]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Doh... wrong comment type
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     /* ast_unref(self->owner); */
409     ast_expression_delete((ast_expression*)self);
410     mem_d(self);
411 }
412
413 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
414 {
415     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
416     if (!ontrue && !onfalse) {
417         /* because it is invalid */
418         mem_d(self);
419         return NULL;
420     }
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
422
423     self->cond     = cond;
424     self->on_true  = ontrue;
425     self->on_false = onfalse;
426
427     return self;
428 }
429
430 void ast_ifthen_delete(ast_ifthen *self)
431 {
432     ast_unref(self->cond);
433     if (self->on_true)
434         ast_unref(self->on_true);
435     if (self->on_false)
436         ast_unref(self->on_false);
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
444     /* This time NEITHER must be NULL */
445     if (!ontrue || !onfalse) {
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454     self->phi_out  = NULL;
455
456     return self;
457 }
458
459 void ast_ternary_delete(ast_ternary *self)
460 {
461     ast_unref(self->cond);
462     ast_unref(self->on_true);
463     ast_unref(self->on_false);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_loop* ast_loop_new(lex_ctx ctx,
469                        ast_expression *initexpr,
470                        ast_expression *precond,
471                        ast_expression *postcond,
472                        ast_expression *increment,
473                        ast_expression *body)
474 {
475     ast_instantiate(ast_loop, ctx, ast_loop_delete);
476     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
477
478     self->initexpr  = initexpr;
479     self->precond   = precond;
480     self->postcond  = postcond;
481     self->increment = increment;
482     self->body      = body;
483
484     return self;
485 }
486
487 void ast_loop_delete(ast_loop *self)
488 {
489     if (self->initexpr)
490         ast_unref(self->initexpr);
491     if (self->precond)
492         ast_unref(self->precond);
493     if (self->postcond)
494         ast_unref(self->postcond);
495     if (self->increment)
496         ast_unref(self->increment);
497     if (self->body)
498         ast_unref(self->body);
499     ast_expression_delete((ast_expression*)self);
500     mem_d(self);
501 }
502
503 ast_call* ast_call_new(lex_ctx ctx,
504                        ast_expression *funcexpr)
505 {
506     ast_instantiate(ast_call, ctx, ast_call_delete);
507     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
508
509     MEM_VECTOR_INIT(self, params);
510
511     self->func = funcexpr;
512
513     return self;
514 }
515 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
516
517 void ast_call_delete(ast_call *self)
518 {
519     size_t i;
520     for (i = 0; i < self->params_count; ++i)
521         ast_unref(self->params[i]);
522     MEM_VECTOR_CLEAR(self, params);
523
524     if (self->func)
525         ast_unref(self->func);
526
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_store* ast_store_new(lex_ctx ctx, int op,
532                          ast_expression *dest, ast_expression *source)
533 {
534     ast_instantiate(ast_store, ctx, ast_store_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
536
537     self->op = op;
538     self->dest = dest;
539     self->source = source;
540
541     return self;
542 }
543
544 void ast_store_delete(ast_store *self)
545 {
546     ast_unref(self->dest);
547     ast_unref(self->source);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_block* ast_block_new(lex_ctx ctx)
553 {
554     ast_instantiate(ast_block, ctx, ast_block_delete);
555     ast_expression_init((ast_expression*)self,
556                         (ast_expression_codegen*)&ast_block_codegen);
557
558     MEM_VECTOR_INIT(self, locals);
559     MEM_VECTOR_INIT(self, exprs);
560     MEM_VECTOR_INIT(self, collect);
561
562     return self;
563 }
564 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
565 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
566 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
567
568 bool ast_block_collect(ast_block *self, ast_expression *expr)
569 {
570     if (!ast_block_collect_add(self, expr))
571         return false;
572     expr->expression.node.keep = true;
573     return true;
574 }
575
576 void ast_block_delete(ast_block *self)
577 {
578     size_t i;
579     for (i = 0; i < self->exprs_count; ++i)
580         ast_unref(self->exprs[i]);
581     MEM_VECTOR_CLEAR(self, exprs);
582     for (i = 0; i < self->locals_count; ++i)
583         ast_delete(self->locals[i]);
584     MEM_VECTOR_CLEAR(self, locals);
585     for (i = 0; i < self->collect_count; ++i)
586         ast_delete(self->collect[i]);
587     MEM_VECTOR_CLEAR(self, collect);
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 bool ast_block_set_type(ast_block *self, ast_expression *from)
593 {
594     if (self->expression.next)
595         ast_delete(self->expression.next);
596     self->expression.vtype = from->expression.vtype;
597     if (from->expression.next) {
598         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
599         if (!self->expression.next)
600             return false;
601     }
602     return true;
603 }
604
605 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
606 {
607     ast_instantiate(ast_function, ctx, ast_function_delete);
608
609     if (!vtype ||
610         vtype->isconst ||
611         vtype->expression.vtype != TYPE_FUNCTION)
612     {
613         mem_d(self);
614         return NULL;
615     }
616
617     self->vtype = vtype;
618     self->name = name ? util_strdup(name) : NULL;
619     MEM_VECTOR_INIT(self, blocks);
620
621     self->labelcount = 0;
622     self->builtin = 0;
623
624     self->ir_func = NULL;
625     self->curblock = NULL;
626
627     self->breakblock    = NULL;
628     self->continueblock = NULL;
629
630     vtype->isconst = true;
631     vtype->constval.vfunc = self;
632
633     return self;
634 }
635
636 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
637
638 void ast_function_delete(ast_function *self)
639 {
640     size_t i;
641     if (self->name)
642         mem_d((void*)self->name);
643     if (self->vtype) {
644         /* ast_value_delete(self->vtype); */
645         self->vtype->isconst = false;
646         self->vtype->constval.vfunc = NULL;
647         /* We use unref - if it was stored in a global table it is supposed
648          * to be deleted from *there*
649          */
650         ast_unref(self->vtype);
651     }
652     for (i = 0; i < self->blocks_count; ++i)
653         ast_delete(self->blocks[i]);
654     MEM_VECTOR_CLEAR(self, blocks);
655     mem_d(self);
656 }
657
658 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
659 {
660     unsigned int base = 10;
661 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
662 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
663     if (size < 1)
664         return;
665     checknul();
666     if (!num)
667         addch('0');
668     else {
669         while (num)
670         {
671             int digit = num % base;
672             num /= base;
673             addch('0' + digit);
674         }
675     }
676
677     *buf = 0;
678 #undef addch
679 #undef checknul
680 }
681
682 const char* ast_function_label(ast_function *self, const char *prefix)
683 {
684     size_t id = (self->labelcount++);
685     size_t len = strlen(prefix);
686     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
687     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
688     return self->labelbuf;
689 }
690
691 /*********************************************************************/
692 /* AST codegen part
693  * by convention you must never pass NULL to the 'ir_value **out'
694  * parameter. If you really don't care about the output, pass a dummy.
695  * But I can't imagine a pituation where the output is truly unnecessary.
696  */
697
698 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
699 {
700     /* NOTE: This is the codegen for a variable used in an expression.
701      * It is not the codegen to generate the value. For this purpose,
702      * ast_local_codegen and ast_global_codegen are to be used before this
703      * is executed. ast_function_codegen should take care of its locals,
704      * and the ast-user should take care of ast_global_codegen to be used
705      * on all the globals.
706      */
707     if (!self->ir_v) {
708         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
709         return false;
710     }
711     *out = self->ir_v;
712     return true;
713 }
714
715 bool ast_global_codegen(ast_value *self, ir_builder *ir)
716 {
717     ir_value *v = NULL;
718     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
719     {
720         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
721         if (!func)
722             return false;
723
724         self->constval.vfunc->ir_func = func;
725         self->ir_v = func->value;
726         /* The function is filled later on ast_function_codegen... */
727         return true;
728     }
729
730     if (self->expression.vtype == TYPE_FIELD) {
731         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
732         if (!v)
733             return false;
734         if (self->isconst) {
735             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
736             goto error;
737         }
738         self->ir_v = v;
739         return true;
740     }
741
742     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
743     if (!v) {
744         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
745         return false;
746     }
747
748     if (self->isconst) {
749         switch (self->expression.vtype)
750         {
751             case TYPE_FLOAT:
752                 if (!ir_value_set_float(v, self->constval.vfloat))
753                     goto error;
754                 break;
755             case TYPE_VECTOR:
756                 if (!ir_value_set_vector(v, self->constval.vvec))
757                     goto error;
758                 break;
759             case TYPE_STRING:
760                 if (!ir_value_set_string(v, self->constval.vstring))
761                     goto error;
762                 break;
763             case TYPE_FUNCTION:
764                 asterror(ast_ctx(self), "global of type function not properly generated\n");
765                 goto error;
766                 /* Cannot generate an IR value for a function,
767                  * need a pointer pointing to a function rather.
768                  */
769             default:
770                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
771                 break;
772         }
773     }
774
775     /* link us to the ir_value */
776     self->ir_v = v;
777     return true;
778
779 error: /* clean up */
780     ir_value_delete(v);
781     return false;
782 }
783
784 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
785 {
786     ir_value *v = NULL;
787     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
788     {
789         /* Do we allow local functions? I think not...
790          * this is NOT a function pointer atm.
791          */
792         return false;
793     }
794
795     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
796     if (!v)
797         return false;
798
799     /* A constant local... hmmm...
800      * I suppose the IR will have to deal with this
801      */
802     if (self->isconst) {
803         switch (self->expression.vtype)
804         {
805             case TYPE_FLOAT:
806                 if (!ir_value_set_float(v, self->constval.vfloat))
807                     goto error;
808                 break;
809             case TYPE_VECTOR:
810                 if (!ir_value_set_vector(v, self->constval.vvec))
811                     goto error;
812                 break;
813             case TYPE_STRING:
814                 if (!ir_value_set_string(v, self->constval.vstring))
815                     goto error;
816                 break;
817             default:
818                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
819                 break;
820         }
821     }
822
823     /* link us to the ir_value */
824     self->ir_v = v;
825     return true;
826
827 error: /* clean up */
828     ir_value_delete(v);
829     return false;
830 }
831
832 bool ast_function_codegen(ast_function *self, ir_builder *ir)
833 {
834     ir_function *irf;
835     ir_value    *dummy;
836     ast_expression_common *ec;
837     size_t    i;
838
839     irf = self->ir_func;
840     if (!irf) {
841         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
842         return false;
843     }
844
845     /* fill the parameter list */
846     ec = &self->vtype->expression;
847     for (i = 0; i < ec->params_count; ++i)
848     {
849         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
850             return false;
851         if (!self->builtin) {
852             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
853                 return false;
854         }
855     }
856
857     if (self->builtin) {
858         irf->builtin = self->builtin;
859         return true;
860     }
861
862     if (!self->blocks_count) {
863         asterror(ast_ctx(self), "function `%s` has no body", self->name);
864         return false;
865     }
866
867     self->curblock = ir_function_create_block(irf, "entry");
868     if (!self->curblock)
869         return false;
870
871     for (i = 0; i < self->blocks_count; ++i) {
872         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
873         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
874             return false;
875     }
876
877     /* TODO: check return types */
878     if (!self->curblock->is_return)
879     {
880         if (!self->vtype->expression.next ||
881             self->vtype->expression.next->expression.vtype == TYPE_VOID)
882         {
883             return ir_block_create_return(self->curblock, NULL);
884         }
885         else
886         {
887             /* error("missing return"); */
888             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
889             return false;
890         }
891     }
892     return true;
893 }
894
895 /* Note, you will not see ast_block_codegen generate ir_blocks.
896  * To the AST and the IR, blocks are 2 different things.
897  * In the AST it represents a block of code, usually enclosed in
898  * curly braces {...}.
899  * While in the IR it represents a block in terms of control-flow.
900  */
901 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
902 {
903     size_t i;
904
905     /* We don't use this
906      * Note: an ast-representation using the comma-operator
907      * of the form: (a, b, c) = x should not assign to c...
908      */
909     (void)lvalue;
910     if (self->expression.outr) {
911         *out = self->expression.outr;
912         return true;
913     }
914
915     /* output is NULL at first, we'll have each expression
916      * assign to out output, thus, a comma-operator represention
917      * using an ast_block will return the last generated value,
918      * so: (b, c) + a  executed both b and c, and returns c,
919      * which is then added to a.
920      */
921     *out = NULL;
922
923     /* generate locals */
924     for (i = 0; i < self->locals_count; ++i)
925     {
926         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
927             return false;
928     }
929
930     for (i = 0; i < self->exprs_count; ++i)
931     {
932         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
933         if (!(*gen)(self->exprs[i], func, false, out))
934             return false;
935     }
936
937     self->expression.outr = *out;
938
939     return true;
940 }
941
942 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
943 {
944     ast_expression_codegen *cgen;
945     ir_value *left, *right;
946
947     if (lvalue && self->expression.outl) {
948         *out = self->expression.outl;
949         return true;
950     }
951
952     if (!lvalue && self->expression.outr) {
953         *out = self->expression.outr;
954         return true;
955     }
956
957     cgen = self->dest->expression.codegen;
958     /* lvalue! */
959     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
960         return false;
961     self->expression.outl = left;
962
963     cgen = self->source->expression.codegen;
964     /* rvalue! */
965     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
966         return false;
967
968     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
969         return false;
970     self->expression.outr = right;
971
972     /* Theoretically, an assinment returns its left side as an
973      * lvalue, if we don't need an lvalue though, we return
974      * the right side as an rvalue, otherwise we have to
975      * somehow know whether or not we need to dereference the pointer
976      * on the left side - that is: OP_LOAD if it was an address.
977      * Also: in original QC we cannot OP_LOADP *anyway*.
978      */
979     *out = (lvalue ? left : right);
980
981     return true;
982 }
983
984 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
985 {
986     ast_expression_codegen *cgen;
987     ir_value *left, *right;
988
989     /* In the context of a binary operation, we can disregard
990      * the lvalue flag.
991      */
992     (void)lvalue;
993     if (self->expression.outr) {
994         *out = self->expression.outr;
995         return true;
996     }
997
998     cgen = self->left->expression.codegen;
999     /* lvalue! */
1000     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1001         return false;
1002
1003     cgen = self->right->expression.codegen;
1004     /* rvalue! */
1005     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1006         return false;
1007
1008     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1009                                  self->op, left, right);
1010     if (!*out)
1011         return false;
1012     self->expression.outr = *out;
1013
1014     return true;
1015 }
1016
1017 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1018 {
1019     ast_expression_codegen *cgen;
1020     ir_value *leftl, *leftr, *right, *bin;
1021
1022     if (lvalue && self->expression.outl) {
1023         *out = self->expression.outl;
1024         return true;
1025     }
1026
1027     if (!lvalue && self->expression.outr) {
1028         *out = self->expression.outr;
1029         return true;
1030     }
1031
1032     /* for a binstore we need both an lvalue and an rvalue for the left side */
1033     /* rvalue of destination! */
1034     cgen = self->dest->expression.codegen;
1035     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1036         return false;
1037
1038     /* source as rvalue only */
1039     cgen = self->source->expression.codegen;
1040     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1041         return false;
1042
1043     /* now the binary */
1044     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1045                                 self->opbin, leftr, right);
1046     self->expression.outr = bin;
1047
1048     /* now store them */
1049     cgen = self->dest->expression.codegen;
1050     /* lvalue of destination */
1051     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1052         return false;
1053     self->expression.outl = leftl;
1054
1055     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1056         return false;
1057     self->expression.outr = bin;
1058
1059     /* Theoretically, an assinment returns its left side as an
1060      * lvalue, if we don't need an lvalue though, we return
1061      * the right side as an rvalue, otherwise we have to
1062      * somehow know whether or not we need to dereference the pointer
1063      * on the left side - that is: OP_LOAD if it was an address.
1064      * Also: in original QC we cannot OP_LOADP *anyway*.
1065      */
1066     *out = (lvalue ? leftl : bin);
1067
1068     return true;
1069 }
1070
1071 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1072 {
1073     ast_expression_codegen *cgen;
1074     ir_value *operand;
1075
1076     /* In the context of a unary operation, we can disregard
1077      * the lvalue flag.
1078      */
1079     (void)lvalue;
1080     if (self->expression.outr) {
1081         *out = self->expression.outr;
1082         return true;
1083     }
1084
1085     cgen = self->operand->expression.codegen;
1086     /* lvalue! */
1087     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1088         return false;
1089
1090     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1091                                  self->op, operand);
1092     if (!*out)
1093         return false;
1094     self->expression.outr = *out;
1095
1096     return true;
1097 }
1098
1099 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1100 {
1101     ast_expression_codegen *cgen;
1102     ir_value *operand;
1103
1104     /* In the context of a return operation, we can disregard
1105      * the lvalue flag.
1106      */
1107     (void)lvalue;
1108     if (self->expression.outr) {
1109         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1110         return false;
1111     }
1112     self->expression.outr = (ir_value*)1;
1113
1114     cgen = self->operand->expression.codegen;
1115     /* lvalue! */
1116     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1117         return false;
1118
1119     if (!ir_block_create_return(func->curblock, operand))
1120         return false;
1121
1122     return true;
1123 }
1124
1125 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1126 {
1127     ast_expression_codegen *cgen;
1128     ir_value *ent, *field;
1129
1130     /* This function needs to take the 'lvalue' flag into account!
1131      * As lvalue we provide a field-pointer, as rvalue we provide the
1132      * value in a temp.
1133      */
1134
1135     if (lvalue && self->expression.outl) {
1136         *out = self->expression.outl;
1137         return true;
1138     }
1139
1140     if (!lvalue && self->expression.outr) {
1141         *out = self->expression.outr;
1142         return true;
1143     }
1144
1145     cgen = self->entity->expression.codegen;
1146     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1147         return false;
1148
1149     cgen = self->field->expression.codegen;
1150     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1151         return false;
1152
1153     if (lvalue) {
1154         /* address! */
1155         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1156                                             ent, field);
1157     } else {
1158         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1159                                              ent, field, self->expression.vtype);
1160     }
1161     if (!*out) {
1162         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1163                  (lvalue ? "ADDRESS" : "FIELD"),
1164                  type_name[self->expression.vtype]);
1165         return false;
1166     }
1167
1168     if (lvalue)
1169         self->expression.outl = *out;
1170     else
1171         self->expression.outr = *out;
1172
1173     /* Hm that should be it... */
1174     return true;
1175 }
1176
1177 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1178 {
1179     ast_expression_codegen *cgen;
1180     ir_value *vec;
1181
1182     /* in QC this is always an lvalue */
1183     (void)lvalue;
1184     if (self->expression.outl) {
1185         *out = self->expression.outl;
1186         return true;
1187     }
1188
1189     cgen = self->owner->expression.codegen;
1190     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1191         return false;
1192
1193     if (vec->vtype != TYPE_VECTOR &&
1194         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1195     {
1196         return false;
1197     }
1198
1199     *out = ir_value_vector_member(vec, self->field);
1200     self->expression.outl = *out;
1201
1202     return (*out != NULL);
1203 }
1204
1205 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1206 {
1207     ast_expression_codegen *cgen;
1208
1209     ir_value *condval;
1210     ir_value *dummy;
1211
1212     ir_block *cond = func->curblock;
1213     ir_block *ontrue;
1214     ir_block *onfalse;
1215     ir_block *merge;
1216
1217     /* We don't output any value, thus also don't care about r/lvalue */
1218     (void)out;
1219     (void)lvalue;
1220
1221     if (self->expression.outr) {
1222         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1223         return false;
1224     }
1225     self->expression.outr = (ir_value*)1;
1226
1227     /* generate the condition */
1228     func->curblock = cond;
1229     cgen = self->cond->expression.codegen;
1230     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1231         return false;
1232
1233     /* on-true path */
1234
1235     if (self->on_true) {
1236         /* create on-true block */
1237         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1238         if (!ontrue)
1239             return false;
1240
1241         /* enter the block */
1242         func->curblock = ontrue;
1243
1244         /* generate */
1245         cgen = self->on_true->expression.codegen;
1246         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1247             return false;
1248     } else
1249         ontrue = NULL;
1250
1251     /* on-false path */
1252     if (self->on_false) {
1253         /* create on-false block */
1254         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1255         if (!onfalse)
1256             return false;
1257
1258         /* enter the block */
1259         func->curblock = onfalse;
1260
1261         /* generate */
1262         cgen = self->on_false->expression.codegen;
1263         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1264             return false;
1265     } else
1266         onfalse = NULL;
1267
1268     /* Merge block were they all merge in to */
1269     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1270     if (!merge)
1271         return false;
1272
1273     /* add jumps ot the merge block */
1274     if (ontrue && !ir_block_create_jump(ontrue, merge))
1275         return false;
1276     if (onfalse && !ir_block_create_jump(onfalse, merge))
1277         return false;
1278
1279     /* we create the if here, that way all blocks are ordered :)
1280      */
1281     if (!ir_block_create_if(cond, condval,
1282                             (ontrue  ? ontrue  : merge),
1283                             (onfalse ? onfalse : merge)))
1284     {
1285         return false;
1286     }
1287
1288     /* Now enter the merge block */
1289     func->curblock = merge;
1290
1291     return true;
1292 }
1293
1294 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1295 {
1296     ast_expression_codegen *cgen;
1297
1298     ir_value *condval;
1299     ir_value *trueval, *falseval;
1300     ir_instr *phi;
1301
1302     ir_block *cond = func->curblock;
1303     ir_block *ontrue;
1304     ir_block *onfalse;
1305     ir_block *merge;
1306
1307     /* Ternary can never create an lvalue... */
1308     if (lvalue)
1309         return false;
1310
1311     /* In theory it shouldn't be possible to pass through a node twice, but
1312      * in case we add any kind of optimization pass for the AST itself, it
1313      * may still happen, thus we remember a created ir_value and simply return one
1314      * if it already exists.
1315      */
1316     if (self->phi_out) {
1317         *out = self->phi_out;
1318         return true;
1319     }
1320
1321     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1322
1323     /* generate the condition */
1324     func->curblock = cond;
1325     cgen = self->cond->expression.codegen;
1326     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1327         return false;
1328
1329     /* create on-true block */
1330     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1331     if (!ontrue)
1332         return false;
1333     else
1334     {
1335         /* enter the block */
1336         func->curblock = ontrue;
1337
1338         /* generate */
1339         cgen = self->on_true->expression.codegen;
1340         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1341             return false;
1342     }
1343
1344     /* create on-false block */
1345     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1346     if (!onfalse)
1347         return false;
1348     else
1349     {
1350         /* enter the block */
1351         func->curblock = onfalse;
1352
1353         /* generate */
1354         cgen = self->on_false->expression.codegen;
1355         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1356             return false;
1357     }
1358
1359     /* create merge block */
1360     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1361     if (!merge)
1362         return false;
1363     /* jump to merge block */
1364     if (!ir_block_create_jump(ontrue, merge))
1365         return false;
1366     if (!ir_block_create_jump(onfalse, merge))
1367         return false;
1368
1369     /* create if instruction */
1370     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1371         return false;
1372
1373     /* Now enter the merge block */
1374     func->curblock = merge;
1375
1376     /* Here, now, we need a PHI node
1377      * but first some sanity checking...
1378      */
1379     if (trueval->vtype != falseval->vtype) {
1380         /* error("ternary with different types on the two sides"); */
1381         return false;
1382     }
1383
1384     /* create PHI */
1385     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1386     if (!phi ||
1387         !ir_phi_add(phi, ontrue,  trueval) ||
1388         !ir_phi_add(phi, onfalse, falseval))
1389     {
1390         return false;
1391     }
1392
1393     self->phi_out = ir_phi_value(phi);
1394     *out = self->phi_out;
1395
1396     return true;
1397 }
1398
1399 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1400 {
1401     ast_expression_codegen *cgen;
1402
1403     ir_value *dummy      = NULL;
1404     ir_value *precond    = NULL;
1405     ir_value *postcond   = NULL;
1406
1407     /* Since we insert some jumps "late" so we have blocks
1408      * ordered "nicely", we need to keep track of the actual end-blocks
1409      * of expressions to add the jumps to.
1410      */
1411     ir_block *bbody      = NULL, *end_bbody      = NULL;
1412     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1413     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1414     ir_block *bincrement = NULL, *end_bincrement = NULL;
1415     ir_block *bout       = NULL, *bin            = NULL;
1416
1417     /* let's at least move the outgoing block to the end */
1418     size_t    bout_id;
1419
1420     /* 'break' and 'continue' need to be able to find the right blocks */
1421     ir_block *bcontinue     = NULL;
1422     ir_block *bbreak        = NULL;
1423
1424     ir_block *old_bcontinue = NULL;
1425     ir_block *old_bbreak    = NULL;
1426
1427     ir_block *tmpblock      = NULL;
1428
1429     (void)lvalue;
1430     (void)out;
1431
1432     if (self->expression.outr) {
1433         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1434         return false;
1435     }
1436     self->expression.outr = (ir_value*)1;
1437
1438     /* NOTE:
1439      * Should we ever need some kind of block ordering, better make this function
1440      * move blocks around than write a block ordering algorithm later... after all
1441      * the ast and ir should work together, not against each other.
1442      */
1443
1444     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1445      * anyway if for example it contains a ternary.
1446      */
1447     if (self->initexpr)
1448     {
1449         cgen = self->initexpr->expression.codegen;
1450         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1451             return false;
1452     }
1453
1454     /* Store the block from which we enter this chaos */
1455     bin = func->curblock;
1456
1457     /* The pre-loop condition needs its own block since we
1458      * need to be able to jump to the start of that expression.
1459      */
1460     if (self->precond)
1461     {
1462         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1463         if (!bprecond)
1464             return false;
1465
1466         /* the pre-loop-condition the least important place to 'continue' at */
1467         bcontinue = bprecond;
1468
1469         /* enter */
1470         func->curblock = bprecond;
1471
1472         /* generate */
1473         cgen = self->precond->expression.codegen;
1474         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1475             return false;
1476
1477         end_bprecond = func->curblock;
1478     } else {
1479         bprecond = end_bprecond = NULL;
1480     }
1481
1482     /* Now the next blocks won't be ordered nicely, but we need to
1483      * generate them this early for 'break' and 'continue'.
1484      */
1485     if (self->increment) {
1486         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1487         if (!bincrement)
1488             return false;
1489         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1490     } else {
1491         bincrement = end_bincrement = NULL;
1492     }
1493
1494     if (self->postcond) {
1495         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1496         if (!bpostcond)
1497             return false;
1498         bcontinue = bpostcond; /* postcond comes before the increment */
1499     } else {
1500         bpostcond = end_bpostcond = NULL;
1501     }
1502
1503     bout_id = func->ir_func->blocks_count;
1504     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1505     if (!bout)
1506         return false;
1507     bbreak = bout;
1508
1509     /* The loop body... */
1510     if (self->body)
1511     {
1512         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1513         if (!bbody)
1514             return false;
1515
1516         /* enter */
1517         func->curblock = bbody;
1518
1519         old_bbreak          = func->breakblock;
1520         old_bcontinue       = func->continueblock;
1521         func->breakblock    = bbreak;
1522         func->continueblock = bcontinue;
1523
1524         /* generate */
1525         cgen = self->body->expression.codegen;
1526         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1527             return false;
1528
1529         end_bbody = func->curblock;
1530         func->breakblock    = old_bbreak;
1531         func->continueblock = old_bcontinue;
1532     }
1533
1534     /* post-loop-condition */
1535     if (self->postcond)
1536     {
1537         /* enter */
1538         func->curblock = bpostcond;
1539
1540         /* generate */
1541         cgen = self->postcond->expression.codegen;
1542         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1543             return false;
1544
1545         end_bpostcond = func->curblock;
1546     }
1547
1548     /* The incrementor */
1549     if (self->increment)
1550     {
1551         /* enter */
1552         func->curblock = bincrement;
1553
1554         /* generate */
1555         cgen = self->increment->expression.codegen;
1556         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1557             return false;
1558
1559         end_bincrement = func->curblock;
1560     }
1561
1562     /* In any case now, we continue from the outgoing block */
1563     func->curblock = bout;
1564
1565     /* Now all blocks are in place */
1566     /* From 'bin' we jump to whatever comes first */
1567     if      (bprecond)   tmpblock = bprecond;
1568     else if (bbody)      tmpblock = bbody;
1569     else if (bpostcond)  tmpblock = bpostcond;
1570     else                 tmpblock = bout;
1571     if (!ir_block_create_jump(bin, tmpblock))
1572         return false;
1573
1574     /* From precond */
1575     if (bprecond)
1576     {
1577         ir_block *ontrue, *onfalse;
1578         if      (bbody)      ontrue = bbody;
1579         else if (bincrement) ontrue = bincrement;
1580         else if (bpostcond)  ontrue = bpostcond;
1581         else                 ontrue = bprecond;
1582         onfalse = bout;
1583         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1584             return false;
1585     }
1586
1587     /* from body */
1588     if (bbody)
1589     {
1590         if      (bincrement) tmpblock = bincrement;
1591         else if (bpostcond)  tmpblock = bpostcond;
1592         else if (bprecond)   tmpblock = bprecond;
1593         else                 tmpblock = bout;
1594         if (!ir_block_create_jump(end_bbody, tmpblock))
1595             return false;
1596     }
1597
1598     /* from increment */
1599     if (bincrement)
1600     {
1601         if      (bpostcond)  tmpblock = bpostcond;
1602         else if (bprecond)   tmpblock = bprecond;
1603         else if (bbody)      tmpblock = bbody;
1604         else                 tmpblock = bout;
1605         if (!ir_block_create_jump(end_bincrement, tmpblock))
1606             return false;
1607     }
1608
1609     /* from postcond */
1610     if (bpostcond)
1611     {
1612         ir_block *ontrue, *onfalse;
1613         if      (bprecond)   ontrue = bprecond;
1614         else if (bbody)      ontrue = bbody;
1615         else if (bincrement) ontrue = bincrement;
1616         else                 ontrue = bpostcond;
1617         onfalse = bout;
1618         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1619             return false;
1620     }
1621
1622     /* Move 'bout' to the end */
1623     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1624         !ir_function_blocks_add(func->ir_func, bout))
1625     {
1626         ir_block_delete(bout);
1627         return false;
1628     }
1629
1630     return true;
1631 }
1632
1633 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1634 {
1635     ast_expression_codegen *cgen;
1636     ir_value_vector         params;
1637     ir_instr               *callinstr;
1638     size_t i;
1639
1640     ir_value *funval = NULL;
1641
1642     /* return values are never lvalues */
1643     (void)lvalue;
1644
1645     if (self->expression.outr) {
1646         *out = self->expression.outr;
1647         return true;
1648     }
1649
1650     cgen = self->func->expression.codegen;
1651     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1652         return false;
1653     if (!funval)
1654         return false;
1655
1656     MEM_VECTOR_INIT(&params, v);
1657
1658     /* parameters */
1659     for (i = 0; i < self->params_count; ++i)
1660     {
1661         ir_value *param;
1662         ast_expression *expr = self->params[i];
1663
1664         cgen = expr->expression.codegen;
1665         if (!(*cgen)(expr, func, false, &param))
1666             goto error;
1667         if (!param)
1668             goto error;
1669         if (!ir_value_vector_v_add(&params, param))
1670             goto error;
1671     }
1672
1673     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1674     if (!callinstr)
1675         goto error;
1676
1677     for (i = 0; i < params.v_count; ++i) {
1678         if (!ir_call_param(callinstr, params.v[i]))
1679             goto error;
1680     }
1681
1682     *out = ir_call_value(callinstr);
1683     self->expression.outr = *out;
1684
1685     MEM_VECTOR_CLEAR(&params, v);
1686     return true;
1687 error:
1688     MEM_VECTOR_CLEAR(&params, v);
1689     return false;
1690 }