]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
better labelling in ast_function_labeling, this time the number is even printed forwa...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 ast_store* ast_store_new(lex_ctx ctx, int op,
593                          ast_expression *dest, ast_expression *source)
594 {
595     ast_instantiate(ast_store, ctx, ast_store_delete);
596     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
597
598     self->op = op;
599     self->dest = dest;
600     self->source = source;
601
602     return self;
603 }
604
605 void ast_store_delete(ast_store *self)
606 {
607     ast_unref(self->dest);
608     ast_unref(self->source);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_block* ast_block_new(lex_ctx ctx)
614 {
615     ast_instantiate(ast_block, ctx, ast_block_delete);
616     ast_expression_init((ast_expression*)self,
617                         (ast_expression_codegen*)&ast_block_codegen);
618
619     MEM_VECTOR_INIT(self, locals);
620     MEM_VECTOR_INIT(self, exprs);
621     MEM_VECTOR_INIT(self, collect);
622
623     return self;
624 }
625 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
627 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
628
629 bool ast_block_collect(ast_block *self, ast_expression *expr)
630 {
631     if (!ast_block_collect_add(self, expr))
632         return false;
633     expr->expression.node.keep = true;
634     return true;
635 }
636
637 void ast_block_delete(ast_block *self)
638 {
639     size_t i;
640     for (i = 0; i < self->exprs_count; ++i)
641         ast_unref(self->exprs[i]);
642     MEM_VECTOR_CLEAR(self, exprs);
643     for (i = 0; i < self->locals_count; ++i)
644         ast_delete(self->locals[i]);
645     MEM_VECTOR_CLEAR(self, locals);
646     for (i = 0; i < self->collect_count; ++i)
647         ast_delete(self->collect[i]);
648     MEM_VECTOR_CLEAR(self, collect);
649     ast_expression_delete((ast_expression*)self);
650     mem_d(self);
651 }
652
653 bool ast_block_set_type(ast_block *self, ast_expression *from)
654 {
655     if (self->expression.next)
656         ast_delete(self->expression.next);
657     self->expression.vtype = from->expression.vtype;
658     if (from->expression.next) {
659         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
660         if (!self->expression.next)
661             return false;
662     }
663     else
664         self->expression.next = NULL;
665     return true;
666 }
667
668 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
669 {
670     ast_instantiate(ast_function, ctx, ast_function_delete);
671
672     if (!vtype ||
673         vtype->isconst ||
674         vtype->expression.vtype != TYPE_FUNCTION)
675     {
676         mem_d(self);
677         return NULL;
678     }
679
680     self->vtype = vtype;
681     self->name = name ? util_strdup(name) : NULL;
682     MEM_VECTOR_INIT(self, blocks);
683
684     self->labelcount = 0;
685     self->builtin = 0;
686
687     self->ir_func = NULL;
688     self->curblock = NULL;
689
690     self->breakblock    = NULL;
691     self->continueblock = NULL;
692
693     vtype->isconst = true;
694     vtype->constval.vfunc = self;
695
696     return self;
697 }
698
699 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
700
701 void ast_function_delete(ast_function *self)
702 {
703     size_t i;
704     if (self->name)
705         mem_d((void*)self->name);
706     if (self->vtype) {
707         /* ast_value_delete(self->vtype); */
708         self->vtype->isconst = false;
709         self->vtype->constval.vfunc = NULL;
710         /* We use unref - if it was stored in a global table it is supposed
711          * to be deleted from *there*
712          */
713         ast_unref(self->vtype);
714     }
715     for (i = 0; i < self->blocks_count; ++i)
716         ast_delete(self->blocks[i]);
717     MEM_VECTOR_CLEAR(self, blocks);
718     mem_d(self);
719 }
720
721 const char* ast_function_label(ast_function *self, const char *prefix)
722 {
723     size_t id  = (self->labelcount++);
724     size_t len = strlen(prefix);
725
726     char *from = self->labelbuf + sizeof(self->labelbuf)-1;
727     *from-- = 0;
728     do {
729         unsigned int digit = id % 10;
730         *from = digit + '0';
731         id /= 10;
732     } while (id);
733     memcpy(from - len, prefix, len);
734     return from - len;
735 }
736
737 /*********************************************************************/
738 /* AST codegen part
739  * by convention you must never pass NULL to the 'ir_value **out'
740  * parameter. If you really don't care about the output, pass a dummy.
741  * But I can't imagine a pituation where the output is truly unnecessary.
742  */
743
744 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
745 {
746     /* NOTE: This is the codegen for a variable used in an expression.
747      * It is not the codegen to generate the value. For this purpose,
748      * ast_local_codegen and ast_global_codegen are to be used before this
749      * is executed. ast_function_codegen should take care of its locals,
750      * and the ast-user should take care of ast_global_codegen to be used
751      * on all the globals.
752      */
753     if (!self->ir_v) {
754         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
755         return false;
756     }
757     *out = self->ir_v;
758     return true;
759 }
760
761 bool ast_global_codegen(ast_value *self, ir_builder *ir)
762 {
763     ir_value *v = NULL;
764     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
765     {
766         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
767         if (!func)
768             return false;
769         func->context = ast_ctx(self);
770
771         self->constval.vfunc->ir_func = func;
772         self->ir_v = func->value;
773         /* The function is filled later on ast_function_codegen... */
774         return true;
775     }
776
777     if (self->expression.vtype == TYPE_FIELD) {
778         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
779         if (!v)
780             return false;
781         v->context = ast_ctx(self);
782         if (self->isconst) {
783             asterror(ast_ctx(self), "TODO: constant field pointers with value");
784             goto error;
785         }
786         self->ir_v = v;
787         return true;
788     }
789
790     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
791     if (!v) {
792         asterror(ast_ctx(self), "ir_builder_create_global failed");
793         return false;
794     }
795     v->context = ast_ctx(self);
796
797     if (self->isconst) {
798         switch (self->expression.vtype)
799         {
800             case TYPE_FLOAT:
801                 if (!ir_value_set_float(v, self->constval.vfloat))
802                     goto error;
803                 break;
804             case TYPE_VECTOR:
805                 if (!ir_value_set_vector(v, self->constval.vvec))
806                     goto error;
807                 break;
808             case TYPE_STRING:
809                 if (!ir_value_set_string(v, self->constval.vstring))
810                     goto error;
811                 break;
812             case TYPE_FUNCTION:
813                 asterror(ast_ctx(self), "global of type function not properly generated");
814                 goto error;
815                 /* Cannot generate an IR value for a function,
816                  * need a pointer pointing to a function rather.
817                  */
818             default:
819                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
820                 break;
821         }
822     }
823
824     /* link us to the ir_value */
825     self->ir_v = v;
826     return true;
827
828 error: /* clean up */
829     ir_value_delete(v);
830     return false;
831 }
832
833 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
834 {
835     ir_value *v = NULL;
836     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
837     {
838         /* Do we allow local functions? I think not...
839          * this is NOT a function pointer atm.
840          */
841         return false;
842     }
843
844     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
845     if (!v)
846         return false;
847     v->context = ast_ctx(self);
848
849     /* A constant local... hmmm...
850      * I suppose the IR will have to deal with this
851      */
852     if (self->isconst) {
853         switch (self->expression.vtype)
854         {
855             case TYPE_FLOAT:
856                 if (!ir_value_set_float(v, self->constval.vfloat))
857                     goto error;
858                 break;
859             case TYPE_VECTOR:
860                 if (!ir_value_set_vector(v, self->constval.vvec))
861                     goto error;
862                 break;
863             case TYPE_STRING:
864                 if (!ir_value_set_string(v, self->constval.vstring))
865                     goto error;
866                 break;
867             default:
868                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
869                 break;
870         }
871     }
872
873     /* link us to the ir_value */
874     self->ir_v = v;
875     return true;
876
877 error: /* clean up */
878     ir_value_delete(v);
879     return false;
880 }
881
882 bool ast_function_codegen(ast_function *self, ir_builder *ir)
883 {
884     ir_function *irf;
885     ir_value    *dummy;
886     ast_expression_common *ec;
887     size_t    i;
888
889     irf = self->ir_func;
890     if (!irf) {
891         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
892         return false;
893     }
894
895     /* fill the parameter list */
896     ec = &self->vtype->expression;
897     for (i = 0; i < ec->params_count; ++i)
898     {
899         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
900             return false;
901         if (!self->builtin) {
902             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
903                 return false;
904         }
905     }
906
907     if (self->builtin) {
908         irf->builtin = self->builtin;
909         return true;
910     }
911
912     if (!self->blocks_count) {
913         asterror(ast_ctx(self), "function `%s` has no body", self->name);
914         return false;
915     }
916
917     self->curblock = ir_function_create_block(irf, "entry");
918     if (!self->curblock) {
919         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
920         return false;
921     }
922
923     for (i = 0; i < self->blocks_count; ++i) {
924         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
925         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
926             return false;
927     }
928
929     /* TODO: check return types */
930     if (!self->curblock->is_return)
931     {
932         return ir_block_create_return(self->curblock, NULL);
933         /* From now on the parser has to handle this situation */
934 #if 0
935         if (!self->vtype->expression.next ||
936             self->vtype->expression.next->expression.vtype == TYPE_VOID)
937         {
938             return ir_block_create_return(self->curblock, NULL);
939         }
940         else
941         {
942             /* error("missing return"); */
943             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
944             return false;
945         }
946 #endif
947     }
948     return true;
949 }
950
951 /* Note, you will not see ast_block_codegen generate ir_blocks.
952  * To the AST and the IR, blocks are 2 different things.
953  * In the AST it represents a block of code, usually enclosed in
954  * curly braces {...}.
955  * While in the IR it represents a block in terms of control-flow.
956  */
957 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
958 {
959     size_t i;
960
961     /* We don't use this
962      * Note: an ast-representation using the comma-operator
963      * of the form: (a, b, c) = x should not assign to c...
964      */
965     (void)lvalue;
966     if (self->expression.outr) {
967         *out = self->expression.outr;
968         return true;
969     }
970
971     /* output is NULL at first, we'll have each expression
972      * assign to out output, thus, a comma-operator represention
973      * using an ast_block will return the last generated value,
974      * so: (b, c) + a  executed both b and c, and returns c,
975      * which is then added to a.
976      */
977     *out = NULL;
978
979     /* generate locals */
980     for (i = 0; i < self->locals_count; ++i)
981     {
982         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
983             if (opts_debug)
984                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
985             return false;
986         }
987     }
988
989     for (i = 0; i < self->exprs_count; ++i)
990     {
991         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
992         if (!(*gen)(self->exprs[i], func, false, out))
993             return false;
994     }
995
996     self->expression.outr = *out;
997
998     return true;
999 }
1000
1001 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1002 {
1003     ast_expression_codegen *cgen;
1004     ir_value *left, *right;
1005
1006     if (lvalue && self->expression.outl) {
1007         *out = self->expression.outl;
1008         return true;
1009     }
1010
1011     if (!lvalue && self->expression.outr) {
1012         *out = self->expression.outr;
1013         return true;
1014     }
1015
1016     cgen = self->dest->expression.codegen;
1017     /* lvalue! */
1018     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1019         return false;
1020     self->expression.outl = left;
1021
1022     cgen = self->source->expression.codegen;
1023     /* rvalue! */
1024     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1025         return false;
1026
1027     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1028         return false;
1029     self->expression.outr = right;
1030
1031     /* Theoretically, an assinment returns its left side as an
1032      * lvalue, if we don't need an lvalue though, we return
1033      * the right side as an rvalue, otherwise we have to
1034      * somehow know whether or not we need to dereference the pointer
1035      * on the left side - that is: OP_LOAD if it was an address.
1036      * Also: in original QC we cannot OP_LOADP *anyway*.
1037      */
1038     *out = (lvalue ? left : right);
1039
1040     return true;
1041 }
1042
1043 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1044 {
1045     ast_expression_codegen *cgen;
1046     ir_value *left, *right;
1047
1048     /* In the context of a binary operation, we can disregard
1049      * the lvalue flag.
1050      */
1051     (void)lvalue;
1052     if (self->expression.outr) {
1053         *out = self->expression.outr;
1054         return true;
1055     }
1056
1057     cgen = self->left->expression.codegen;
1058     /* lvalue! */
1059     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1060         return false;
1061
1062     cgen = self->right->expression.codegen;
1063     /* rvalue! */
1064     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1065         return false;
1066
1067     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1068                                  self->op, left, right);
1069     if (!*out)
1070         return false;
1071     self->expression.outr = *out;
1072
1073     return true;
1074 }
1075
1076 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1077 {
1078     ast_expression_codegen *cgen;
1079     ir_value *leftl, *leftr, *right, *bin;
1080
1081     if (lvalue && self->expression.outl) {
1082         *out = self->expression.outl;
1083         return true;
1084     }
1085
1086     if (!lvalue && self->expression.outr) {
1087         *out = self->expression.outr;
1088         return true;
1089     }
1090
1091     /* for a binstore we need both an lvalue and an rvalue for the left side */
1092     /* rvalue of destination! */
1093     cgen = self->dest->expression.codegen;
1094     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1095         return false;
1096
1097     /* source as rvalue only */
1098     cgen = self->source->expression.codegen;
1099     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1100         return false;
1101
1102     /* now the binary */
1103     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1104                                 self->opbin, leftr, right);
1105     self->expression.outr = bin;
1106
1107     /* now store them */
1108     cgen = self->dest->expression.codegen;
1109     /* lvalue of destination */
1110     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1111         return false;
1112     self->expression.outl = leftl;
1113
1114     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1115         return false;
1116     self->expression.outr = bin;
1117
1118     /* Theoretically, an assinment returns its left side as an
1119      * lvalue, if we don't need an lvalue though, we return
1120      * the right side as an rvalue, otherwise we have to
1121      * somehow know whether or not we need to dereference the pointer
1122      * on the left side - that is: OP_LOAD if it was an address.
1123      * Also: in original QC we cannot OP_LOADP *anyway*.
1124      */
1125     *out = (lvalue ? leftl : bin);
1126
1127     return true;
1128 }
1129
1130 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1131 {
1132     ast_expression_codegen *cgen;
1133     ir_value *operand;
1134
1135     /* In the context of a unary operation, we can disregard
1136      * the lvalue flag.
1137      */
1138     (void)lvalue;
1139     if (self->expression.outr) {
1140         *out = self->expression.outr;
1141         return true;
1142     }
1143
1144     cgen = self->operand->expression.codegen;
1145     /* lvalue! */
1146     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1147         return false;
1148
1149     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1150                                  self->op, operand);
1151     if (!*out)
1152         return false;
1153     self->expression.outr = *out;
1154
1155     return true;
1156 }
1157
1158 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1159 {
1160     ast_expression_codegen *cgen;
1161     ir_value *operand;
1162
1163     /* In the context of a return operation, we can disregard
1164      * the lvalue flag.
1165      */
1166     (void)lvalue;
1167     if (self->expression.outr) {
1168         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1169         return false;
1170     }
1171     self->expression.outr = (ir_value*)1;
1172
1173     if (self->operand) {
1174         cgen = self->operand->expression.codegen;
1175         /* lvalue! */
1176         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1177             return false;
1178
1179         if (!ir_block_create_return(func->curblock, operand))
1180             return false;
1181     } else {
1182         if (!ir_block_create_return(func->curblock, NULL))
1183             return false;
1184     }
1185
1186     return true;
1187 }
1188
1189 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1190 {
1191     ast_expression_codegen *cgen;
1192     ir_value *ent, *field;
1193
1194     /* This function needs to take the 'lvalue' flag into account!
1195      * As lvalue we provide a field-pointer, as rvalue we provide the
1196      * value in a temp.
1197      */
1198
1199     if (lvalue && self->expression.outl) {
1200         *out = self->expression.outl;
1201         return true;
1202     }
1203
1204     if (!lvalue && self->expression.outr) {
1205         *out = self->expression.outr;
1206         return true;
1207     }
1208
1209     cgen = self->entity->expression.codegen;
1210     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1211         return false;
1212
1213     cgen = self->field->expression.codegen;
1214     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1215         return false;
1216
1217     if (lvalue) {
1218         /* address! */
1219         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1220                                             ent, field);
1221     } else {
1222         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1223                                              ent, field, self->expression.vtype);
1224     }
1225     if (!*out) {
1226         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1227                  (lvalue ? "ADDRESS" : "FIELD"),
1228                  type_name[self->expression.vtype]);
1229         return false;
1230     }
1231
1232     if (lvalue)
1233         self->expression.outl = *out;
1234     else
1235         self->expression.outr = *out;
1236
1237     /* Hm that should be it... */
1238     return true;
1239 }
1240
1241 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1242 {
1243     ast_expression_codegen *cgen;
1244     ir_value *vec;
1245
1246     /* in QC this is always an lvalue */
1247     (void)lvalue;
1248     if (self->expression.outl) {
1249         *out = self->expression.outl;
1250         return true;
1251     }
1252
1253     cgen = self->owner->expression.codegen;
1254     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1255         return false;
1256
1257     if (vec->vtype != TYPE_VECTOR &&
1258         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1259     {
1260         return false;
1261     }
1262
1263     *out = ir_value_vector_member(vec, self->field);
1264     self->expression.outl = *out;
1265
1266     return (*out != NULL);
1267 }
1268
1269 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1270 {
1271     ast_expression_codegen *cgen;
1272
1273     ir_value *condval;
1274     ir_value *dummy;
1275
1276     ir_block *cond = func->curblock;
1277     ir_block *ontrue;
1278     ir_block *onfalse;
1279     ir_block *ontrue_endblock;
1280     ir_block *onfalse_endblock;
1281     ir_block *merge;
1282
1283     /* We don't output any value, thus also don't care about r/lvalue */
1284     (void)out;
1285     (void)lvalue;
1286
1287     if (self->expression.outr) {
1288         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1289         return false;
1290     }
1291     self->expression.outr = (ir_value*)1;
1292
1293     /* generate the condition */
1294     func->curblock = cond;
1295     cgen = self->cond->expression.codegen;
1296     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1297         return false;
1298
1299     /* on-true path */
1300
1301     if (self->on_true) {
1302         /* create on-true block */
1303         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1304         if (!ontrue)
1305             return false;
1306
1307         /* enter the block */
1308         func->curblock = ontrue;
1309
1310         /* generate */
1311         cgen = self->on_true->expression.codegen;
1312         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1313             return false;
1314
1315         /* we now need to work from the current endpoint */
1316         ontrue_endblock = func->curblock;
1317     } else
1318         ontrue = NULL;
1319
1320     /* on-false path */
1321     if (self->on_false) {
1322         /* create on-false block */
1323         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1324         if (!onfalse)
1325             return false;
1326
1327         /* enter the block */
1328         func->curblock = onfalse;
1329
1330         /* generate */
1331         cgen = self->on_false->expression.codegen;
1332         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1333             return false;
1334
1335         /* we now need to work from the current endpoint */
1336         onfalse_endblock = func->curblock;
1337     } else
1338         onfalse = NULL;
1339
1340     /* Merge block were they all merge in to */
1341     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1342     if (!merge)
1343         return false;
1344
1345     /* add jumps ot the merge block */
1346     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1347         return false;
1348     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1349         return false;
1350
1351     /* we create the if here, that way all blocks are ordered :)
1352      */
1353     if (!ir_block_create_if(cond, condval,
1354                             (ontrue  ? ontrue  : merge),
1355                             (onfalse ? onfalse : merge)))
1356     {
1357         return false;
1358     }
1359
1360     /* Now enter the merge block */
1361     func->curblock = merge;
1362
1363     return true;
1364 }
1365
1366 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1367 {
1368     ast_expression_codegen *cgen;
1369
1370     ir_value *condval;
1371     ir_value *trueval, *falseval;
1372     ir_instr *phi;
1373
1374     ir_block *cond = func->curblock;
1375     ir_block *ontrue;
1376     ir_block *onfalse;
1377     ir_block *merge;
1378
1379     /* Ternary can never create an lvalue... */
1380     if (lvalue)
1381         return false;
1382
1383     /* In theory it shouldn't be possible to pass through a node twice, but
1384      * in case we add any kind of optimization pass for the AST itself, it
1385      * may still happen, thus we remember a created ir_value and simply return one
1386      * if it already exists.
1387      */
1388     if (self->phi_out) {
1389         *out = self->phi_out;
1390         return true;
1391     }
1392
1393     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1394
1395     /* generate the condition */
1396     func->curblock = cond;
1397     cgen = self->cond->expression.codegen;
1398     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1399         return false;
1400
1401     /* create on-true block */
1402     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1403     if (!ontrue)
1404         return false;
1405     else
1406     {
1407         /* enter the block */
1408         func->curblock = ontrue;
1409
1410         /* generate */
1411         cgen = self->on_true->expression.codegen;
1412         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1413             return false;
1414     }
1415
1416     /* create on-false block */
1417     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1418     if (!onfalse)
1419         return false;
1420     else
1421     {
1422         /* enter the block */
1423         func->curblock = onfalse;
1424
1425         /* generate */
1426         cgen = self->on_false->expression.codegen;
1427         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1428             return false;
1429     }
1430
1431     /* create merge block */
1432     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1433     if (!merge)
1434         return false;
1435     /* jump to merge block */
1436     if (!ir_block_create_jump(ontrue, merge))
1437         return false;
1438     if (!ir_block_create_jump(onfalse, merge))
1439         return false;
1440
1441     /* create if instruction */
1442     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1443         return false;
1444
1445     /* Now enter the merge block */
1446     func->curblock = merge;
1447
1448     /* Here, now, we need a PHI node
1449      * but first some sanity checking...
1450      */
1451     if (trueval->vtype != falseval->vtype) {
1452         /* error("ternary with different types on the two sides"); */
1453         return false;
1454     }
1455
1456     /* create PHI */
1457     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1458     if (!phi ||
1459         !ir_phi_add(phi, ontrue,  trueval) ||
1460         !ir_phi_add(phi, onfalse, falseval))
1461     {
1462         return false;
1463     }
1464
1465     self->phi_out = ir_phi_value(phi);
1466     *out = self->phi_out;
1467
1468     return true;
1469 }
1470
1471 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1472 {
1473     ast_expression_codegen *cgen;
1474
1475     ir_value *dummy      = NULL;
1476     ir_value *precond    = NULL;
1477     ir_value *postcond   = NULL;
1478
1479     /* Since we insert some jumps "late" so we have blocks
1480      * ordered "nicely", we need to keep track of the actual end-blocks
1481      * of expressions to add the jumps to.
1482      */
1483     ir_block *bbody      = NULL, *end_bbody      = NULL;
1484     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1485     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1486     ir_block *bincrement = NULL, *end_bincrement = NULL;
1487     ir_block *bout       = NULL, *bin            = NULL;
1488
1489     /* let's at least move the outgoing block to the end */
1490     size_t    bout_id;
1491
1492     /* 'break' and 'continue' need to be able to find the right blocks */
1493     ir_block *bcontinue     = NULL;
1494     ir_block *bbreak        = NULL;
1495
1496     ir_block *old_bcontinue = NULL;
1497     ir_block *old_bbreak    = NULL;
1498
1499     ir_block *tmpblock      = NULL;
1500
1501     (void)lvalue;
1502     (void)out;
1503
1504     if (self->expression.outr) {
1505         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1506         return false;
1507     }
1508     self->expression.outr = (ir_value*)1;
1509
1510     /* NOTE:
1511      * Should we ever need some kind of block ordering, better make this function
1512      * move blocks around than write a block ordering algorithm later... after all
1513      * the ast and ir should work together, not against each other.
1514      */
1515
1516     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1517      * anyway if for example it contains a ternary.
1518      */
1519     if (self->initexpr)
1520     {
1521         cgen = self->initexpr->expression.codegen;
1522         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1523             return false;
1524     }
1525
1526     /* Store the block from which we enter this chaos */
1527     bin = func->curblock;
1528
1529     /* The pre-loop condition needs its own block since we
1530      * need to be able to jump to the start of that expression.
1531      */
1532     if (self->precond)
1533     {
1534         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1535         if (!bprecond)
1536             return false;
1537
1538         /* the pre-loop-condition the least important place to 'continue' at */
1539         bcontinue = bprecond;
1540
1541         /* enter */
1542         func->curblock = bprecond;
1543
1544         /* generate */
1545         cgen = self->precond->expression.codegen;
1546         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1547             return false;
1548
1549         end_bprecond = func->curblock;
1550     } else {
1551         bprecond = end_bprecond = NULL;
1552     }
1553
1554     /* Now the next blocks won't be ordered nicely, but we need to
1555      * generate them this early for 'break' and 'continue'.
1556      */
1557     if (self->increment) {
1558         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1559         if (!bincrement)
1560             return false;
1561         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1562     } else {
1563         bincrement = end_bincrement = NULL;
1564     }
1565
1566     if (self->postcond) {
1567         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1568         if (!bpostcond)
1569             return false;
1570         bcontinue = bpostcond; /* postcond comes before the increment */
1571     } else {
1572         bpostcond = end_bpostcond = NULL;
1573     }
1574
1575     bout_id = func->ir_func->blocks_count;
1576     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1577     if (!bout)
1578         return false;
1579     bbreak = bout;
1580
1581     /* The loop body... */
1582     if (self->body)
1583     {
1584         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1585         if (!bbody)
1586             return false;
1587
1588         /* enter */
1589         func->curblock = bbody;
1590
1591         old_bbreak          = func->breakblock;
1592         old_bcontinue       = func->continueblock;
1593         func->breakblock    = bbreak;
1594         func->continueblock = bcontinue;
1595
1596         /* generate */
1597         cgen = self->body->expression.codegen;
1598         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1599             return false;
1600
1601         end_bbody = func->curblock;
1602         func->breakblock    = old_bbreak;
1603         func->continueblock = old_bcontinue;
1604     }
1605
1606     /* post-loop-condition */
1607     if (self->postcond)
1608     {
1609         /* enter */
1610         func->curblock = bpostcond;
1611
1612         /* generate */
1613         cgen = self->postcond->expression.codegen;
1614         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1615             return false;
1616
1617         end_bpostcond = func->curblock;
1618     }
1619
1620     /* The incrementor */
1621     if (self->increment)
1622     {
1623         /* enter */
1624         func->curblock = bincrement;
1625
1626         /* generate */
1627         cgen = self->increment->expression.codegen;
1628         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1629             return false;
1630
1631         end_bincrement = func->curblock;
1632     }
1633
1634     /* In any case now, we continue from the outgoing block */
1635     func->curblock = bout;
1636
1637     /* Now all blocks are in place */
1638     /* From 'bin' we jump to whatever comes first */
1639     if      (bprecond)   tmpblock = bprecond;
1640     else if (bbody)      tmpblock = bbody;
1641     else if (bpostcond)  tmpblock = bpostcond;
1642     else                 tmpblock = bout;
1643     if (!ir_block_create_jump(bin, tmpblock))
1644         return false;
1645
1646     /* From precond */
1647     if (bprecond)
1648     {
1649         ir_block *ontrue, *onfalse;
1650         if      (bbody)      ontrue = bbody;
1651         else if (bincrement) ontrue = bincrement;
1652         else if (bpostcond)  ontrue = bpostcond;
1653         else                 ontrue = bprecond;
1654         onfalse = bout;
1655         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1656             return false;
1657     }
1658
1659     /* from body */
1660     if (bbody)
1661     {
1662         if      (bincrement) tmpblock = bincrement;
1663         else if (bpostcond)  tmpblock = bpostcond;
1664         else if (bprecond)   tmpblock = bprecond;
1665         else                 tmpblock = bout;
1666         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1667             return false;
1668     }
1669
1670     /* from increment */
1671     if (bincrement)
1672     {
1673         if      (bpostcond)  tmpblock = bpostcond;
1674         else if (bprecond)   tmpblock = bprecond;
1675         else if (bbody)      tmpblock = bbody;
1676         else                 tmpblock = bout;
1677         if (!ir_block_create_jump(end_bincrement, tmpblock))
1678             return false;
1679     }
1680
1681     /* from postcond */
1682     if (bpostcond)
1683     {
1684         ir_block *ontrue, *onfalse;
1685         if      (bprecond)   ontrue = bprecond;
1686         else if (bbody)      ontrue = bbody;
1687         else if (bincrement) ontrue = bincrement;
1688         else                 ontrue = bpostcond;
1689         onfalse = bout;
1690         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1691             return false;
1692     }
1693
1694     /* Move 'bout' to the end */
1695     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1696         !ir_function_blocks_add(func->ir_func, bout))
1697     {
1698         ir_block_delete(bout);
1699         return false;
1700     }
1701
1702     return true;
1703 }
1704
1705 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1706 {
1707     ast_expression_codegen *cgen;
1708     ir_value_vector         params;
1709     ir_instr               *callinstr;
1710     size_t i;
1711
1712     ir_value *funval = NULL;
1713
1714     /* return values are never lvalues */
1715     (void)lvalue;
1716
1717     if (self->expression.outr) {
1718         *out = self->expression.outr;
1719         return true;
1720     }
1721
1722     cgen = self->func->expression.codegen;
1723     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1724         return false;
1725     if (!funval)
1726         return false;
1727
1728     MEM_VECTOR_INIT(&params, v);
1729
1730     /* parameters */
1731     for (i = 0; i < self->params_count; ++i)
1732     {
1733         ir_value *param;
1734         ast_expression *expr = self->params[i];
1735
1736         cgen = expr->expression.codegen;
1737         if (!(*cgen)(expr, func, false, &param))
1738             goto error;
1739         if (!param)
1740             goto error;
1741         if (!ir_value_vector_v_add(&params, param))
1742             goto error;
1743     }
1744
1745     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1746     if (!callinstr)
1747         goto error;
1748
1749     for (i = 0; i < params.v_count; ++i) {
1750         if (!ir_call_param(callinstr, params.v[i]))
1751             goto error;
1752     }
1753
1754     *out = ir_call_value(callinstr);
1755     self->expression.outr = *out;
1756
1757     MEM_VECTOR_CLEAR(&params, v);
1758     return true;
1759 error:
1760     MEM_VECTOR_CLEAR(&params, v);
1761     return false;
1762 }