]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_return should accept NULL as value to create a simple 'return' without a value
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     for (i = 0; i < fromex->params_count; ++i) {
111         ast_value *v = ast_value_copy(fromex->params[i]);
112         if (!v || !ast_expression_common_params_add(selfex, v)) {
113             ast_value_delete(cp);
114             return NULL;
115         }
116     }
117     return cp;
118 }
119
120 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
121 {
122     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
123     ast_expression_init(self, NULL);
124     self->expression.codegen = NULL;
125     self->expression.next    = NULL;
126     self->expression.vtype   = vtype;
127     return self;
128 }
129
130 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
131 {
132     size_t i;
133     const ast_expression_common *fromex;
134     ast_expression_common *selfex;
135
136     if (!ex)
137         return NULL;
138     else
139     {
140         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
141         ast_expression_init(self, NULL);
142
143         fromex   = &ex->expression;
144         selfex = &self->expression;
145
146         /* This may never be codegen()d */
147         selfex->codegen = NULL;
148
149         selfex->vtype = fromex->vtype;
150         if (fromex->next)
151         {
152             selfex->next = ast_type_copy(ctx, fromex->next);
153             if (!selfex->next) {
154                 ast_expression_delete_full(self);
155                 return NULL;
156             }
157         }
158         else
159             selfex->next = NULL;
160
161         for (i = 0; i < fromex->params_count; ++i) {
162             ast_value *v = ast_value_copy(fromex->params[i]);
163             if (!v || !ast_expression_common_params_add(selfex, v)) {
164                 ast_expression_delete_full(self);
165                 return NULL;
166             }
167         }
168
169         return self;
170     }
171 }
172
173 bool ast_compare_type(ast_expression *a, ast_expression *b)
174 {
175     if (a->expression.vtype != b->expression.vtype)
176         return false;
177     if (!a->expression.next != !b->expression.next)
178         return false;
179     if (a->expression.params_count != b->expression.params_count)
180         return false;
181     if (a->expression.params_count) {
182         size_t i;
183         for (i = 0; i < a->expression.params_count; ++i) {
184             if (!ast_compare_type((ast_expression*)a->expression.params[i],
185                                   (ast_expression*)b->expression.params[i]))
186                 return false;
187         }
188     }
189     if (a->expression.next)
190         return ast_compare_type(a->expression.next, b->expression.next);
191     return true;
192 }
193
194 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
195 {
196     ast_instantiate(ast_value, ctx, ast_value_delete);
197     ast_expression_init((ast_expression*)self,
198                         (ast_expression_codegen*)&ast_value_codegen);
199     self->expression.node.keep = true; /* keep */
200
201     self->name = name ? util_strdup(name) : NULL;
202     self->expression.vtype = t;
203     self->expression.next  = NULL;
204     self->isconst = false;
205     memset(&self->constval, 0, sizeof(self->constval));
206
207     self->ir_v    = NULL;
208
209     return self;
210 }
211
212 void ast_value_delete(ast_value* self)
213 {
214     if (self->name)
215         mem_d((void*)self->name);
216     if (self->isconst) {
217         switch (self->expression.vtype)
218         {
219         case TYPE_STRING:
220             mem_d((void*)self->constval.vstring);
221             break;
222         case TYPE_FUNCTION:
223             /* unlink us from the function node */
224             self->constval.vfunc->vtype = NULL;
225             break;
226         /* NOTE: delete function? currently collected in
227          * the parser structure
228          */
229         default:
230             break;
231         }
232     }
233     ast_expression_delete((ast_expression*)self);
234     mem_d(self);
235 }
236
237 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
238 {
239     return ast_expression_common_params_add(&self->expression, p);
240 }
241
242 bool ast_value_set_name(ast_value *self, const char *name)
243 {
244     if (self->name)
245         mem_d((void*)self->name);
246     self->name = util_strdup(name);
247     return !!self->name;
248 }
249
250 ast_binary* ast_binary_new(lex_ctx ctx, int op,
251                            ast_expression* left, ast_expression* right)
252 {
253     ast_instantiate(ast_binary, ctx, ast_binary_delete);
254     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
255
256     self->op = op;
257     self->left = left;
258     self->right = right;
259
260     if (op >= INSTR_EQ_F && op <= INSTR_GT)
261         self->expression.vtype = TYPE_FLOAT;
262     else if (op == INSTR_AND || op == INSTR_OR ||
263              op == INSTR_BITAND || op == INSTR_BITOR)
264         self->expression.vtype = TYPE_FLOAT;
265     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
266         self->expression.vtype = TYPE_VECTOR;
267     else if (op == INSTR_MUL_V)
268         self->expression.vtype = TYPE_FLOAT;
269     else
270         self->expression.vtype = left->expression.vtype;
271
272     return self;
273 }
274
275 void ast_binary_delete(ast_binary *self)
276 {
277     ast_unref(self->left);
278     ast_unref(self->right);
279     ast_expression_delete((ast_expression*)self);
280     mem_d(self);
281 }
282
283 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
284                                ast_expression* left, ast_expression* right)
285 {
286     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
287     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
288
289     self->opstore = storop;
290     self->opbin   = op;
291     self->dest    = left;
292     self->source  = right;
293
294     self->expression.vtype = left->expression.vtype;
295     if (left->expression.next) {
296         self->expression.next = ast_type_copy(ctx, left);
297         if (!self->expression.next) {
298             ast_delete(self);
299             return NULL;
300         }
301     }
302     else
303         self->expression.next = NULL;
304
305     return self;
306 }
307
308 void ast_binstore_delete(ast_binstore *self)
309 {
310     ast_unref(self->dest);
311     ast_unref(self->source);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_unary* ast_unary_new(lex_ctx ctx, int op,
317                          ast_expression *expr)
318 {
319     ast_instantiate(ast_unary, ctx, ast_unary_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
321
322     self->op = op;
323     self->operand = expr;
324
325     return self;
326 }
327
328 void ast_unary_delete(ast_unary *self)
329 {
330     ast_unref(self->operand);
331     ast_expression_delete((ast_expression*)self);
332     mem_d(self);
333 }
334
335 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
336 {
337     ast_instantiate(ast_return, ctx, ast_return_delete);
338     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
339
340     self->operand = expr;
341
342     return self;
343 }
344
345 void ast_return_delete(ast_return *self)
346 {
347     ast_unref(self->operand);
348     ast_expression_delete((ast_expression*)self);
349     mem_d(self);
350 }
351
352 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
353 {
354     const ast_expression *outtype;
355
356     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
357
358     if (field->expression.vtype != TYPE_FIELD) {
359         mem_d(self);
360         return NULL;
361     }
362
363     outtype = field->expression.next;
364     if (!outtype) {
365         mem_d(self);
366         /* Error: field has no type... */
367         return NULL;
368     }
369
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
371
372     self->expression.vtype = outtype->expression.vtype;
373     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
374
375     self->entity = entity;
376     self->field  = field;
377
378     return self;
379 }
380
381 void ast_entfield_delete(ast_entfield *self)
382 {
383     ast_unref(self->entity);
384     ast_unref(self->field);
385     ast_expression_delete((ast_expression*)self);
386     mem_d(self);
387 }
388
389 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
390 {
391     ast_instantiate(ast_member, ctx, ast_member_delete);
392     if (field >= 3) {
393         mem_d(self);
394         return NULL;
395     }
396
397     if (owner->expression.vtype != TYPE_VECTOR &&
398         owner->expression.vtype != TYPE_FIELD) {
399         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
400         mem_d(self);
401         return NULL;
402     }
403
404     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
405     self->expression.node.keep = true; /* keep */
406
407     if (owner->expression.vtype == TYPE_VECTOR) {
408         self->expression.vtype = TYPE_FLOAT;
409         self->expression.next  = NULL;
410     } else {
411         self->expression.vtype = TYPE_FIELD;
412         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
413     }
414
415     self->owner = owner;
416     self->field = field;
417
418     return self;
419 }
420
421 void ast_member_delete(ast_member *self)
422 {
423     /* The owner is always an ast_value, which has .keep=true,
424      * also: ast_members are usually deleted after the owner, thus
425      * this will cause invalid access
426     ast_unref(self->owner);
427      * once we allow (expression).x to access a vector-member, we need
428      * to change this: preferably by creating an alternate ast node for this
429      * purpose that is not garbage-collected.
430     */
431     ast_expression_delete((ast_expression*)self);
432     mem_d(self);
433 }
434
435 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
436 {
437     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
438     if (!ontrue && !onfalse) {
439         /* because it is invalid */
440         mem_d(self);
441         return NULL;
442     }
443     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
444
445     self->cond     = cond;
446     self->on_true  = ontrue;
447     self->on_false = onfalse;
448
449     return self;
450 }
451
452 void ast_ifthen_delete(ast_ifthen *self)
453 {
454     ast_unref(self->cond);
455     if (self->on_true)
456         ast_unref(self->on_true);
457     if (self->on_false)
458         ast_unref(self->on_false);
459     ast_expression_delete((ast_expression*)self);
460     mem_d(self);
461 }
462
463 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
464 {
465     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
466     /* This time NEITHER must be NULL */
467     if (!ontrue || !onfalse) {
468         mem_d(self);
469         return NULL;
470     }
471     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
472
473     self->cond     = cond;
474     self->on_true  = ontrue;
475     self->on_false = onfalse;
476     self->phi_out  = NULL;
477
478     return self;
479 }
480
481 void ast_ternary_delete(ast_ternary *self)
482 {
483     ast_unref(self->cond);
484     ast_unref(self->on_true);
485     ast_unref(self->on_false);
486     ast_expression_delete((ast_expression*)self);
487     mem_d(self);
488 }
489
490 ast_loop* ast_loop_new(lex_ctx ctx,
491                        ast_expression *initexpr,
492                        ast_expression *precond,
493                        ast_expression *postcond,
494                        ast_expression *increment,
495                        ast_expression *body)
496 {
497     ast_instantiate(ast_loop, ctx, ast_loop_delete);
498     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
499
500     self->initexpr  = initexpr;
501     self->precond   = precond;
502     self->postcond  = postcond;
503     self->increment = increment;
504     self->body      = body;
505
506     return self;
507 }
508
509 void ast_loop_delete(ast_loop *self)
510 {
511     if (self->initexpr)
512         ast_unref(self->initexpr);
513     if (self->precond)
514         ast_unref(self->precond);
515     if (self->postcond)
516         ast_unref(self->postcond);
517     if (self->increment)
518         ast_unref(self->increment);
519     if (self->body)
520         ast_unref(self->body);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_call* ast_call_new(lex_ctx ctx,
526                        ast_expression *funcexpr)
527 {
528     ast_instantiate(ast_call, ctx, ast_call_delete);
529     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
530
531     MEM_VECTOR_INIT(self, params);
532
533     self->func = funcexpr;
534
535     return self;
536 }
537 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
538
539 void ast_call_delete(ast_call *self)
540 {
541     size_t i;
542     for (i = 0; i < self->params_count; ++i)
543         ast_unref(self->params[i]);
544     MEM_VECTOR_CLEAR(self, params);
545
546     if (self->func)
547         ast_unref(self->func);
548
549     ast_expression_delete((ast_expression*)self);
550     mem_d(self);
551 }
552
553 ast_store* ast_store_new(lex_ctx ctx, int op,
554                          ast_expression *dest, ast_expression *source)
555 {
556     ast_instantiate(ast_store, ctx, ast_store_delete);
557     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
558
559     self->op = op;
560     self->dest = dest;
561     self->source = source;
562
563     return self;
564 }
565
566 void ast_store_delete(ast_store *self)
567 {
568     ast_unref(self->dest);
569     ast_unref(self->source);
570     ast_expression_delete((ast_expression*)self);
571     mem_d(self);
572 }
573
574 ast_block* ast_block_new(lex_ctx ctx)
575 {
576     ast_instantiate(ast_block, ctx, ast_block_delete);
577     ast_expression_init((ast_expression*)self,
578                         (ast_expression_codegen*)&ast_block_codegen);
579
580     MEM_VECTOR_INIT(self, locals);
581     MEM_VECTOR_INIT(self, exprs);
582     MEM_VECTOR_INIT(self, collect);
583
584     return self;
585 }
586 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
587 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
588 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
589
590 bool ast_block_collect(ast_block *self, ast_expression *expr)
591 {
592     if (!ast_block_collect_add(self, expr))
593         return false;
594     expr->expression.node.keep = true;
595     return true;
596 }
597
598 void ast_block_delete(ast_block *self)
599 {
600     size_t i;
601     for (i = 0; i < self->exprs_count; ++i)
602         ast_unref(self->exprs[i]);
603     MEM_VECTOR_CLEAR(self, exprs);
604     for (i = 0; i < self->locals_count; ++i)
605         ast_delete(self->locals[i]);
606     MEM_VECTOR_CLEAR(self, locals);
607     for (i = 0; i < self->collect_count; ++i)
608         ast_delete(self->collect[i]);
609     MEM_VECTOR_CLEAR(self, collect);
610     ast_expression_delete((ast_expression*)self);
611     mem_d(self);
612 }
613
614 bool ast_block_set_type(ast_block *self, ast_expression *from)
615 {
616     if (self->expression.next)
617         ast_delete(self->expression.next);
618     self->expression.vtype = from->expression.vtype;
619     if (from->expression.next) {
620         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
621         if (!self->expression.next)
622             return false;
623     }
624     else
625         self->expression.next = NULL;
626     return true;
627 }
628
629 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
630 {
631     ast_instantiate(ast_function, ctx, ast_function_delete);
632
633     if (!vtype ||
634         vtype->isconst ||
635         vtype->expression.vtype != TYPE_FUNCTION)
636     {
637         mem_d(self);
638         return NULL;
639     }
640
641     self->vtype = vtype;
642     self->name = name ? util_strdup(name) : NULL;
643     MEM_VECTOR_INIT(self, blocks);
644
645     self->labelcount = 0;
646     self->builtin = 0;
647
648     self->ir_func = NULL;
649     self->curblock = NULL;
650
651     self->breakblock    = NULL;
652     self->continueblock = NULL;
653
654     vtype->isconst = true;
655     vtype->constval.vfunc = self;
656
657     return self;
658 }
659
660 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
661
662 void ast_function_delete(ast_function *self)
663 {
664     size_t i;
665     if (self->name)
666         mem_d((void*)self->name);
667     if (self->vtype) {
668         /* ast_value_delete(self->vtype); */
669         self->vtype->isconst = false;
670         self->vtype->constval.vfunc = NULL;
671         /* We use unref - if it was stored in a global table it is supposed
672          * to be deleted from *there*
673          */
674         ast_unref(self->vtype);
675     }
676     for (i = 0; i < self->blocks_count; ++i)
677         ast_delete(self->blocks[i]);
678     MEM_VECTOR_CLEAR(self, blocks);
679     mem_d(self);
680 }
681
682 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
683 {
684     unsigned int base = 10;
685 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
686 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
687     if (size < 1)
688         return;
689     checknul();
690     if (!num)
691         addch('0');
692     else {
693         while (num)
694         {
695             int digit = num % base;
696             num /= base;
697             addch('0' + digit);
698         }
699     }
700
701     *buf = 0;
702 #undef addch
703 #undef checknul
704 }
705
706 const char* ast_function_label(ast_function *self, const char *prefix)
707 {
708     size_t id = (self->labelcount++);
709     size_t len = strlen(prefix);
710     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
711     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
712     return self->labelbuf;
713 }
714
715 /*********************************************************************/
716 /* AST codegen part
717  * by convention you must never pass NULL to the 'ir_value **out'
718  * parameter. If you really don't care about the output, pass a dummy.
719  * But I can't imagine a pituation where the output is truly unnecessary.
720  */
721
722 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
723 {
724     /* NOTE: This is the codegen for a variable used in an expression.
725      * It is not the codegen to generate the value. For this purpose,
726      * ast_local_codegen and ast_global_codegen are to be used before this
727      * is executed. ast_function_codegen should take care of its locals,
728      * and the ast-user should take care of ast_global_codegen to be used
729      * on all the globals.
730      */
731     if (!self->ir_v) {
732         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
733         return false;
734     }
735     *out = self->ir_v;
736     return true;
737 }
738
739 bool ast_global_codegen(ast_value *self, ir_builder *ir)
740 {
741     ir_value *v = NULL;
742     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
743     {
744         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
745         if (!func)
746             return false;
747
748         self->constval.vfunc->ir_func = func;
749         self->ir_v = func->value;
750         /* The function is filled later on ast_function_codegen... */
751         return true;
752     }
753
754     if (self->expression.vtype == TYPE_FIELD) {
755         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
756         if (!v)
757             return false;
758         if (self->isconst) {
759             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
760             goto error;
761         }
762         self->ir_v = v;
763         return true;
764     }
765
766     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
767     if (!v) {
768         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
769         return false;
770     }
771
772     if (self->isconst) {
773         switch (self->expression.vtype)
774         {
775             case TYPE_FLOAT:
776                 if (!ir_value_set_float(v, self->constval.vfloat))
777                     goto error;
778                 break;
779             case TYPE_VECTOR:
780                 if (!ir_value_set_vector(v, self->constval.vvec))
781                     goto error;
782                 break;
783             case TYPE_STRING:
784                 if (!ir_value_set_string(v, self->constval.vstring))
785                     goto error;
786                 break;
787             case TYPE_FUNCTION:
788                 asterror(ast_ctx(self), "global of type function not properly generated\n");
789                 goto error;
790                 /* Cannot generate an IR value for a function,
791                  * need a pointer pointing to a function rather.
792                  */
793             default:
794                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
795                 break;
796         }
797     }
798
799     /* link us to the ir_value */
800     self->ir_v = v;
801     return true;
802
803 error: /* clean up */
804     ir_value_delete(v);
805     return false;
806 }
807
808 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
809 {
810     ir_value *v = NULL;
811     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
812     {
813         /* Do we allow local functions? I think not...
814          * this is NOT a function pointer atm.
815          */
816         return false;
817     }
818
819     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
820     if (!v)
821         return false;
822
823     /* A constant local... hmmm...
824      * I suppose the IR will have to deal with this
825      */
826     if (self->isconst) {
827         switch (self->expression.vtype)
828         {
829             case TYPE_FLOAT:
830                 if (!ir_value_set_float(v, self->constval.vfloat))
831                     goto error;
832                 break;
833             case TYPE_VECTOR:
834                 if (!ir_value_set_vector(v, self->constval.vvec))
835                     goto error;
836                 break;
837             case TYPE_STRING:
838                 if (!ir_value_set_string(v, self->constval.vstring))
839                     goto error;
840                 break;
841             default:
842                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
843                 break;
844         }
845     }
846
847     /* link us to the ir_value */
848     self->ir_v = v;
849     return true;
850
851 error: /* clean up */
852     ir_value_delete(v);
853     return false;
854 }
855
856 bool ast_function_codegen(ast_function *self, ir_builder *ir)
857 {
858     ir_function *irf;
859     ir_value    *dummy;
860     ast_expression_common *ec;
861     size_t    i;
862
863     irf = self->ir_func;
864     if (!irf) {
865         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
866         return false;
867     }
868
869     /* fill the parameter list */
870     ec = &self->vtype->expression;
871     for (i = 0; i < ec->params_count; ++i)
872     {
873         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
874             return false;
875         if (!self->builtin) {
876             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
877                 return false;
878         }
879     }
880
881     if (self->builtin) {
882         irf->builtin = self->builtin;
883         return true;
884     }
885
886     if (!self->blocks_count) {
887         asterror(ast_ctx(self), "function `%s` has no body", self->name);
888         return false;
889     }
890
891     self->curblock = ir_function_create_block(irf, "entry");
892     if (!self->curblock)
893         return false;
894
895     for (i = 0; i < self->blocks_count; ++i) {
896         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
897         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
898             return false;
899     }
900
901     /* TODO: check return types */
902     if (!self->curblock->is_return)
903     {
904         if (!self->vtype->expression.next ||
905             self->vtype->expression.next->expression.vtype == TYPE_VOID)
906         {
907             return ir_block_create_return(self->curblock, NULL);
908         }
909         else
910         {
911             /* error("missing return"); */
912             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
913             return false;
914         }
915     }
916     return true;
917 }
918
919 /* Note, you will not see ast_block_codegen generate ir_blocks.
920  * To the AST and the IR, blocks are 2 different things.
921  * In the AST it represents a block of code, usually enclosed in
922  * curly braces {...}.
923  * While in the IR it represents a block in terms of control-flow.
924  */
925 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
926 {
927     size_t i;
928
929     /* We don't use this
930      * Note: an ast-representation using the comma-operator
931      * of the form: (a, b, c) = x should not assign to c...
932      */
933     (void)lvalue;
934     if (self->expression.outr) {
935         *out = self->expression.outr;
936         return true;
937     }
938
939     /* output is NULL at first, we'll have each expression
940      * assign to out output, thus, a comma-operator represention
941      * using an ast_block will return the last generated value,
942      * so: (b, c) + a  executed both b and c, and returns c,
943      * which is then added to a.
944      */
945     *out = NULL;
946
947     /* generate locals */
948     for (i = 0; i < self->locals_count; ++i)
949     {
950         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
951             return false;
952     }
953
954     for (i = 0; i < self->exprs_count; ++i)
955     {
956         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
957         if (!(*gen)(self->exprs[i], func, false, out))
958             return false;
959     }
960
961     self->expression.outr = *out;
962
963     return true;
964 }
965
966 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
967 {
968     ast_expression_codegen *cgen;
969     ir_value *left, *right;
970
971     if (lvalue && self->expression.outl) {
972         *out = self->expression.outl;
973         return true;
974     }
975
976     if (!lvalue && self->expression.outr) {
977         *out = self->expression.outr;
978         return true;
979     }
980
981     cgen = self->dest->expression.codegen;
982     /* lvalue! */
983     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
984         return false;
985     self->expression.outl = left;
986
987     cgen = self->source->expression.codegen;
988     /* rvalue! */
989     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
990         return false;
991
992     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
993         return false;
994     self->expression.outr = right;
995
996     /* Theoretically, an assinment returns its left side as an
997      * lvalue, if we don't need an lvalue though, we return
998      * the right side as an rvalue, otherwise we have to
999      * somehow know whether or not we need to dereference the pointer
1000      * on the left side - that is: OP_LOAD if it was an address.
1001      * Also: in original QC we cannot OP_LOADP *anyway*.
1002      */
1003     *out = (lvalue ? left : right);
1004
1005     return true;
1006 }
1007
1008 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1009 {
1010     ast_expression_codegen *cgen;
1011     ir_value *left, *right;
1012
1013     /* In the context of a binary operation, we can disregard
1014      * the lvalue flag.
1015      */
1016     (void)lvalue;
1017     if (self->expression.outr) {
1018         *out = self->expression.outr;
1019         return true;
1020     }
1021
1022     cgen = self->left->expression.codegen;
1023     /* lvalue! */
1024     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1025         return false;
1026
1027     cgen = self->right->expression.codegen;
1028     /* rvalue! */
1029     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1030         return false;
1031
1032     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1033                                  self->op, left, right);
1034     if (!*out)
1035         return false;
1036     self->expression.outr = *out;
1037
1038     return true;
1039 }
1040
1041 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1042 {
1043     ast_expression_codegen *cgen;
1044     ir_value *leftl, *leftr, *right, *bin;
1045
1046     if (lvalue && self->expression.outl) {
1047         *out = self->expression.outl;
1048         return true;
1049     }
1050
1051     if (!lvalue && self->expression.outr) {
1052         *out = self->expression.outr;
1053         return true;
1054     }
1055
1056     /* for a binstore we need both an lvalue and an rvalue for the left side */
1057     /* rvalue of destination! */
1058     cgen = self->dest->expression.codegen;
1059     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1060         return false;
1061
1062     /* source as rvalue only */
1063     cgen = self->source->expression.codegen;
1064     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1065         return false;
1066
1067     /* now the binary */
1068     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1069                                 self->opbin, leftr, right);
1070     self->expression.outr = bin;
1071
1072     /* now store them */
1073     cgen = self->dest->expression.codegen;
1074     /* lvalue of destination */
1075     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1076         return false;
1077     self->expression.outl = leftl;
1078
1079     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1080         return false;
1081     self->expression.outr = bin;
1082
1083     /* Theoretically, an assinment returns its left side as an
1084      * lvalue, if we don't need an lvalue though, we return
1085      * the right side as an rvalue, otherwise we have to
1086      * somehow know whether or not we need to dereference the pointer
1087      * on the left side - that is: OP_LOAD if it was an address.
1088      * Also: in original QC we cannot OP_LOADP *anyway*.
1089      */
1090     *out = (lvalue ? leftl : bin);
1091
1092     return true;
1093 }
1094
1095 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1096 {
1097     ast_expression_codegen *cgen;
1098     ir_value *operand;
1099
1100     /* In the context of a unary operation, we can disregard
1101      * the lvalue flag.
1102      */
1103     (void)lvalue;
1104     if (self->expression.outr) {
1105         *out = self->expression.outr;
1106         return true;
1107     }
1108
1109     cgen = self->operand->expression.codegen;
1110     /* lvalue! */
1111     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1112         return false;
1113
1114     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1115                                  self->op, operand);
1116     if (!*out)
1117         return false;
1118     self->expression.outr = *out;
1119
1120     return true;
1121 }
1122
1123 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1124 {
1125     ast_expression_codegen *cgen;
1126     ir_value *operand;
1127
1128     /* In the context of a return operation, we can disregard
1129      * the lvalue flag.
1130      */
1131     (void)lvalue;
1132     if (self->expression.outr) {
1133         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1134         return false;
1135     }
1136     self->expression.outr = (ir_value*)1;
1137
1138     if (self->operand) {
1139         cgen = self->operand->expression.codegen;
1140         /* lvalue! */
1141         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1142             return false;
1143
1144         if (!ir_block_create_return(func->curblock, operand))
1145             return false;
1146     } else {
1147         if (!ir_block_create_return(func->curblock, NULL))
1148             return false;
1149     }
1150
1151     return true;
1152 }
1153
1154 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1155 {
1156     ast_expression_codegen *cgen;
1157     ir_value *ent, *field;
1158
1159     /* This function needs to take the 'lvalue' flag into account!
1160      * As lvalue we provide a field-pointer, as rvalue we provide the
1161      * value in a temp.
1162      */
1163
1164     if (lvalue && self->expression.outl) {
1165         *out = self->expression.outl;
1166         return true;
1167     }
1168
1169     if (!lvalue && self->expression.outr) {
1170         *out = self->expression.outr;
1171         return true;
1172     }
1173
1174     cgen = self->entity->expression.codegen;
1175     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1176         return false;
1177
1178     cgen = self->field->expression.codegen;
1179     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1180         return false;
1181
1182     if (lvalue) {
1183         /* address! */
1184         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1185                                             ent, field);
1186     } else {
1187         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1188                                              ent, field, self->expression.vtype);
1189     }
1190     if (!*out) {
1191         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1192                  (lvalue ? "ADDRESS" : "FIELD"),
1193                  type_name[self->expression.vtype]);
1194         return false;
1195     }
1196
1197     if (lvalue)
1198         self->expression.outl = *out;
1199     else
1200         self->expression.outr = *out;
1201
1202     /* Hm that should be it... */
1203     return true;
1204 }
1205
1206 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1207 {
1208     ast_expression_codegen *cgen;
1209     ir_value *vec;
1210
1211     /* in QC this is always an lvalue */
1212     (void)lvalue;
1213     if (self->expression.outl) {
1214         *out = self->expression.outl;
1215         return true;
1216     }
1217
1218     cgen = self->owner->expression.codegen;
1219     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1220         return false;
1221
1222     if (vec->vtype != TYPE_VECTOR &&
1223         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1224     {
1225         return false;
1226     }
1227
1228     *out = ir_value_vector_member(vec, self->field);
1229     self->expression.outl = *out;
1230
1231     return (*out != NULL);
1232 }
1233
1234 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1235 {
1236     ast_expression_codegen *cgen;
1237
1238     ir_value *condval;
1239     ir_value *dummy;
1240
1241     ir_block *cond = func->curblock;
1242     ir_block *ontrue;
1243     ir_block *onfalse;
1244     ir_block *merge;
1245
1246     /* We don't output any value, thus also don't care about r/lvalue */
1247     (void)out;
1248     (void)lvalue;
1249
1250     if (self->expression.outr) {
1251         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1252         return false;
1253     }
1254     self->expression.outr = (ir_value*)1;
1255
1256     /* generate the condition */
1257     func->curblock = cond;
1258     cgen = self->cond->expression.codegen;
1259     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1260         return false;
1261
1262     /* on-true path */
1263
1264     if (self->on_true) {
1265         /* create on-true block */
1266         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1267         if (!ontrue)
1268             return false;
1269
1270         /* enter the block */
1271         func->curblock = ontrue;
1272
1273         /* generate */
1274         cgen = self->on_true->expression.codegen;
1275         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1276             return false;
1277     } else
1278         ontrue = NULL;
1279
1280     /* on-false path */
1281     if (self->on_false) {
1282         /* create on-false block */
1283         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1284         if (!onfalse)
1285             return false;
1286
1287         /* enter the block */
1288         func->curblock = onfalse;
1289
1290         /* generate */
1291         cgen = self->on_false->expression.codegen;
1292         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1293             return false;
1294     } else
1295         onfalse = NULL;
1296
1297     /* Merge block were they all merge in to */
1298     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1299     if (!merge)
1300         return false;
1301
1302     /* add jumps ot the merge block */
1303     if (ontrue && !ir_block_create_jump(ontrue, merge))
1304         return false;
1305     if (onfalse && !ir_block_create_jump(onfalse, merge))
1306         return false;
1307
1308     /* we create the if here, that way all blocks are ordered :)
1309      */
1310     if (!ir_block_create_if(cond, condval,
1311                             (ontrue  ? ontrue  : merge),
1312                             (onfalse ? onfalse : merge)))
1313     {
1314         return false;
1315     }
1316
1317     /* Now enter the merge block */
1318     func->curblock = merge;
1319
1320     return true;
1321 }
1322
1323 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1324 {
1325     ast_expression_codegen *cgen;
1326
1327     ir_value *condval;
1328     ir_value *trueval, *falseval;
1329     ir_instr *phi;
1330
1331     ir_block *cond = func->curblock;
1332     ir_block *ontrue;
1333     ir_block *onfalse;
1334     ir_block *merge;
1335
1336     /* Ternary can never create an lvalue... */
1337     if (lvalue)
1338         return false;
1339
1340     /* In theory it shouldn't be possible to pass through a node twice, but
1341      * in case we add any kind of optimization pass for the AST itself, it
1342      * may still happen, thus we remember a created ir_value and simply return one
1343      * if it already exists.
1344      */
1345     if (self->phi_out) {
1346         *out = self->phi_out;
1347         return true;
1348     }
1349
1350     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1351
1352     /* generate the condition */
1353     func->curblock = cond;
1354     cgen = self->cond->expression.codegen;
1355     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1356         return false;
1357
1358     /* create on-true block */
1359     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1360     if (!ontrue)
1361         return false;
1362     else
1363     {
1364         /* enter the block */
1365         func->curblock = ontrue;
1366
1367         /* generate */
1368         cgen = self->on_true->expression.codegen;
1369         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1370             return false;
1371     }
1372
1373     /* create on-false block */
1374     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1375     if (!onfalse)
1376         return false;
1377     else
1378     {
1379         /* enter the block */
1380         func->curblock = onfalse;
1381
1382         /* generate */
1383         cgen = self->on_false->expression.codegen;
1384         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1385             return false;
1386     }
1387
1388     /* create merge block */
1389     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1390     if (!merge)
1391         return false;
1392     /* jump to merge block */
1393     if (!ir_block_create_jump(ontrue, merge))
1394         return false;
1395     if (!ir_block_create_jump(onfalse, merge))
1396         return false;
1397
1398     /* create if instruction */
1399     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1400         return false;
1401
1402     /* Now enter the merge block */
1403     func->curblock = merge;
1404
1405     /* Here, now, we need a PHI node
1406      * but first some sanity checking...
1407      */
1408     if (trueval->vtype != falseval->vtype) {
1409         /* error("ternary with different types on the two sides"); */
1410         return false;
1411     }
1412
1413     /* create PHI */
1414     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1415     if (!phi ||
1416         !ir_phi_add(phi, ontrue,  trueval) ||
1417         !ir_phi_add(phi, onfalse, falseval))
1418     {
1419         return false;
1420     }
1421
1422     self->phi_out = ir_phi_value(phi);
1423     *out = self->phi_out;
1424
1425     return true;
1426 }
1427
1428 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1429 {
1430     ast_expression_codegen *cgen;
1431
1432     ir_value *dummy      = NULL;
1433     ir_value *precond    = NULL;
1434     ir_value *postcond   = NULL;
1435
1436     /* Since we insert some jumps "late" so we have blocks
1437      * ordered "nicely", we need to keep track of the actual end-blocks
1438      * of expressions to add the jumps to.
1439      */
1440     ir_block *bbody      = NULL, *end_bbody      = NULL;
1441     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1442     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1443     ir_block *bincrement = NULL, *end_bincrement = NULL;
1444     ir_block *bout       = NULL, *bin            = NULL;
1445
1446     /* let's at least move the outgoing block to the end */
1447     size_t    bout_id;
1448
1449     /* 'break' and 'continue' need to be able to find the right blocks */
1450     ir_block *bcontinue     = NULL;
1451     ir_block *bbreak        = NULL;
1452
1453     ir_block *old_bcontinue = NULL;
1454     ir_block *old_bbreak    = NULL;
1455
1456     ir_block *tmpblock      = NULL;
1457
1458     (void)lvalue;
1459     (void)out;
1460
1461     if (self->expression.outr) {
1462         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1463         return false;
1464     }
1465     self->expression.outr = (ir_value*)1;
1466
1467     /* NOTE:
1468      * Should we ever need some kind of block ordering, better make this function
1469      * move blocks around than write a block ordering algorithm later... after all
1470      * the ast and ir should work together, not against each other.
1471      */
1472
1473     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1474      * anyway if for example it contains a ternary.
1475      */
1476     if (self->initexpr)
1477     {
1478         cgen = self->initexpr->expression.codegen;
1479         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1480             return false;
1481     }
1482
1483     /* Store the block from which we enter this chaos */
1484     bin = func->curblock;
1485
1486     /* The pre-loop condition needs its own block since we
1487      * need to be able to jump to the start of that expression.
1488      */
1489     if (self->precond)
1490     {
1491         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1492         if (!bprecond)
1493             return false;
1494
1495         /* the pre-loop-condition the least important place to 'continue' at */
1496         bcontinue = bprecond;
1497
1498         /* enter */
1499         func->curblock = bprecond;
1500
1501         /* generate */
1502         cgen = self->precond->expression.codegen;
1503         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1504             return false;
1505
1506         end_bprecond = func->curblock;
1507     } else {
1508         bprecond = end_bprecond = NULL;
1509     }
1510
1511     /* Now the next blocks won't be ordered nicely, but we need to
1512      * generate them this early for 'break' and 'continue'.
1513      */
1514     if (self->increment) {
1515         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1516         if (!bincrement)
1517             return false;
1518         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1519     } else {
1520         bincrement = end_bincrement = NULL;
1521     }
1522
1523     if (self->postcond) {
1524         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1525         if (!bpostcond)
1526             return false;
1527         bcontinue = bpostcond; /* postcond comes before the increment */
1528     } else {
1529         bpostcond = end_bpostcond = NULL;
1530     }
1531
1532     bout_id = func->ir_func->blocks_count;
1533     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1534     if (!bout)
1535         return false;
1536     bbreak = bout;
1537
1538     /* The loop body... */
1539     if (self->body)
1540     {
1541         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1542         if (!bbody)
1543             return false;
1544
1545         /* enter */
1546         func->curblock = bbody;
1547
1548         old_bbreak          = func->breakblock;
1549         old_bcontinue       = func->continueblock;
1550         func->breakblock    = bbreak;
1551         func->continueblock = bcontinue;
1552
1553         /* generate */
1554         cgen = self->body->expression.codegen;
1555         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1556             return false;
1557
1558         end_bbody = func->curblock;
1559         func->breakblock    = old_bbreak;
1560         func->continueblock = old_bcontinue;
1561     }
1562
1563     /* post-loop-condition */
1564     if (self->postcond)
1565     {
1566         /* enter */
1567         func->curblock = bpostcond;
1568
1569         /* generate */
1570         cgen = self->postcond->expression.codegen;
1571         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1572             return false;
1573
1574         end_bpostcond = func->curblock;
1575     }
1576
1577     /* The incrementor */
1578     if (self->increment)
1579     {
1580         /* enter */
1581         func->curblock = bincrement;
1582
1583         /* generate */
1584         cgen = self->increment->expression.codegen;
1585         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1586             return false;
1587
1588         end_bincrement = func->curblock;
1589     }
1590
1591     /* In any case now, we continue from the outgoing block */
1592     func->curblock = bout;
1593
1594     /* Now all blocks are in place */
1595     /* From 'bin' we jump to whatever comes first */
1596     if      (bprecond)   tmpblock = bprecond;
1597     else if (bbody)      tmpblock = bbody;
1598     else if (bpostcond)  tmpblock = bpostcond;
1599     else                 tmpblock = bout;
1600     if (!ir_block_create_jump(bin, tmpblock))
1601         return false;
1602
1603     /* From precond */
1604     if (bprecond)
1605     {
1606         ir_block *ontrue, *onfalse;
1607         if      (bbody)      ontrue = bbody;
1608         else if (bincrement) ontrue = bincrement;
1609         else if (bpostcond)  ontrue = bpostcond;
1610         else                 ontrue = bprecond;
1611         onfalse = bout;
1612         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1613             return false;
1614     }
1615
1616     /* from body */
1617     if (bbody)
1618     {
1619         if      (bincrement) tmpblock = bincrement;
1620         else if (bpostcond)  tmpblock = bpostcond;
1621         else if (bprecond)   tmpblock = bprecond;
1622         else                 tmpblock = bout;
1623         if (!ir_block_create_jump(end_bbody, tmpblock))
1624             return false;
1625     }
1626
1627     /* from increment */
1628     if (bincrement)
1629     {
1630         if      (bpostcond)  tmpblock = bpostcond;
1631         else if (bprecond)   tmpblock = bprecond;
1632         else if (bbody)      tmpblock = bbody;
1633         else                 tmpblock = bout;
1634         if (!ir_block_create_jump(end_bincrement, tmpblock))
1635             return false;
1636     }
1637
1638     /* from postcond */
1639     if (bpostcond)
1640     {
1641         ir_block *ontrue, *onfalse;
1642         if      (bprecond)   ontrue = bprecond;
1643         else if (bbody)      ontrue = bbody;
1644         else if (bincrement) ontrue = bincrement;
1645         else                 ontrue = bpostcond;
1646         onfalse = bout;
1647         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1648             return false;
1649     }
1650
1651     /* Move 'bout' to the end */
1652     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1653         !ir_function_blocks_add(func->ir_func, bout))
1654     {
1655         ir_block_delete(bout);
1656         return false;
1657     }
1658
1659     return true;
1660 }
1661
1662 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1663 {
1664     ast_expression_codegen *cgen;
1665     ir_value_vector         params;
1666     ir_instr               *callinstr;
1667     size_t i;
1668
1669     ir_value *funval = NULL;
1670
1671     /* return values are never lvalues */
1672     (void)lvalue;
1673
1674     if (self->expression.outr) {
1675         *out = self->expression.outr;
1676         return true;
1677     }
1678
1679     cgen = self->func->expression.codegen;
1680     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1681         return false;
1682     if (!funval)
1683         return false;
1684
1685     MEM_VECTOR_INIT(&params, v);
1686
1687     /* parameters */
1688     for (i = 0; i < self->params_count; ++i)
1689     {
1690         ir_value *param;
1691         ast_expression *expr = self->params[i];
1692
1693         cgen = expr->expression.codegen;
1694         if (!(*cgen)(expr, func, false, &param))
1695             goto error;
1696         if (!param)
1697             goto error;
1698         if (!ir_value_vector_v_add(&params, param))
1699             goto error;
1700     }
1701
1702     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1703     if (!callinstr)
1704         goto error;
1705
1706     for (i = 0; i < params.v_count; ++i) {
1707         if (!ir_call_param(callinstr, params.v[i]))
1708             goto error;
1709     }
1710
1711     *out = ir_call_value(callinstr);
1712     self->expression.outr = *out;
1713
1714     MEM_VECTOR_CLEAR(&params, v);
1715     return true;
1716 error:
1717     MEM_VECTOR_CLEAR(&params, v);
1718     return false;
1719 }