, *right, *bin;
1440
1441     if (lvalue && self->expression.outl) {
1442         *out = self->expression.outl;
1443         return true;
1444     }
1445
1446     if (!lvalue && self->expression.outr) {
1447         *out = self->expression.outr;
1448         return true;
1449     }
1450
1451     /* for a binstore we need both an lvalue and an rvalue for the left side */
1452     /* rvalue of destination! */
1453     cgen = self->dest->expression.codegen;
1454     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1455         return false;
1456
1457     /* source as rvalue only */
1458     cgen = self->source->expression.codegen;
1459     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1460         return false;
1461
1462     /* now the binary */
1463     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1464                                 self->opbin, leftr, right);
1465     self->expression.outr = bin;
1466
1467     /* now store them */
1468     cgen = self->dest->expression.codegen;
1469     /* lvalue of destination */
1470     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1471         return false;
1472     self->expression.outl = leftl;
1473
1474     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1475         return false;
1476     self->expression.outr = bin;
1477
1478     /* Theoretically, an assinment returns its left side as an
1479      * lvalue, if we don't need an lvalue though, we return
1480      * the right side as an rvalue, otherwise we have to
1481      * somehow know whether or not we need to dereference the pointer
1482      * on the left side - that is: OP_LOAD if it was an address.
1483      * Also: in original QC we cannot OP_LOADP *anyway*.
1484      */
1485     *out = (lvalue ? leftl : bin);
1486
1487     return true;
1488 }
1489
1490 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1491 {
1492     ast_expression_codegen *cgen;
1493     ir_value *operand;
1494
1495     /* An unary operation cannot yield an l-value */
1496     if (lvalue) {
1497         asterror(ast_ctx(self), "not an l-value (binop)");
1498         return false;
1499     }
1500
1501     if (self->expression.outr) {
1502         *out = self->expression.outr;
1503         return true;
1504     }
1505
1506     cgen = self->operand->expression.codegen;
1507     /* lvalue! */
1508     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1509         return false;
1510
1511     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1512                                  self->op, operand);
1513     if (!*out)
1514         return false;
1515     self->expression.outr = *out;
1516
1517     return true;
1518 }
1519
1520 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1521 {
1522     ast_expression_codegen *cgen;
1523     ir_value *operand;
1524
1525     /* In the context of a return operation, we don't actually return
1526      * anything...
1527      */
1528     if (lvalue) {
1529         asterror(ast_ctx(self), "return-expression is not an l-value");
1530         return false;
1531     }
1532
1533     if (self->expression.outr) {
1534         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1535         return false;
1536     }
1537     self->expression.outr = (ir_value*)1;
1538
1539     if (self->operand) {
1540         cgen = self->operand->expression.codegen;
1541         /* lvalue! */
1542         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1543             return false;
1544
1545         if (!ir_block_create_return(func->curblock, operand))
1546             return false;
1547     } else {
1548         if (!ir_block_create_return(func->curblock, NULL))
1549             return false;
1550     }
1551
1552     return true;
1553 }
1554
1555 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1556 {
1557     ast_expression_codegen *cgen;
1558     ir_value *ent, *field;
1559
1560     /* This function needs to take the 'lvalue' flag into account!
1561      * As lvalue we provide a field-pointer, as rvalue we provide the
1562      * value in a temp.
1563      */
1564
1565     if (lvalue && self->expression.outl) {
1566         *out = self->expression.outl;
1567         return true;
1568     }
1569
1570     if (!lvalue && self->expression.outr) {
1571         *out = self->expression.outr;
1572         return true;
1573     }
1574
1575     cgen = self->entity->expression.codegen;
1576     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1577         return false;
1578
1579     cgen = self->field->expression.codegen;
1580     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1581         return false;
1582
1583     if (lvalue) {
1584         /* address! */
1585         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1586                                             ent, field);
1587     } else {
1588         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1589                                              ent, field, self->expression.vtype);
1590     }
1591     if (!*out) {
1592         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1593                  (lvalue ? "ADDRESS" : "FIELD"),
1594                  type_name[self->expression.vtype]);
1595         return false;
1596     }
1597
1598     if (lvalue)
1599         self->expression.outl = *out;
1600     else
1601         self->expression.outr = *out;
1602
1603     /* Hm that should be it... */
1604     return true;
1605 }
1606
1607 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1608 {
1609     ast_expression_codegen *cgen;
1610     ir_value *vec;
1611
1612     /* in QC this is always an lvalue */
1613     (void)lvalue;
1614     if (self->expression.outl) {
1615         *out = self->expression.outl;
1616         return true;
1617     }
1618
1619     cgen = self->owner->expression.codegen;
1620     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1621         return false;
1622
1623     if (vec->vtype != TYPE_VECTOR &&
1624         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1625     {
1626         return false;
1627     }
1628
1629     *out = ir_value_vector_member(vec, self->field);
1630     self->expression.outl = *out;
1631
1632     return (*out != NULL);
1633 }
1634
1635 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1636 {
1637     ast_value *arr;
1638     ast_value *idx;
1639
1640     if (!lvalue && self->expression.outr) {
1641         *out = self->expression.outr;
1642     }
1643     if (lvalue && self->expression.outl) {
1644         *out = self->expression.outl;
1645     }
1646
1647     if (!ast_istype(self->array, ast_value)) {
1648         asterror(ast_ctx(self), "array indexing this way is not supported");
1649         /* note this would actually be pointer indexing because the left side is
1650          * not an actual array but (hopefully) an indexable expression.
1651          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1652          * support this path will be filled.
1653          */
1654         return false;
1655     }
1656
1657     arr = (ast_value*)self->array;
1658     idx = (ast_value*)self->index;
1659
1660     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1661         /* Time to use accessor functions */
1662         ast_expression_codegen *cgen;
1663         ir_value               *iridx, *funval;
1664         ir_instr               *call;
1665
1666         if (lvalue) {
1667             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1668             return false;
1669         }
1670
1671         if (!arr->getter) {
1672             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1673             return false;
1674         }
1675
1676         cgen = self->index->expression.codegen;
1677         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1678             return false;
1679
1680         cgen = arr->getter->expression.codegen;
1681         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1682             return false;
1683
1684         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1685         if (!call)
1686             return false;
1687         if (!ir_call_param(call, iridx))
1688             return false;
1689
1690         *out = ir_call_value(call);
1691         self->expression.outr = *out;
1692         return true;
1693     }
1694
1695     if (idx->expression.vtype == TYPE_FLOAT)
1696         *out = arr->ir_values[(int)idx->constval.vfloat];
1697     else if (idx->expression.vtype == TYPE_INTEGER)
1698         *out = arr->ir_values[idx->constval.vint];
1699     else {
1700         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1701         return false;
1702     }
1703     return true;
1704 }
1705
1706 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1707 {
1708     ast_expression_codegen *cgen;
1709
1710     ir_value *condval;
1711     ir_value *dummy;
1712
1713     ir_block *cond = func->curblock;
1714     ir_block *ontrue;
1715     ir_block *onfalse;
1716     ir_block *ontrue_endblock = NULL;
1717     ir_block *onfalse_endblock = NULL;
1718     ir_block *merge;
1719
1720     /* We don't output any value, thus also don't care about r/lvalue */
1721     (void)out;
1722     (void)lvalue;
1723
1724     if (self->expression.outr) {
1725         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1726         return false;
1727     }
1728     self->expression.outr = (ir_value*)1;
1729
1730     /* generate the condition */
1731     func->curblock = cond;
1732     cgen = self->cond->expression.codegen;
1733     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1734         return false;
1735
1736     /* on-true path */
1737
1738     if (self->on_true) {
1739         /* create on-true block */
1740         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1741         if (!ontrue)
1742             return false;
1743
1744         /* enter the block */
1745         func->curblock = ontrue;
1746
1747         /* generate */
1748         cgen = self->on_true->expression.codegen;
1749         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1750             return false;
1751
1752         /* we now need to work from the current endpoint */
1753         ontrue_endblock = func->curblock;
1754     } else
1755         ontrue = NULL;
1756
1757     /* on-false path */
1758     if (self->on_false) {
1759         /* create on-false block */
1760         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1761         if (!onfalse)
1762             return false;
1763
1764         /* enter the block */
1765         func->curblock = onfalse;
1766
1767         /* generate */
1768         cgen = self->on_false->expression.codegen;
1769         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1770             return false;
1771
1772         /* we now need to work from the current endpoint */
1773         onfalse_endblock = func->curblock;
1774     } else
1775         onfalse = NULL;
1776
1777     /* Merge block were they all merge in to */
1778     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1779     if (!merge)
1780         return false;
1781
1782     /* add jumps ot the merge block */
1783     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1784         return false;
1785     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1786         return false;
1787
1788     /* we create the if here, that way all blocks are ordered :)
1789      */
1790     if (!ir_block_create_if(cond, condval,
1791                             (ontrue  ? ontrue  : merge),
1792                             (onfalse ? onfalse : merge)))
1793     {
1794         return false;
1795     }
1796
1797     /* Now enter the merge block */
1798     func->curblock = merge;
1799
1800     return true;
1801 }
1802
1803 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1804 {
1805     ast_expression_codegen *cgen;
1806
1807     ir_value *condval;
1808     ir_value *trueval, *falseval;
1809     ir_instr *phi;
1810
1811     ir_block *cond = func->curblock;
1812     ir_block *ontrue;
1813     ir_block *onfalse;
1814     ir_block *merge;
1815
1816     /* Ternary can never create an lvalue... */
1817     if (lvalue)
1818         return false;
1819
1820     /* In theory it shouldn't be possible to pass through a node twice, but
1821      * in case we add any kind of optimization pass for the AST itself, it
1822      * may still happen, thus we remember a created ir_value and simply return one
1823      * if it already exists.
1824      */
1825     if (self->phi_out) {
1826         *out = self->phi_out;
1827         return true;
1828     }
1829
1830     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1831
1832     /* generate the condition */
1833     func->curblock = cond;
1834     cgen = self->cond->expression.codegen;
1835     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1836         return false;
1837
1838     /* create on-true block */
1839     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1840     if (!ontrue)
1841         return false;
1842     else
1843     {
1844         /* enter the block */
1845         func->curblock = ontrue;
1846
1847         /* generate */
1848         cgen = self->on_true->expression.codegen;
1849         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1850             return false;
1851     }
1852
1853     /* create on-false block */
1854     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1855     if (!onfalse)
1856         return false;
1857     else
1858     {
1859         /* enter the block */
1860         func->curblock = onfalse;
1861
1862         /* generate */
1863         cgen = self->on_false->expression.codegen;
1864         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1865             return false;
1866     }
1867
1868     /* create merge block */
1869     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1870     if (!merge)
1871         return false;
1872     /* jump to merge block */
1873     if (!ir_block_create_jump(ontrue, merge))
1874         return false;
1875     if (!ir_block_create_jump(onfalse, merge))
1876         return false;
1877
1878     /* create if instruction */
1879     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1880         return false;
1881
1882     /* Now enter the merge block */
1883     func->curblock = merge;
1884
1885     /* Here, now, we need a PHI node
1886      * but first some sanity checking...
1887      */
1888     if (trueval->vtype != falseval->vtype) {
1889         /* error("ternary with different types on the two sides"); */
1890         return false;
1891     }
1892
1893     /* create PHI */
1894     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1895     if (!phi ||
1896         !ir_phi_add(phi, ontrue,  trueval) ||
1897         !ir_phi_add(phi, onfalse, falseval))
1898     {
1899         return false;
1900     }
1901
1902     self->phi_out = ir_phi_value(phi);
1903     *out = self->phi_out;
1904
1905     return true;
1906 }
1907
1908 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1909 {
1910     ast_expression_codegen *cgen;
1911
1912     ir_value *dummy      = NULL;
1913     ir_value *precond    = NULL;
1914     ir_value *postcond   = NULL;
1915
1916     /* Since we insert some jumps "late" so we have blocks
1917      * ordered "nicely", we need to keep track of the actual end-blocks
1918      * of expressions to add the jumps to.
1919      */
1920     ir_block *bbody      = NULL, *end_bbody      = NULL;
1921     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1922     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1923     ir_block *bincrement = NULL, *end_bincrement = NULL;
1924     ir_block *bout       = NULL, *bin            = NULL;
1925
1926     /* let's at least move the outgoing block to the end */
1927     size_t    bout_id;
1928
1929     /* 'break' and 'continue' need to be able to find the right blocks */
1930     ir_block *bcontinue     = NULL;
1931     ir_block *bbreak        = NULL;
1932
1933     ir_block *old_bcontinue = NULL;
1934     ir_block *old_bbreak    = NULL;
1935
1936     ir_block *tmpblock      = NULL;
1937
1938     (void)lvalue;
1939     (void)out;
1940
1941     if (self->expression.outr) {
1942         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1943         return false;
1944     }
1945     self->expression.outr = (ir_value*)1;
1946
1947     /* NOTE:
1948      * Should we ever need some kind of block ordering, better make this function
1949      * move blocks around than write a block ordering algorithm later... after all
1950      * the ast and ir should work together, not against each other.
1951      */
1952
1953     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1954      * anyway if for example it contains a ternary.
1955      */
1956     if (self->initexpr)
1957     {
1958         cgen = self->initexpr->expression.codegen;
1959         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1960             return false;
1961     }
1962
1963     /* Store the block from which we enter this chaos */
1964     bin = func->curblock;
1965
1966     /* The pre-loop condition needs its own block since we
1967      * need to be able to jump to the start of that expression.
1968      */
1969     if (self->precond)
1970     {
1971         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1972         if (!bprecond)
1973             return false;
1974
1975         /* the pre-loop-condition the least important place to 'continue' at */
1976         bcontinue = bprecond;
1977
1978         /* enter */
1979         func->curblock = bprecond;
1980
1981         /* generate */
1982         cgen = self->precond->expression.codegen;
1983         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1984             return false;
1985
1986         end_bprecond = func->curblock;
1987     } else {
1988         bprecond = end_bprecond = NULL;
1989     }
1990
1991     /* Now the next blocks won't be ordered nicely, but we need to
1992      * generate them this early for 'break' and 'continue'.
1993      */
1994     if (self->increment) {
1995         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1996         if (!bincrement)
1997             return false;
1998         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1999     } else {
2000         bincrement = end_bincrement = NULL;
2001     }
2002
2003     if (self->postcond) {
2004         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2005         if (!bpostcond)
2006             return false;
2007         bcontinue = bpostcond; /* postcond comes before the increment */
2008     } else {
2009         bpostcond = end_bpostcond = NULL;
2010     }
2011
2012     bout_id = func->ir_func->blocks_count;
2013     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2014     if (!bout)
2015         return false;
2016     bbreak = bout;
2017
2018     /* The loop body... */
2019     if (self->body)
2020     {
2021         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2022         if (!bbody)
2023             return false;
2024
2025         /* enter */
2026         func->curblock = bbody;
2027
2028         old_bbreak          = func->breakblock;
2029         old_bcontinue       = func->continueblock;
2030         func->breakblock    = bbreak;
2031         func->continueblock = bcontinue;
2032
2033         /* generate */
2034         cgen = self->body->expression.codegen;
2035         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2036             return false;
2037
2038         end_bbody = func->curblock;
2039         func->breakblock    = old_bbreak;
2040         func->continueblock = old_bcontinue;
2041     }
2042
2043     /* post-loop-condition */
2044     if (self->postcond)
2045     {
2046         /* enter */
2047         func->curblock = bpostcond;
2048
2049         /* generate */
2050         cgen = self->postcond->expression.codegen;
2051         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2052             return false;
2053
2054         end_bpostcond = func->curblock;
2055     }
2056
2057     /* The incrementor */
2058     if (self->increment)
2059     {
2060         /* enter */
2061         func->curblock = bincrement;
2062
2063         /* generate */
2064         cgen = self->increment->expression.codegen;
2065         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2066             return false;
2067
2068         end_bincrement = func->curblock;
2069     }
2070
2071     /* In any case now, we continue from the outgoing block */
2072     func->curblock = bout;
2073
2074     /* Now all blocks are in place */
2075     /* From 'bin' we jump to whatever comes first */
2076     if      (bprecond)   tmpblock = bprecond;
2077     else if (bbody)      tmpblock = bbody;
2078     else if (bpostcond)  tmpblock = bpostcond;
2079     else                 tmpblock = bout;
2080     if (!ir_block_create_jump(bin, tmpblock))
2081         return false;
2082
2083     /* From precond */
2084     if (bprecond)
2085     {
2086         ir_block *ontrue, *onfalse;
2087         if      (bbody)      ontrue = bbody;
2088         else if (bincrement) ontrue = bincrement;
2089         else if (bpostcond)  ontrue = bpostcond;
2090         else                 ontrue = bprecond;
2091         onfalse = bout;
2092         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2093             return false;
2094     }
2095
2096     /* from body */
2097     if (bbody)
2098     {
2099         if      (bincrement) tmpblock = bincrement;
2100         else if (bpostcond)  tmpblock = bpostcond;
2101         else if (bprecond)   tmpblock = bprecond;
2102         else                 tmpblock = bout;
2103         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2104             return false;
2105     }
2106
2107     /* from increment */
2108     if (bincrement)
2109     {
2110         if      (bpostcond)  tmpblock = bpostcond;
2111         else if (bprecond)   tmpblock = bprecond;
2112         else if (bbody)      tmpblock = bbody;
2113         else                 tmpblock = bout;
2114         if (!ir_block_create_jump(end_bincrement, tmpblock))
2115             return false;
2116     }
2117
2118     /* from postcond */
2119     if (bpostcond)
2120     {
2121         ir_block *ontrue, *onfalse;
2122         if      (bprecond)   ontrue = bprecond;
2123         else if (bbody)      ontrue = bbody;
2124         else if (bincrement) ontrue = bincrement;
2125         else                 ontrue = bpostcond;
2126         onfalse = bout;
2127         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2128             return false;
2129     }
2130
2131     /* Move 'bout' to the end */
2132     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2133         !ir_function_blocks_add(func->ir_func, bout))
2134     {
2135         ir_block_delete(bout);
2136         return false;
2137     }
2138
2139     return true;
2140 }
2141
2142 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2143 {
2144     ast_expression_codegen *cgen;
2145     ir_value_vector         params;
2146     ir_instr               *callinstr;
2147     size_t i;
2148
2149     ir_value *funval = NULL;
2150
2151     /* return values are never lvalues */
2152     if (lvalue) {
2153         asterror(ast_ctx(self), "not an l-value (function call)");
2154         return false;
2155     }
2156
2157     if (self->expression.outr) {
2158         *out = self->expression.outr;
2159         return true;
2160     }
2161
2162     cgen = self->func->expression.codegen;
2163     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2164         return false;
2165     if (!funval)
2166         return false;
2167
2168     MEM_VECTOR_INIT(&params, v);
2169
2170     /* parameters */
2171     for (i = 0; i < self->params_count; ++i)
2172     {
2173         ir_value *param;
2174         ast_expression *expr = self->params[i];
2175
2176         cgen = expr->expression.codegen;
2177         if (!(*cgen)(expr, func, false, &param))
2178             goto error;
2179         if (!param)
2180             goto error;
2181         if (!ir_value_vector_v_add(&params, param))
2182             goto error;
2183     }
2184
2185     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2186     if (!callinstr)
2187         goto error;
2188
2189     for (i = 0; i < params.v_count; ++i) {
2190         if (!ir_call_param(callinstr, params.v[i]))
2191             goto error;
2192     }
2193
2194     *out = ir_call_value(callinstr);
2195     self->expression.outr = *out;
2196
2197     MEM_VECTOR_CLEAR(&params, v);
2198     return true;
2199 error:
2200     MEM_VECTOR_CLEAR(&params, v);
2201     return false;
2202 }