]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_call's param vector functions
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     if (self->on_true)
242         ast_unref(self->on_true);
243     if (self->on_false)
244         ast_unref(self->on_false);
245     ast_expression_delete((ast_expression*)self);
246     mem_d(self);
247 }
248
249 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
250 {
251     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
252     /* This time NEITHER must be NULL */
253     if (!ontrue || !onfalse) {
254         mem_d(self);
255         return NULL;
256     }
257     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
258
259     self->cond     = cond;
260     self->on_true  = ontrue;
261     self->on_false = onfalse;
262     self->phi_out  = NULL;
263
264     return self;
265 }
266
267 void ast_ternary_delete(ast_ternary *self)
268 {
269     ast_unref(self->cond);
270     ast_unref(self->on_true);
271     ast_unref(self->on_false);
272     ast_expression_delete((ast_expression*)self);
273     mem_d(self);
274 }
275
276 ast_loop* ast_loop_new(lex_ctx ctx,
277                        ast_expression *initexpr,
278                        ast_expression *precond,
279                        ast_expression *postcond,
280                        ast_expression *increment,
281                        ast_expression *body)
282 {
283     ast_instantiate(ast_loop, ctx, ast_loop_delete);
284     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
285
286     self->initexpr  = initexpr;
287     self->precond   = precond;
288     self->postcond  = postcond;
289     self->increment = increment;
290     self->body      = body;
291
292     return self;
293 }
294
295 void ast_loop_delete(ast_loop *self)
296 {
297     if (self->initexpr)
298         ast_unref(self->initexpr);
299     if (self->precond)
300         ast_unref(self->precond);
301     if (self->postcond)
302         ast_unref(self->postcond);
303     if (self->increment)
304         ast_unref(self->increment);
305     if (self->body)
306         ast_unref(self->body);
307     ast_expression_delete((ast_expression*)self);
308     mem_d(self);
309 }
310
311 ast_call* ast_call_new(lex_ctx ctx,
312                        ast_expression *funcexpr)
313 {
314     ast_instantiate(ast_call, ctx, ast_call_delete);
315     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
316
317     MEM_VECTOR_INIT(self, params);
318
319     return self;
320 }
321 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
322
323 void ast_call_delete(ast_call *self)
324 {
325     size_t i;
326     for (i = 0; i < self->params_count; ++i)
327         ast_unref(self->params[i]);
328     MEM_VECTOR_CLEAR(self, params);
329
330     if (self->func)
331         ast_unref(self->func);
332
333     ast_expression_delete((ast_expression*)self);
334     mem_d(self);
335 }
336
337 ast_store* ast_store_new(lex_ctx ctx, int op,
338                          ast_value *dest, ast_expression *source)
339 {
340     ast_instantiate(ast_store, ctx, ast_store_delete);
341     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
342
343     self->op = op;
344     self->dest = dest;
345     self->source = source;
346
347     return self;
348 }
349
350 void ast_store_delete(ast_store *self)
351 {
352     ast_unref(self->dest);
353     ast_unref(self->source);
354     ast_expression_delete((ast_expression*)self);
355     mem_d(self);
356 }
357
358 ast_block* ast_block_new(lex_ctx ctx)
359 {
360     ast_instantiate(ast_block, ctx, ast_block_delete);
361     ast_expression_init((ast_expression*)self,
362                         (ast_expression_codegen*)&ast_block_codegen);
363
364     MEM_VECTOR_INIT(self, locals);
365     MEM_VECTOR_INIT(self, exprs);
366
367     return self;
368 }
369 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
370 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
371
372 void ast_block_delete(ast_block *self)
373 {
374     size_t i;
375     for (i = 0; i < self->exprs_count; ++i)
376         ast_unref(self->exprs[i]);
377     MEM_VECTOR_CLEAR(self, exprs);
378     for (i = 0; i < self->locals_count; ++i)
379         ast_delete(self->locals[i]);
380     MEM_VECTOR_CLEAR(self, locals);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
386 {
387     ast_instantiate(ast_function, ctx, ast_function_delete);
388
389     if (!vtype ||
390         vtype->isconst ||
391         vtype->expression.vtype != TYPE_FUNCTION)
392     {
393         mem_d(self);
394         return NULL;
395     }
396
397     self->vtype = vtype;
398     self->name = name ? util_strdup(name) : NULL;
399     MEM_VECTOR_INIT(self, blocks);
400     MEM_VECTOR_INIT(self, params);
401
402     self->labelcount = 0;
403     self->builtin = 0;
404
405     self->ir_func = NULL;
406     self->curblock = NULL;
407
408     self->breakblock    = NULL;
409     self->continueblock = NULL;
410
411     vtype->isconst = true;
412     vtype->constval.vfunc = self;
413
414     return self;
415 }
416
417 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
418 MEM_VEC_FUNCTIONS(ast_function, ast_value*, params)
419
420 void ast_function_delete(ast_function *self)
421 {
422     size_t i;
423     if (self->name)
424         mem_d((void*)self->name);
425     if (self->vtype) {
426         /* ast_value_delete(self->vtype); */
427         self->vtype->isconst = false;
428         self->vtype->constval.vfunc = NULL;
429         /* We use unref - if it was stored in a global table it is supposed
430          * to be deleted from *there*
431          */
432         ast_unref(self->vtype);
433     }
434     for (i = 0; i < self->blocks_count; ++i)
435         ast_delete(self->blocks[i]);
436     MEM_VECTOR_CLEAR(self, blocks);
437     for (i = 0; i < self->params_count; ++i)
438         ast_delete(self->params[i]);
439     MEM_VECTOR_CLEAR(self, params);
440     mem_d(self);
441 }
442
443 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
444 {
445     unsigned int base = 10;
446 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
447 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
448     if (size < 1)
449         return;
450     checknul();
451     if (!num)
452         addch('0');
453     else {
454         while (num)
455         {
456             int digit = num % base;
457             num /= base;
458             addch('0' + digit);
459         }
460     }
461
462     *buf = 0;
463 #undef addch
464 #undef checknul
465 }
466
467 const char* ast_function_label(ast_function *self, const char *prefix)
468 {
469     size_t id = (self->labelcount++);
470     size_t len = strlen(prefix);
471     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
472     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
473     return self->labelbuf;
474 }
475
476 /*********************************************************************/
477 /* AST codegen part
478  * by convention you must never pass NULL to the 'ir_value **out'
479  * parameter. If you really don't care about the output, pass a dummy.
480  * But I can't imagine a pituation where the output is truly unnecessary.
481  */
482
483 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
484 {
485     /* NOTE: This is the codegen for a variable used in an expression.
486      * It is not the codegen to generate the value. For this purpose,
487      * ast_local_codegen and ast_global_codegen are to be used before this
488      * is executed. ast_function_codegen should take care of its locals,
489      * and the ast-user should take care of ast_global_codegen to be used
490      * on all the globals.
491      */
492     if (!self->ir_v)
493         return false;
494     *out = self->ir_v;
495     return true;
496 }
497
498 bool ast_global_codegen(ast_value *self, ir_builder *ir)
499 {
500     ir_value *v = NULL;
501     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
502     {
503         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
504         if (!func)
505             return false;
506
507         self->constval.vfunc->ir_func = func;
508         /* The function is filled later on ast_function_codegen... */
509         return true;
510     }
511
512     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
513     if (!v)
514         return false;
515
516     if (self->isconst) {
517         switch (self->expression.vtype)
518         {
519             case TYPE_FLOAT:
520                 if (!ir_value_set_float(v, self->constval.vfloat))
521                     goto error;
522                 break;
523             case TYPE_VECTOR:
524                 if (!ir_value_set_vector(v, self->constval.vvec))
525                     goto error;
526                 break;
527             case TYPE_STRING:
528                 if (!ir_value_set_string(v, self->constval.vstring))
529                     goto error;
530                 break;
531             case TYPE_FUNCTION:
532                 printf("global of type function not properly generated\n");
533                 goto error;
534                 /* Cannot generate an IR value for a function,
535                  * need a pointer pointing to a function rather.
536                  */
537             default:
538                 printf("TODO: global constant type %i\n", self->expression.vtype);
539                 break;
540         }
541     }
542
543     /* link us to the ir_value */
544     self->ir_v = v;
545     return true;
546
547 error: /* clean up */
548     ir_value_delete(v);
549     return false;
550 }
551
552 bool ast_local_codegen(ast_value *self, ir_function *func)
553 {
554     ir_value *v = NULL;
555     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
556     {
557         /* Do we allow local functions? I think not...
558          * this is NOT a function pointer atm.
559          */
560         return false;
561     }
562
563     v = ir_function_create_local(func, self->name, self->expression.vtype);
564     if (!v)
565         return false;
566
567     /* A constant local... hmmm...
568      * I suppose the IR will have to deal with this
569      */
570     if (self->isconst) {
571         switch (self->expression.vtype)
572         {
573             case TYPE_FLOAT:
574                 if (!ir_value_set_float(v, self->constval.vfloat))
575                     goto error;
576                 break;
577             case TYPE_VECTOR:
578                 if (!ir_value_set_vector(v, self->constval.vvec))
579                     goto error;
580                 break;
581             case TYPE_STRING:
582                 if (!ir_value_set_string(v, self->constval.vstring))
583                     goto error;
584                 break;
585             default:
586                 printf("TODO: global constant type %i\n", self->expression.vtype);
587                 break;
588         }
589     }
590
591     /* link us to the ir_value */
592     self->ir_v = v;
593     return true;
594
595 error: /* clean up */
596     ir_value_delete(v);
597     return false;
598 }
599
600 bool ast_function_codegen(ast_function *self, ir_builder *ir)
601 {
602     ir_function *irf;
603     ir_value    *dummy;
604     size_t    i;
605
606     irf = self->ir_func;
607     if (!irf) {
608         printf("ast_function's related ast_value was not generated yet\n");
609         return false;
610     }
611
612     for (i = 0; i < self->params_count; ++i)
613     {
614         if (!ir_function_params_add(irf, self->params[i]->expression.vtype))
615             return false;
616     }
617
618     if (self->builtin) {
619         irf->builtin = self->builtin;
620         return true;
621     }
622
623     self->curblock = ir_function_create_block(irf, "entry");
624     if (!self->curblock)
625         return false;
626
627     for (i = 0; i < self->blocks_count; ++i) {
628         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
629         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
630             return false;
631     }
632
633     /* TODO: check return types */
634     if (!self->curblock->is_return)
635     {
636         if (!self->vtype->expression.next ||
637             self->vtype->expression.next->expression.vtype == TYPE_VOID)
638             return ir_block_create_return(self->curblock, NULL);
639         else
640         {
641             /* error("missing return"); */
642             return false;
643         }
644     }
645     return true;
646 }
647
648 /* Note, you will not see ast_block_codegen generate ir_blocks.
649  * To the AST and the IR, blocks are 2 different things.
650  * In the AST it represents a block of code, usually enclosed in
651  * curly braces {...}.
652  * While in the IR it represents a block in terms of control-flow.
653  */
654 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
655 {
656     size_t i;
657
658     /* We don't use this
659      * Note: an ast-representation using the comma-operator
660      * of the form: (a, b, c) = x should not assign to c...
661      */
662     (void)lvalue;
663
664     /* output is NULL at first, we'll have each expression
665      * assign to out output, thus, a comma-operator represention
666      * using an ast_block will return the last generated value,
667      * so: (b, c) + a  executed both b and c, and returns c,
668      * which is then added to a.
669      */
670     *out = NULL;
671
672     /* generate locals */
673     for (i = 0; i < self->locals_count; ++i)
674     {
675         if (!ast_local_codegen(self->locals[i], func->ir_func))
676             return false;
677     }
678
679     for (i = 0; i < self->exprs_count; ++i)
680     {
681         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
682         if (!(*gen)(self->exprs[i], func, false, out))
683             return false;
684     }
685
686     return true;
687 }
688
689 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
690 {
691     ast_expression_codegen *cgen;
692     ir_value *left, *right;
693
694     cgen = self->dest->expression.codegen;
695     /* lvalue! */
696     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
697         return false;
698
699     cgen = self->source->expression.codegen;
700     /* rvalue! */
701     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
702         return false;
703
704     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
705         return false;
706
707     /* Theoretically, an assinment returns its left side as an
708      * lvalue, if we don't need an lvalue though, we return
709      * the right side as an rvalue, otherwise we have to
710      * somehow know whether or not we need to dereference the pointer
711      * on the left side - that is: OP_LOAD if it was an address.
712      * Also: in original QC we cannot OP_LOADP *anyway*.
713      */
714     *out = (lvalue ? left : right);
715
716     return true;
717 }
718
719 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
720 {
721     ast_expression_codegen *cgen;
722     ir_value *left, *right;
723
724     /* In the context of a binary operation, we can disregard
725      * the lvalue flag.
726      */
727      (void)lvalue;
728
729     cgen = self->left->expression.codegen;
730     /* lvalue! */
731     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
732         return false;
733
734     cgen = self->right->expression.codegen;
735     /* rvalue! */
736     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
737         return false;
738
739     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
740                                  self->op, left, right);
741     if (!*out)
742         return false;
743
744     return true;
745 }
746
747 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
748 {
749     ast_expression_codegen *cgen;
750     ir_value *ent, *field;
751
752     /* This function needs to take the 'lvalue' flag into account!
753      * As lvalue we provide a field-pointer, as rvalue we provide the
754      * value in a temp.
755      */
756
757     cgen = self->entity->expression.codegen;
758     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
759         return false;
760
761     cgen = self->field->expression.codegen;
762     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
763         return false;
764
765     if (lvalue) {
766         /* address! */
767         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
768                                             ent, field);
769     } else {
770         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
771                                              ent, field, self->expression.vtype);
772     }
773     if (!*out)
774         return false;
775
776     /* Hm that should be it... */
777     return true;
778 }
779
780 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
781 {
782     ast_expression_codegen *cgen;
783
784     ir_value *condval;
785     ir_value *dummy;
786
787     ir_block *cond = func->curblock;
788     ir_block *ontrue;
789     ir_block *onfalse;
790     ir_block *merge;
791
792     /* We don't output any value, thus also don't care about r/lvalue */
793     (void)out;
794     (void)lvalue;
795
796     /* generate the condition */
797     func->curblock = cond;
798     cgen = self->cond->expression.codegen;
799     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
800         return false;
801
802     /* on-true path */
803
804     if (self->on_true) {
805         /* create on-true block */
806         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
807         if (!ontrue)
808             return false;
809
810         /* enter the block */
811         func->curblock = ontrue;
812
813         /* generate */
814         cgen = self->on_true->expression.codegen;
815         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
816             return false;
817     } else
818         ontrue = NULL;
819
820     /* on-false path */
821     if (self->on_false) {
822         /* create on-false block */
823         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
824         if (!onfalse)
825             return false;
826
827         /* enter the block */
828         func->curblock = onfalse;
829
830         /* generate */
831         cgen = self->on_false->expression.codegen;
832         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
833             return false;
834     } else
835         onfalse = NULL;
836
837     /* Merge block were they all merge in to */
838     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
839     if (!merge)
840         return false;
841
842     /* add jumps ot the merge block */
843     if (ontrue && !ir_block_create_jump(ontrue, merge))
844         return false;
845     if (onfalse && !ir_block_create_jump(onfalse, merge))
846         return false;
847
848     /* we create the if here, that way all blocks are ordered :)
849      */
850     if (!ir_block_create_if(cond, condval,
851                             (ontrue  ? ontrue  : merge),
852                             (onfalse ? onfalse : merge)))
853     {
854         return false;
855     }
856
857     /* Now enter the merge block */
858     func->curblock = merge;
859
860     return true;
861 }
862
863 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
864 {
865     ast_expression_codegen *cgen;
866
867     ir_value *condval;
868     ir_value *trueval, *falseval;
869     ir_instr *phi;
870
871     ir_block *cond = func->curblock;
872     ir_block *ontrue;
873     ir_block *onfalse;
874     ir_block *merge;
875
876     /* In theory it shouldn't be possible to pass through a node twice, but
877      * in case we add any kind of optimization pass for the AST itself, it
878      * may still happen, thus we remember a created ir_value and simply return one
879      * if it already exists.
880      */
881     if (self->phi_out) {
882         *out = self->phi_out;
883         return true;
884     }
885
886     /* Ternary can never create an lvalue... */
887     if (lvalue)
888         return false;
889
890     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
891
892     /* generate the condition */
893     func->curblock = cond;
894     cgen = self->cond->expression.codegen;
895     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
896         return false;
897
898     /* create on-true block */
899     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
900     if (!ontrue)
901         return false;
902     else
903     {
904         /* enter the block */
905         func->curblock = ontrue;
906
907         /* generate */
908         cgen = self->on_true->expression.codegen;
909         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
910             return false;
911     }
912
913     /* create on-false block */
914     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
915     if (!onfalse)
916         return false;
917     else
918     {
919         /* enter the block */
920         func->curblock = onfalse;
921
922         /* generate */
923         cgen = self->on_false->expression.codegen;
924         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
925             return false;
926     }
927
928     /* create merge block */
929     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
930     if (!merge)
931         return false;
932     /* jump to merge block */
933     if (!ir_block_create_jump(ontrue, merge))
934         return false;
935     if (!ir_block_create_jump(onfalse, merge))
936         return false;
937
938     /* create if instruction */
939     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
940         return false;
941
942     /* Now enter the merge block */
943     func->curblock = merge;
944
945     /* Here, now, we need a PHI node
946      * but first some sanity checking...
947      */
948     if (trueval->vtype != falseval->vtype) {
949         /* error("ternary with different types on the two sides"); */
950         return false;
951     }
952
953     /* create PHI */
954     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
955     if (!phi ||
956         !ir_phi_add(phi, ontrue,  trueval) ||
957         !ir_phi_add(phi, onfalse, falseval))
958     {
959         return false;
960     }
961
962     self->phi_out = ir_phi_value(phi);
963     *out = self->phi_out;
964
965     return true;
966 }
967
968 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
969 {
970     ast_expression_codegen *cgen;
971
972     ir_value *dummy      = NULL;
973     ir_value *precond    = NULL;
974     ir_value *postcond   = NULL;
975
976     /* Since we insert some jumps "late" so we have blocks
977      * ordered "nicely", we need to keep track of the actual end-blocks
978      * of expressions to add the jumps to.
979      */
980     ir_block *bbody      = NULL, *end_bbody      = NULL;
981     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
982     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
983     ir_block *bincrement = NULL, *end_bincrement = NULL;
984     ir_block *bout       = NULL, *bin            = NULL;
985
986     /* let's at least move the outgoing block to the end */
987     size_t    bout_id;
988
989     /* 'break' and 'continue' need to be able to find the right blocks */
990     ir_block *bcontinue     = NULL;
991     ir_block *bbreak        = NULL;
992
993     ir_block *old_bcontinue = NULL;
994     ir_block *old_bbreak    = NULL;
995
996     ir_block *tmpblock      = NULL;
997
998     (void)lvalue;
999     (void)out;
1000
1001     /* NOTE:
1002      * Should we ever need some kind of block ordering, better make this function
1003      * move blocks around than write a block ordering algorithm later... after all
1004      * the ast and ir should work together, not against each other.
1005      */
1006
1007     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1008      * anyway if for example it contains a ternary.
1009      */
1010     if (self->initexpr)
1011     {
1012         cgen = self->initexpr->expression.codegen;
1013         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1014             return false;
1015     }
1016
1017     /* Store the block from which we enter this chaos */
1018     bin = func->curblock;
1019
1020     /* The pre-loop condition needs its own block since we
1021      * need to be able to jump to the start of that expression.
1022      */
1023     if (self->precond)
1024     {
1025         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1026         if (!bprecond)
1027             return false;
1028
1029         /* the pre-loop-condition the least important place to 'continue' at */
1030         bcontinue = bprecond;
1031
1032         /* enter */
1033         func->curblock = bprecond;
1034
1035         /* generate */
1036         cgen = self->precond->expression.codegen;
1037         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1038             return false;
1039
1040         end_bprecond = func->curblock;
1041     } else {
1042         bprecond = end_bprecond = NULL;
1043     }
1044
1045     /* Now the next blocks won't be ordered nicely, but we need to
1046      * generate them this early for 'break' and 'continue'.
1047      */
1048     if (self->increment) {
1049         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1050         if (!bincrement)
1051             return false;
1052         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1053     } else {
1054         bincrement = end_bincrement = NULL;
1055     }
1056
1057     if (self->postcond) {
1058         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1059         if (!bpostcond)
1060             return false;
1061         bcontinue = bpostcond; /* postcond comes before the increment */
1062     } else {
1063         bpostcond = end_bpostcond = NULL;
1064     }
1065
1066     bout_id = func->ir_func->blocks_count;
1067     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1068     if (!bout)
1069         return false;
1070     bbreak = bout;
1071
1072     /* The loop body... */
1073     if (self->body)
1074     {
1075         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1076         if (!bbody)
1077             return false;
1078
1079         /* enter */
1080         func->curblock = bbody;
1081
1082         old_bbreak          = func->breakblock;
1083         old_bcontinue       = func->continueblock;
1084         func->breakblock    = bbreak;
1085         func->continueblock = bcontinue;
1086
1087         /* generate */
1088         cgen = self->body->expression.codegen;
1089         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1090             return false;
1091
1092         end_bbody = func->curblock;
1093         func->breakblock    = old_bbreak;
1094         func->continueblock = old_bcontinue;
1095     }
1096
1097     /* post-loop-condition */
1098     if (self->postcond)
1099     {
1100         /* enter */
1101         func->curblock = bpostcond;
1102
1103         /* generate */
1104         cgen = self->postcond->expression.codegen;
1105         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1106             return false;
1107
1108         end_bpostcond = func->curblock;
1109     }
1110
1111     /* The incrementor */
1112     if (self->increment)
1113     {
1114         /* enter */
1115         func->curblock = bincrement;
1116
1117         /* generate */
1118         cgen = self->increment->expression.codegen;
1119         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1120             return false;
1121
1122         end_bincrement = func->curblock;
1123     }
1124
1125     /* In any case now, we continue from the outgoing block */
1126     func->curblock = bout;
1127
1128     /* Now all blocks are in place */
1129     /* From 'bin' we jump to whatever comes first */
1130     if      (bprecond)   tmpblock = bprecond;
1131     else if (bbody)      tmpblock = bbody;
1132     else if (bpostcond)  tmpblock = bpostcond;
1133     else                 tmpblock = bout;
1134     if (!ir_block_create_jump(bin, tmpblock))
1135         return false;
1136
1137     /* From precond */
1138     if (bprecond)
1139     {
1140         ir_block *ontrue, *onfalse;
1141         if      (bbody)      ontrue = bbody;
1142         else if (bincrement) ontrue = bincrement;
1143         else if (bpostcond)  ontrue = bpostcond;
1144         else                 ontrue = bprecond;
1145         onfalse = bout;
1146         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1147             return false;
1148     }
1149
1150     /* from body */
1151     if (bbody)
1152     {
1153         if      (bincrement) tmpblock = bincrement;
1154         else if (bpostcond)  tmpblock = bpostcond;
1155         else if (bprecond)   tmpblock = bprecond;
1156         else                 tmpblock = bout;
1157         if (!ir_block_create_jump(end_bbody, tmpblock))
1158             return false;
1159     }
1160
1161     /* from increment */
1162     if (bincrement)
1163     {
1164         if      (bpostcond)  tmpblock = bpostcond;
1165         else if (bprecond)   tmpblock = bprecond;
1166         else if (bbody)      tmpblock = bbody;
1167         else                 tmpblock = bout;
1168         if (!ir_block_create_jump(end_bincrement, tmpblock))
1169             return false;
1170     }
1171
1172     /* from postcond */
1173     if (bpostcond)
1174     {
1175         ir_block *ontrue, *onfalse;
1176         if      (bprecond)   ontrue = bprecond;
1177         else if (bbody)      ontrue = bbody;
1178         else if (bincrement) ontrue = bincrement;
1179         else                 ontrue = bpostcond;
1180         onfalse = bout;
1181         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1182             return false;
1183     }
1184
1185     /* Move 'bout' to the end */
1186     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1187         !ir_function_blocks_add(func->ir_func, bout))
1188     {
1189         ir_block_delete(bout);
1190         return false;
1191     }
1192
1193     return true;
1194 }
1195
1196 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1197 {
1198     ast_expression_codegen *cgen;
1199     ir_value_vector         params;
1200     ir_instr               *callinstr;
1201     size_t i;
1202
1203     ir_value *funval = NULL;
1204
1205     /* return values are never rvalues */
1206     (void)lvalue;
1207
1208     cgen = self->func->expression.codegen;
1209     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1210         return false;
1211     if (!funval)
1212         return false;
1213
1214     MEM_VECTOR_INIT(&params, v);
1215
1216     /* parameters */
1217     for (i = 0; i < self->params_count; ++i)
1218     {
1219         ir_value *param;
1220         ast_expression *expr = self->params[i];
1221
1222         cgen = expr->expression.codegen;
1223         if (!(*cgen)(expr, func, false, &param))
1224             goto error;
1225         if (!param)
1226             goto error;
1227         if (!ir_value_vector_v_add(&params, param))
1228             goto error;
1229     }
1230
1231     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1232     if (!callinstr)
1233         goto error;
1234
1235     for (i = 0; i < params.v_count; ++i) {
1236         if (!ir_call_param(callinstr, params.v[i]))
1237             goto error;
1238     }
1239
1240     *out = ir_call_value(callinstr);
1241
1242     return true;
1243 error:
1244     MEM_VECTOR_CLEAR(&params, v);
1245     return false;
1246 }