]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
removing all direct 'printfs' from ast and ir, replaced by the error interface
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
160 {
161     ast_instantiate(ast_value, ctx, ast_value_delete);
162     ast_expression_init((ast_expression*)self,
163                         (ast_expression_codegen*)&ast_value_codegen);
164     self->expression.node.keep = true; /* keep */
165
166     self->name = name ? util_strdup(name) : NULL;
167     self->expression.vtype = t;
168     self->expression.next  = NULL;
169     self->isconst = false;
170     memset(&self->constval, 0, sizeof(self->constval));
171
172     self->ir_v    = NULL;
173
174     return self;
175 }
176
177 void ast_value_delete(ast_value* self)
178 {
179     if (self->name)
180         mem_d((void*)self->name);
181     if (self->isconst) {
182         switch (self->expression.vtype)
183         {
184         case TYPE_STRING:
185             mem_d((void*)self->constval.vstring);
186             break;
187         case TYPE_FUNCTION:
188             /* unlink us from the function node */
189             self->constval.vfunc->vtype = NULL;
190             break;
191         /* NOTE: delete function? currently collected in
192          * the parser structure
193          */
194         default:
195             break;
196         }
197     }
198     ast_expression_delete((ast_expression*)self);
199     mem_d(self);
200 }
201
202 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
203 {
204     return ast_expression_common_params_add(&self->expression, p);
205 }
206
207 bool ast_value_set_name(ast_value *self, const char *name)
208 {
209     if (self->name)
210         mem_d((void*)self->name);
211     self->name = util_strdup(name);
212     return !!self->name;
213 }
214
215 ast_binary* ast_binary_new(lex_ctx ctx, int op,
216                            ast_expression* left, ast_expression* right)
217 {
218     ast_instantiate(ast_binary, ctx, ast_binary_delete);
219     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
220
221     self->op = op;
222     self->left = left;
223     self->right = right;
224
225     if (op >= INSTR_EQ_F && op <= INSTR_GT)
226         self->expression.vtype = TYPE_FLOAT;
227     else if (op == INSTR_AND || op == INSTR_OR ||
228              op == INSTR_BITAND || op == INSTR_BITOR)
229         self->expression.vtype = TYPE_FLOAT;
230     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
231         self->expression.vtype = TYPE_VECTOR;
232     else if (op == INSTR_MUL_V)
233         self->expression.vtype = TYPE_FLOAT;
234     else
235         self->expression.vtype = left->expression.vtype;
236
237     return self;
238 }
239
240 void ast_binary_delete(ast_binary *self)
241 {
242     ast_unref(self->left);
243     ast_unref(self->right);
244     ast_expression_delete((ast_expression*)self);
245     mem_d(self);
246 }
247
248 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
249                                ast_expression* left, ast_expression* right)
250 {
251     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
252     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
253
254     self->opstore = storop;
255     self->opbin   = op;
256     self->dest    = left;
257     self->source  = right;
258
259     self->expression.vtype = left->expression.vtype;
260     if (left->expression.next) {
261         self->expression.next = ast_type_copy(ctx, left);
262         if (!self->expression.next) {
263             ast_delete(self);
264             return NULL;
265         }
266     }
267     else
268         self->expression.next = NULL;
269
270     return self;
271 }
272
273 void ast_binstore_delete(ast_binstore *self)
274 {
275     ast_unref(self->dest);
276     ast_unref(self->source);
277     ast_expression_delete((ast_expression*)self);
278     mem_d(self);
279 }
280
281 ast_unary* ast_unary_new(lex_ctx ctx, int op,
282                          ast_expression *expr)
283 {
284     ast_instantiate(ast_unary, ctx, ast_unary_delete);
285     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
286
287     self->op = op;
288     self->operand = expr;
289
290     return self;
291 }
292
293 void ast_unary_delete(ast_unary *self)
294 {
295     ast_unref(self->operand);
296     ast_expression_delete((ast_expression*)self);
297     mem_d(self);
298 }
299
300 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
301 {
302     ast_instantiate(ast_return, ctx, ast_return_delete);
303     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
304
305     self->operand = expr;
306
307     return self;
308 }
309
310 void ast_return_delete(ast_return *self)
311 {
312     ast_unref(self->operand);
313     ast_expression_delete((ast_expression*)self);
314     mem_d(self);
315 }
316
317 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
318 {
319     const ast_expression *outtype;
320
321     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
322
323     if (field->expression.vtype != TYPE_FIELD) {
324         mem_d(self);
325         return NULL;
326     }
327
328     outtype = field->expression.next;
329     if (!outtype) {
330         mem_d(self);
331         /* Error: field has no type... */
332         return NULL;
333     }
334
335     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
336
337     self->expression.vtype = outtype->expression.vtype;
338     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
339
340     self->entity = entity;
341     self->field  = field;
342
343     return self;
344 }
345
346 void ast_entfield_delete(ast_entfield *self)
347 {
348     ast_unref(self->entity);
349     ast_unref(self->field);
350     ast_expression_delete((ast_expression*)self);
351     mem_d(self);
352 }
353
354 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
355 {
356     ast_instantiate(ast_member, ctx, ast_member_delete);
357     if (field >= 3) {
358         mem_d(self);
359         return NULL;
360     }
361
362     if (owner->expression.vtype != TYPE_VECTOR &&
363         owner->expression.vtype != TYPE_FIELD) {
364         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
365         mem_d(self);
366         return NULL;
367     }
368
369     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
370
371     if (owner->expression.vtype == TYPE_VECTOR) {
372         self->expression.vtype = TYPE_FLOAT;
373         self->expression.next  = NULL;
374     } else {
375         self->expression.vtype = TYPE_FIELD;
376         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
377     }
378
379     self->owner = owner;
380     self->field = field;
381
382     return self;
383 }
384
385 void ast_member_delete(ast_member *self)
386 {
387     ast_unref(self->owner);
388     ast_expression_delete((ast_expression*)self);
389     mem_d(self);
390 }
391
392 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
393 {
394     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
395     if (!ontrue && !onfalse) {
396         /* because it is invalid */
397         mem_d(self);
398         return NULL;
399     }
400     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
401
402     self->cond     = cond;
403     self->on_true  = ontrue;
404     self->on_false = onfalse;
405
406     return self;
407 }
408
409 void ast_ifthen_delete(ast_ifthen *self)
410 {
411     ast_unref(self->cond);
412     if (self->on_true)
413         ast_unref(self->on_true);
414     if (self->on_false)
415         ast_unref(self->on_false);
416     ast_expression_delete((ast_expression*)self);
417     mem_d(self);
418 }
419
420 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
421 {
422     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
423     /* This time NEITHER must be NULL */
424     if (!ontrue || !onfalse) {
425         mem_d(self);
426         return NULL;
427     }
428     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
429
430     self->cond     = cond;
431     self->on_true  = ontrue;
432     self->on_false = onfalse;
433     self->phi_out  = NULL;
434
435     return self;
436 }
437
438 void ast_ternary_delete(ast_ternary *self)
439 {
440     ast_unref(self->cond);
441     ast_unref(self->on_true);
442     ast_unref(self->on_false);
443     ast_expression_delete((ast_expression*)self);
444     mem_d(self);
445 }
446
447 ast_loop* ast_loop_new(lex_ctx ctx,
448                        ast_expression *initexpr,
449                        ast_expression *precond,
450                        ast_expression *postcond,
451                        ast_expression *increment,
452                        ast_expression *body)
453 {
454     ast_instantiate(ast_loop, ctx, ast_loop_delete);
455     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
456
457     self->initexpr  = initexpr;
458     self->precond   = precond;
459     self->postcond  = postcond;
460     self->increment = increment;
461     self->body      = body;
462
463     return self;
464 }
465
466 void ast_loop_delete(ast_loop *self)
467 {
468     if (self->initexpr)
469         ast_unref(self->initexpr);
470     if (self->precond)
471         ast_unref(self->precond);
472     if (self->postcond)
473         ast_unref(self->postcond);
474     if (self->increment)
475         ast_unref(self->increment);
476     if (self->body)
477         ast_unref(self->body);
478     ast_expression_delete((ast_expression*)self);
479     mem_d(self);
480 }
481
482 ast_call* ast_call_new(lex_ctx ctx,
483                        ast_expression *funcexpr)
484 {
485     ast_instantiate(ast_call, ctx, ast_call_delete);
486     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
487
488     MEM_VECTOR_INIT(self, params);
489
490     self->func = funcexpr;
491
492     return self;
493 }
494 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
495
496 void ast_call_delete(ast_call *self)
497 {
498     size_t i;
499     for (i = 0; i < self->params_count; ++i)
500         ast_unref(self->params[i]);
501     MEM_VECTOR_CLEAR(self, params);
502
503     if (self->func)
504         ast_unref(self->func);
505
506     ast_expression_delete((ast_expression*)self);
507     mem_d(self);
508 }
509
510 ast_store* ast_store_new(lex_ctx ctx, int op,
511                          ast_expression *dest, ast_expression *source)
512 {
513     ast_instantiate(ast_store, ctx, ast_store_delete);
514     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
515
516     self->op = op;
517     self->dest = dest;
518     self->source = source;
519
520     return self;
521 }
522
523 void ast_store_delete(ast_store *self)
524 {
525     ast_unref(self->dest);
526     ast_unref(self->source);
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_block* ast_block_new(lex_ctx ctx)
532 {
533     ast_instantiate(ast_block, ctx, ast_block_delete);
534     ast_expression_init((ast_expression*)self,
535                         (ast_expression_codegen*)&ast_block_codegen);
536
537     MEM_VECTOR_INIT(self, locals);
538     MEM_VECTOR_INIT(self, exprs);
539
540     return self;
541 }
542 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
543 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
544
545 void ast_block_delete(ast_block *self)
546 {
547     size_t i;
548     for (i = 0; i < self->exprs_count; ++i)
549         ast_unref(self->exprs[i]);
550     MEM_VECTOR_CLEAR(self, exprs);
551     for (i = 0; i < self->locals_count; ++i)
552         ast_delete(self->locals[i]);
553     MEM_VECTOR_CLEAR(self, locals);
554     ast_expression_delete((ast_expression*)self);
555     mem_d(self);
556 }
557
558 bool ast_block_set_type(ast_block *self, ast_expression *from)
559 {
560     if (self->expression.next)
561         ast_delete(self->expression.next);
562     self->expression.vtype = from->expression.vtype;
563     if (from->expression.next) {
564         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
565         if (!self->expression.next)
566             return false;
567     }
568     return true;
569 }
570
571 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
572 {
573     ast_instantiate(ast_function, ctx, ast_function_delete);
574
575     if (!vtype ||
576         vtype->isconst ||
577         vtype->expression.vtype != TYPE_FUNCTION)
578     {
579         mem_d(self);
580         return NULL;
581     }
582
583     self->vtype = vtype;
584     self->name = name ? util_strdup(name) : NULL;
585     MEM_VECTOR_INIT(self, blocks);
586
587     self->labelcount = 0;
588     self->builtin = 0;
589
590     self->ir_func = NULL;
591     self->curblock = NULL;
592
593     self->breakblock    = NULL;
594     self->continueblock = NULL;
595
596     vtype->isconst = true;
597     vtype->constval.vfunc = self;
598
599     return self;
600 }
601
602 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
603
604 void ast_function_delete(ast_function *self)
605 {
606     size_t i;
607     if (self->name)
608         mem_d((void*)self->name);
609     if (self->vtype) {
610         /* ast_value_delete(self->vtype); */
611         self->vtype->isconst = false;
612         self->vtype->constval.vfunc = NULL;
613         /* We use unref - if it was stored in a global table it is supposed
614          * to be deleted from *there*
615          */
616         ast_unref(self->vtype);
617     }
618     for (i = 0; i < self->blocks_count; ++i)
619         ast_delete(self->blocks[i]);
620     MEM_VECTOR_CLEAR(self, blocks);
621     mem_d(self);
622 }
623
624 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
625 {
626     unsigned int base = 10;
627 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
628 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
629     if (size < 1)
630         return;
631     checknul();
632     if (!num)
633         addch('0');
634     else {
635         while (num)
636         {
637             int digit = num % base;
638             num /= base;
639             addch('0' + digit);
640         }
641     }
642
643     *buf = 0;
644 #undef addch
645 #undef checknul
646 }
647
648 const char* ast_function_label(ast_function *self, const char *prefix)
649 {
650     size_t id = (self->labelcount++);
651     size_t len = strlen(prefix);
652     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
653     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
654     return self->labelbuf;
655 }
656
657 /*********************************************************************/
658 /* AST codegen part
659  * by convention you must never pass NULL to the 'ir_value **out'
660  * parameter. If you really don't care about the output, pass a dummy.
661  * But I can't imagine a pituation where the output is truly unnecessary.
662  */
663
664 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
665 {
666     /* NOTE: This is the codegen for a variable used in an expression.
667      * It is not the codegen to generate the value. For this purpose,
668      * ast_local_codegen and ast_global_codegen are to be used before this
669      * is executed. ast_function_codegen should take care of its locals,
670      * and the ast-user should take care of ast_global_codegen to be used
671      * on all the globals.
672      */
673     if (!self->ir_v) {
674         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
675         return false;
676     }
677     *out = self->ir_v;
678     return true;
679 }
680
681 bool ast_global_codegen(ast_value *self, ir_builder *ir)
682 {
683     ir_value *v = NULL;
684     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
685     {
686         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
687         if (!func)
688             return false;
689
690         self->constval.vfunc->ir_func = func;
691         self->ir_v = func->value;
692         /* The function is filled later on ast_function_codegen... */
693         return true;
694     }
695
696     if (self->expression.vtype == TYPE_FIELD) {
697         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
698         if (!v)
699             return false;
700         if (self->isconst) {
701             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
702             goto error;
703         }
704         self->ir_v = v;
705         return true;
706     }
707
708     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
709     if (!v) {
710         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
711         return false;
712     }
713
714     if (self->isconst) {
715         switch (self->expression.vtype)
716         {
717             case TYPE_FLOAT:
718                 if (!ir_value_set_float(v, self->constval.vfloat))
719                     goto error;
720                 break;
721             case TYPE_VECTOR:
722                 if (!ir_value_set_vector(v, self->constval.vvec))
723                     goto error;
724                 break;
725             case TYPE_STRING:
726                 if (!ir_value_set_string(v, self->constval.vstring))
727                     goto error;
728                 break;
729             case TYPE_FUNCTION:
730                 asterror(ast_ctx(self), "global of type function not properly generated\n");
731                 goto error;
732                 /* Cannot generate an IR value for a function,
733                  * need a pointer pointing to a function rather.
734                  */
735             default:
736                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
737                 break;
738         }
739     }
740
741     /* link us to the ir_value */
742     self->ir_v = v;
743     return true;
744
745 error: /* clean up */
746     ir_value_delete(v);
747     return false;
748 }
749
750 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
751 {
752     ir_value *v = NULL;
753     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
754     {
755         /* Do we allow local functions? I think not...
756          * this is NOT a function pointer atm.
757          */
758         return false;
759     }
760
761     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
762     if (!v)
763         return false;
764
765     /* A constant local... hmmm...
766      * I suppose the IR will have to deal with this
767      */
768     if (self->isconst) {
769         switch (self->expression.vtype)
770         {
771             case TYPE_FLOAT:
772                 if (!ir_value_set_float(v, self->constval.vfloat))
773                     goto error;
774                 break;
775             case TYPE_VECTOR:
776                 if (!ir_value_set_vector(v, self->constval.vvec))
777                     goto error;
778                 break;
779             case TYPE_STRING:
780                 if (!ir_value_set_string(v, self->constval.vstring))
781                     goto error;
782                 break;
783             default:
784                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
785                 break;
786         }
787     }
788
789     /* link us to the ir_value */
790     self->ir_v = v;
791     return true;
792
793 error: /* clean up */
794     ir_value_delete(v);
795     return false;
796 }
797
798 bool ast_function_codegen(ast_function *self, ir_builder *ir)
799 {
800     ir_function *irf;
801     ir_value    *dummy;
802     ast_expression_common *ec;
803     size_t    i;
804
805     irf = self->ir_func;
806     if (!irf) {
807         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
808         return false;
809     }
810
811     /* fill the parameter list */
812     ec = &self->vtype->expression;
813     for (i = 0; i < ec->params_count; ++i)
814     {
815         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
816             return false;
817         if (!self->builtin) {
818             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
819                 return false;
820         }
821     }
822
823     if (self->builtin) {
824         irf->builtin = self->builtin;
825         return true;
826     }
827
828     self->curblock = ir_function_create_block(irf, "entry");
829     if (!self->curblock)
830         return false;
831
832     for (i = 0; i < self->blocks_count; ++i) {
833         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
834         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
835             return false;
836     }
837
838     /* TODO: check return types */
839     if (!self->curblock->is_return)
840     {
841         if (!self->vtype->expression.next ||
842             self->vtype->expression.next->expression.vtype == TYPE_VOID)
843         {
844             return ir_block_create_return(self->curblock, NULL);
845         }
846         else
847         {
848             /* error("missing return"); */
849             return false;
850         }
851     }
852     return true;
853 }
854
855 /* Note, you will not see ast_block_codegen generate ir_blocks.
856  * To the AST and the IR, blocks are 2 different things.
857  * In the AST it represents a block of code, usually enclosed in
858  * curly braces {...}.
859  * While in the IR it represents a block in terms of control-flow.
860  */
861 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
862 {
863     size_t i;
864
865     /* We don't use this
866      * Note: an ast-representation using the comma-operator
867      * of the form: (a, b, c) = x should not assign to c...
868      */
869     (void)lvalue;
870     if (self->expression.outr) {
871         *out = self->expression.outr;
872         return true;
873     }
874
875     /* output is NULL at first, we'll have each expression
876      * assign to out output, thus, a comma-operator represention
877      * using an ast_block will return the last generated value,
878      * so: (b, c) + a  executed both b and c, and returns c,
879      * which is then added to a.
880      */
881     *out = NULL;
882
883     /* generate locals */
884     for (i = 0; i < self->locals_count; ++i)
885     {
886         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
887             return false;
888     }
889
890     for (i = 0; i < self->exprs_count; ++i)
891     {
892         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
893         if (!(*gen)(self->exprs[i], func, false, out))
894             return false;
895     }
896
897     self->expression.outr = *out;
898
899     return true;
900 }
901
902 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
903 {
904     ast_expression_codegen *cgen;
905     ir_value *left, *right;
906
907     if (lvalue && self->expression.outl) {
908         *out = self->expression.outl;
909         return true;
910     }
911
912     if (!lvalue && self->expression.outr) {
913         *out = self->expression.outr;
914         return true;
915     }
916
917     cgen = self->dest->expression.codegen;
918     /* lvalue! */
919     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
920         return false;
921     self->expression.outl = left;
922
923     cgen = self->source->expression.codegen;
924     /* rvalue! */
925     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
926         return false;
927
928     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
929         return false;
930     self->expression.outr = right;
931
932     /* Theoretically, an assinment returns its left side as an
933      * lvalue, if we don't need an lvalue though, we return
934      * the right side as an rvalue, otherwise we have to
935      * somehow know whether or not we need to dereference the pointer
936      * on the left side - that is: OP_LOAD if it was an address.
937      * Also: in original QC we cannot OP_LOADP *anyway*.
938      */
939     *out = (lvalue ? left : right);
940
941     return true;
942 }
943
944 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
945 {
946     ast_expression_codegen *cgen;
947     ir_value *left, *right;
948
949     /* In the context of a binary operation, we can disregard
950      * the lvalue flag.
951      */
952     (void)lvalue;
953     if (self->expression.outr) {
954         *out = self->expression.outr;
955         return true;
956     }
957
958     cgen = self->left->expression.codegen;
959     /* lvalue! */
960     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
961         return false;
962
963     cgen = self->right->expression.codegen;
964     /* rvalue! */
965     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
966         return false;
967
968     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
969                                  self->op, left, right);
970     if (!*out)
971         return false;
972     self->expression.outr = *out;
973
974     return true;
975 }
976
977 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
978 {
979     ast_expression_codegen *cgen;
980     ir_value *leftl, *leftr, *right, *bin;
981
982     if (lvalue && self->expression.outl) {
983         *out = self->expression.outl;
984         return true;
985     }
986
987     if (!lvalue && self->expression.outr) {
988         *out = self->expression.outr;
989         return true;
990     }
991
992     /* for a binstore we need both an lvalue and an rvalue for the left side */
993     /* rvalue of destination! */
994     cgen = self->dest->expression.codegen;
995     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftr))
996         return false;
997
998     /* source as rvalue only */
999     cgen = self->source->expression.codegen;
1000     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1001         return false;
1002
1003     /* now the binary */
1004     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1005                                 self->opbin, leftr, right);
1006     self->expression.outr = bin;
1007
1008     /* now store them */
1009     cgen = self->dest->expression.codegen;
1010     /* lvalue of destination */
1011     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1012         return false;
1013     self->expression.outl = leftl;
1014
1015     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1016         return false;
1017     self->expression.outr = bin;
1018
1019     /* Theoretically, an assinment returns its left side as an
1020      * lvalue, if we don't need an lvalue though, we return
1021      * the right side as an rvalue, otherwise we have to
1022      * somehow know whether or not we need to dereference the pointer
1023      * on the left side - that is: OP_LOAD if it was an address.
1024      * Also: in original QC we cannot OP_LOADP *anyway*.
1025      */
1026     *out = (lvalue ? leftl : bin);
1027
1028     return true;
1029 }
1030
1031 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1032 {
1033     ast_expression_codegen *cgen;
1034     ir_value *operand;
1035
1036     /* In the context of a unary operation, we can disregard
1037      * the lvalue flag.
1038      */
1039     (void)lvalue;
1040     if (self->expression.outr) {
1041         *out = self->expression.outr;
1042         return true;
1043     }
1044
1045     cgen = self->operand->expression.codegen;
1046     /* lvalue! */
1047     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1048         return false;
1049
1050     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1051                                  self->op, operand);
1052     if (!*out)
1053         return false;
1054     self->expression.outr = *out;
1055
1056     return true;
1057 }
1058
1059 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1060 {
1061     ast_expression_codegen *cgen;
1062     ir_value *operand;
1063
1064     /* In the context of a return operation, we can disregard
1065      * the lvalue flag.
1066      */
1067     (void)lvalue;
1068     if (self->expression.outr) {
1069         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1070         return false;
1071     }
1072     self->expression.outr = (ir_value*)1;
1073
1074     cgen = self->operand->expression.codegen;
1075     /* lvalue! */
1076     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1077         return false;
1078
1079     if (!ir_block_create_return(func->curblock, operand))
1080         return false;
1081
1082     return true;
1083 }
1084
1085 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1086 {
1087     ast_expression_codegen *cgen;
1088     ir_value *ent, *field;
1089
1090     /* This function needs to take the 'lvalue' flag into account!
1091      * As lvalue we provide a field-pointer, as rvalue we provide the
1092      * value in a temp.
1093      */
1094
1095     if (lvalue && self->expression.outl) {
1096         *out = self->expression.outl;
1097         return true;
1098     }
1099
1100     if (!lvalue && self->expression.outr) {
1101         *out = self->expression.outr;
1102         return true;
1103     }
1104
1105     cgen = self->entity->expression.codegen;
1106     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1107         return false;
1108
1109     cgen = self->field->expression.codegen;
1110     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1111         return false;
1112
1113     if (lvalue) {
1114         /* address! */
1115         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1116                                             ent, field);
1117     } else {
1118         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1119                                              ent, field, self->expression.vtype);
1120     }
1121     if (!*out)
1122         return false;
1123
1124     if (lvalue)
1125         self->expression.outl = *out;
1126     else
1127         self->expression.outr = *out;
1128
1129     /* Hm that should be it... */
1130     return true;
1131 }
1132
1133 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1134 {
1135     ast_expression_codegen *cgen;
1136     ir_value *vec;
1137
1138     /* in QC this is always an lvalue */
1139     (void)lvalue;
1140     if (self->expression.outl) {
1141         *out = self->expression.outl;
1142         return true;
1143     }
1144
1145     cgen = self->owner->expression.codegen;
1146     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1147         return false;
1148
1149     if (vec->vtype != TYPE_VECTOR &&
1150         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1151     {
1152         return false;
1153     }
1154
1155     *out = ir_value_vector_member(vec, self->field);
1156     self->expression.outl = *out;
1157
1158     return (*out != NULL);
1159 }
1160
1161 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1162 {
1163     ast_expression_codegen *cgen;
1164
1165     ir_value *condval;
1166     ir_value *dummy;
1167
1168     ir_block *cond = func->curblock;
1169     ir_block *ontrue;
1170     ir_block *onfalse;
1171     ir_block *merge;
1172
1173     /* We don't output any value, thus also don't care about r/lvalue */
1174     (void)out;
1175     (void)lvalue;
1176
1177     if (self->expression.outr) {
1178         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1179         return false;
1180     }
1181     self->expression.outr = (ir_value*)1;
1182
1183     /* generate the condition */
1184     func->curblock = cond;
1185     cgen = self->cond->expression.codegen;
1186     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1187         return false;
1188
1189     /* on-true path */
1190
1191     if (self->on_true) {
1192         /* create on-true block */
1193         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1194         if (!ontrue)
1195             return false;
1196
1197         /* enter the block */
1198         func->curblock = ontrue;
1199
1200         /* generate */
1201         cgen = self->on_true->expression.codegen;
1202         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1203             return false;
1204     } else
1205         ontrue = NULL;
1206
1207     /* on-false path */
1208     if (self->on_false) {
1209         /* create on-false block */
1210         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1211         if (!onfalse)
1212             return false;
1213
1214         /* enter the block */
1215         func->curblock = onfalse;
1216
1217         /* generate */
1218         cgen = self->on_false->expression.codegen;
1219         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1220             return false;
1221     } else
1222         onfalse = NULL;
1223
1224     /* Merge block were they all merge in to */
1225     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1226     if (!merge)
1227         return false;
1228
1229     /* add jumps ot the merge block */
1230     if (ontrue && !ir_block_create_jump(ontrue, merge))
1231         return false;
1232     if (onfalse && !ir_block_create_jump(onfalse, merge))
1233         return false;
1234
1235     /* we create the if here, that way all blocks are ordered :)
1236      */
1237     if (!ir_block_create_if(cond, condval,
1238                             (ontrue  ? ontrue  : merge),
1239                             (onfalse ? onfalse : merge)))
1240     {
1241         return false;
1242     }
1243
1244     /* Now enter the merge block */
1245     func->curblock = merge;
1246
1247     return true;
1248 }
1249
1250 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1251 {
1252     ast_expression_codegen *cgen;
1253
1254     ir_value *condval;
1255     ir_value *trueval, *falseval;
1256     ir_instr *phi;
1257
1258     ir_block *cond = func->curblock;
1259     ir_block *ontrue;
1260     ir_block *onfalse;
1261     ir_block *merge;
1262
1263     /* Ternary can never create an lvalue... */
1264     if (lvalue)
1265         return false;
1266
1267     /* In theory it shouldn't be possible to pass through a node twice, but
1268      * in case we add any kind of optimization pass for the AST itself, it
1269      * may still happen, thus we remember a created ir_value and simply return one
1270      * if it already exists.
1271      */
1272     if (self->phi_out) {
1273         *out = self->phi_out;
1274         return true;
1275     }
1276
1277     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1278
1279     /* generate the condition */
1280     func->curblock = cond;
1281     cgen = self->cond->expression.codegen;
1282     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1283         return false;
1284
1285     /* create on-true block */
1286     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1287     if (!ontrue)
1288         return false;
1289     else
1290     {
1291         /* enter the block */
1292         func->curblock = ontrue;
1293
1294         /* generate */
1295         cgen = self->on_true->expression.codegen;
1296         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1297             return false;
1298     }
1299
1300     /* create on-false block */
1301     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1302     if (!onfalse)
1303         return false;
1304     else
1305     {
1306         /* enter the block */
1307         func->curblock = onfalse;
1308
1309         /* generate */
1310         cgen = self->on_false->expression.codegen;
1311         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1312             return false;
1313     }
1314
1315     /* create merge block */
1316     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1317     if (!merge)
1318         return false;
1319     /* jump to merge block */
1320     if (!ir_block_create_jump(ontrue, merge))
1321         return false;
1322     if (!ir_block_create_jump(onfalse, merge))
1323         return false;
1324
1325     /* create if instruction */
1326     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1327         return false;
1328
1329     /* Now enter the merge block */
1330     func->curblock = merge;
1331
1332     /* Here, now, we need a PHI node
1333      * but first some sanity checking...
1334      */
1335     if (trueval->vtype != falseval->vtype) {
1336         /* error("ternary with different types on the two sides"); */
1337         return false;
1338     }
1339
1340     /* create PHI */
1341     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1342     if (!phi ||
1343         !ir_phi_add(phi, ontrue,  trueval) ||
1344         !ir_phi_add(phi, onfalse, falseval))
1345     {
1346         return false;
1347     }
1348
1349     self->phi_out = ir_phi_value(phi);
1350     *out = self->phi_out;
1351
1352     return true;
1353 }
1354
1355 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1356 {
1357     ast_expression_codegen *cgen;
1358
1359     ir_value *dummy      = NULL;
1360     ir_value *precond    = NULL;
1361     ir_value *postcond   = NULL;
1362
1363     /* Since we insert some jumps "late" so we have blocks
1364      * ordered "nicely", we need to keep track of the actual end-blocks
1365      * of expressions to add the jumps to.
1366      */
1367     ir_block *bbody      = NULL, *end_bbody      = NULL;
1368     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1369     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1370     ir_block *bincrement = NULL, *end_bincrement = NULL;
1371     ir_block *bout       = NULL, *bin            = NULL;
1372
1373     /* let's at least move the outgoing block to the end */
1374     size_t    bout_id;
1375
1376     /* 'break' and 'continue' need to be able to find the right blocks */
1377     ir_block *bcontinue     = NULL;
1378     ir_block *bbreak        = NULL;
1379
1380     ir_block *old_bcontinue = NULL;
1381     ir_block *old_bbreak    = NULL;
1382
1383     ir_block *tmpblock      = NULL;
1384
1385     (void)lvalue;
1386     (void)out;
1387
1388     if (self->expression.outr) {
1389         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1390         return false;
1391     }
1392     self->expression.outr = (ir_value*)1;
1393
1394     /* NOTE:
1395      * Should we ever need some kind of block ordering, better make this function
1396      * move blocks around than write a block ordering algorithm later... after all
1397      * the ast and ir should work together, not against each other.
1398      */
1399
1400     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1401      * anyway if for example it contains a ternary.
1402      */
1403     if (self->initexpr)
1404     {
1405         cgen = self->initexpr->expression.codegen;
1406         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1407             return false;
1408     }
1409
1410     /* Store the block from which we enter this chaos */
1411     bin = func->curblock;
1412
1413     /* The pre-loop condition needs its own block since we
1414      * need to be able to jump to the start of that expression.
1415      */
1416     if (self->precond)
1417     {
1418         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1419         if (!bprecond)
1420             return false;
1421
1422         /* the pre-loop-condition the least important place to 'continue' at */
1423         bcontinue = bprecond;
1424
1425         /* enter */
1426         func->curblock = bprecond;
1427
1428         /* generate */
1429         cgen = self->precond->expression.codegen;
1430         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1431             return false;
1432
1433         end_bprecond = func->curblock;
1434     } else {
1435         bprecond = end_bprecond = NULL;
1436     }
1437
1438     /* Now the next blocks won't be ordered nicely, but we need to
1439      * generate them this early for 'break' and 'continue'.
1440      */
1441     if (self->increment) {
1442         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1443         if (!bincrement)
1444             return false;
1445         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1446     } else {
1447         bincrement = end_bincrement = NULL;
1448     }
1449
1450     if (self->postcond) {
1451         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1452         if (!bpostcond)
1453             return false;
1454         bcontinue = bpostcond; /* postcond comes before the increment */
1455     } else {
1456         bpostcond = end_bpostcond = NULL;
1457     }
1458
1459     bout_id = func->ir_func->blocks_count;
1460     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1461     if (!bout)
1462         return false;
1463     bbreak = bout;
1464
1465     /* The loop body... */
1466     if (self->body)
1467     {
1468         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1469         if (!bbody)
1470             return false;
1471
1472         /* enter */
1473         func->curblock = bbody;
1474
1475         old_bbreak          = func->breakblock;
1476         old_bcontinue       = func->continueblock;
1477         func->breakblock    = bbreak;
1478         func->continueblock = bcontinue;
1479
1480         /* generate */
1481         cgen = self->body->expression.codegen;
1482         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1483             return false;
1484
1485         end_bbody = func->curblock;
1486         func->breakblock    = old_bbreak;
1487         func->continueblock = old_bcontinue;
1488     }
1489
1490     /* post-loop-condition */
1491     if (self->postcond)
1492     {
1493         /* enter */
1494         func->curblock = bpostcond;
1495
1496         /* generate */
1497         cgen = self->postcond->expression.codegen;
1498         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1499             return false;
1500
1501         end_bpostcond = func->curblock;
1502     }
1503
1504     /* The incrementor */
1505     if (self->increment)
1506     {
1507         /* enter */
1508         func->curblock = bincrement;
1509
1510         /* generate */
1511         cgen = self->increment->expression.codegen;
1512         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1513             return false;
1514
1515         end_bincrement = func->curblock;
1516     }
1517
1518     /* In any case now, we continue from the outgoing block */
1519     func->curblock = bout;
1520
1521     /* Now all blocks are in place */
1522     /* From 'bin' we jump to whatever comes first */
1523     if      (bprecond)   tmpblock = bprecond;
1524     else if (bbody)      tmpblock = bbody;
1525     else if (bpostcond)  tmpblock = bpostcond;
1526     else                 tmpblock = bout;
1527     if (!ir_block_create_jump(bin, tmpblock))
1528         return false;
1529
1530     /* From precond */
1531     if (bprecond)
1532     {
1533         ir_block *ontrue, *onfalse;
1534         if      (bbody)      ontrue = bbody;
1535         else if (bincrement) ontrue = bincrement;
1536         else if (bpostcond)  ontrue = bpostcond;
1537         else                 ontrue = bprecond;
1538         onfalse = bout;
1539         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1540             return false;
1541     }
1542
1543     /* from body */
1544     if (bbody)
1545     {
1546         if      (bincrement) tmpblock = bincrement;
1547         else if (bpostcond)  tmpblock = bpostcond;
1548         else if (bprecond)   tmpblock = bprecond;
1549         else                 tmpblock = bout;
1550         if (!ir_block_create_jump(end_bbody, tmpblock))
1551             return false;
1552     }
1553
1554     /* from increment */
1555     if (bincrement)
1556     {
1557         if      (bpostcond)  tmpblock = bpostcond;
1558         else if (bprecond)   tmpblock = bprecond;
1559         else if (bbody)      tmpblock = bbody;
1560         else                 tmpblock = bout;
1561         if (!ir_block_create_jump(end_bincrement, tmpblock))
1562             return false;
1563     }
1564
1565     /* from postcond */
1566     if (bpostcond)
1567     {
1568         ir_block *ontrue, *onfalse;
1569         if      (bprecond)   ontrue = bprecond;
1570         else if (bbody)      ontrue = bbody;
1571         else if (bincrement) ontrue = bincrement;
1572         else                 ontrue = bpostcond;
1573         onfalse = bout;
1574         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1575             return false;
1576     }
1577
1578     /* Move 'bout' to the end */
1579     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1580         !ir_function_blocks_add(func->ir_func, bout))
1581     {
1582         ir_block_delete(bout);
1583         return false;
1584     }
1585
1586     return true;
1587 }
1588
1589 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1590 {
1591     ast_expression_codegen *cgen;
1592     ir_value_vector         params;
1593     ir_instr               *callinstr;
1594     size_t i;
1595
1596     ir_value *funval = NULL;
1597
1598     /* return values are never lvalues */
1599     (void)lvalue;
1600
1601     if (self->expression.outr) {
1602         *out = self->expression.outr;
1603         return true;
1604     }
1605
1606     cgen = self->func->expression.codegen;
1607     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1608         return false;
1609     if (!funval)
1610         return false;
1611
1612     MEM_VECTOR_INIT(&params, v);
1613
1614     /* parameters */
1615     for (i = 0; i < self->params_count; ++i)
1616     {
1617         ir_value *param;
1618         ast_expression *expr = self->params[i];
1619
1620         cgen = expr->expression.codegen;
1621         if (!(*cgen)(expr, func, false, &param))
1622             goto error;
1623         if (!param)
1624             goto error;
1625         if (!ir_value_vector_v_add(&params, param))
1626             goto error;
1627     }
1628
1629     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1630     if (!callinstr)
1631         goto error;
1632
1633     for (i = 0; i < params.v_count; ++i) {
1634         if (!ir_call_param(callinstr, params.v[i]))
1635             goto error;
1636     }
1637
1638     *out = ir_call_value(callinstr);
1639     self->expression.outr = *out;
1640
1641     MEM_VECTOR_CLEAR(&params, v);
1642     return true;
1643 error:
1644     MEM_VECTOR_CLEAR(&params, v);
1645     return false;
1646 }