]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
collect vector-member locals in ast_block->collect, like a garbage collection...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     ast_unref(self->owner);
409     ast_expression_delete((ast_expression*)self);
410     mem_d(self);
411 }
412
413 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
414 {
415     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
416     if (!ontrue && !onfalse) {
417         /* because it is invalid */
418         mem_d(self);
419         return NULL;
420     }
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
422
423     self->cond     = cond;
424     self->on_true  = ontrue;
425     self->on_false = onfalse;
426
427     return self;
428 }
429
430 void ast_ifthen_delete(ast_ifthen *self)
431 {
432     ast_unref(self->cond);
433     if (self->on_true)
434         ast_unref(self->on_true);
435     if (self->on_false)
436         ast_unref(self->on_false);
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
444     /* This time NEITHER must be NULL */
445     if (!ontrue || !onfalse) {
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454     self->phi_out  = NULL;
455
456     return self;
457 }
458
459 void ast_ternary_delete(ast_ternary *self)
460 {
461     ast_unref(self->cond);
462     ast_unref(self->on_true);
463     ast_unref(self->on_false);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_loop* ast_loop_new(lex_ctx ctx,
469                        ast_expression *initexpr,
470                        ast_expression *precond,
471                        ast_expression *postcond,
472                        ast_expression *increment,
473                        ast_expression *body)
474 {
475     ast_instantiate(ast_loop, ctx, ast_loop_delete);
476     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
477
478     self->initexpr  = initexpr;
479     self->precond   = precond;
480     self->postcond  = postcond;
481     self->increment = increment;
482     self->body      = body;
483
484     return self;
485 }
486
487 void ast_loop_delete(ast_loop *self)
488 {
489     if (self->initexpr)
490         ast_unref(self->initexpr);
491     if (self->precond)
492         ast_unref(self->precond);
493     if (self->postcond)
494         ast_unref(self->postcond);
495     if (self->increment)
496         ast_unref(self->increment);
497     if (self->body)
498         ast_unref(self->body);
499     ast_expression_delete((ast_expression*)self);
500     mem_d(self);
501 }
502
503 ast_call* ast_call_new(lex_ctx ctx,
504                        ast_expression *funcexpr)
505 {
506     ast_instantiate(ast_call, ctx, ast_call_delete);
507     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
508
509     MEM_VECTOR_INIT(self, params);
510
511     self->func = funcexpr;
512
513     return self;
514 }
515 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
516
517 void ast_call_delete(ast_call *self)
518 {
519     size_t i;
520     for (i = 0; i < self->params_count; ++i)
521         ast_unref(self->params[i]);
522     MEM_VECTOR_CLEAR(self, params);
523
524     if (self->func)
525         ast_unref(self->func);
526
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_store* ast_store_new(lex_ctx ctx, int op,
532                          ast_expression *dest, ast_expression *source)
533 {
534     ast_instantiate(ast_store, ctx, ast_store_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
536
537     self->op = op;
538     self->dest = dest;
539     self->source = source;
540
541     return self;
542 }
543
544 void ast_store_delete(ast_store *self)
545 {
546     ast_unref(self->dest);
547     ast_unref(self->source);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_block* ast_block_new(lex_ctx ctx)
553 {
554     ast_instantiate(ast_block, ctx, ast_block_delete);
555     ast_expression_init((ast_expression*)self,
556                         (ast_expression_codegen*)&ast_block_codegen);
557
558     MEM_VECTOR_INIT(self, locals);
559     MEM_VECTOR_INIT(self, exprs);
560
561     return self;
562 }
563 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
564 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
565 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
566
567 void ast_block_delete(ast_block *self)
568 {
569     size_t i;
570     for (i = 0; i < self->collect_count; ++i)
571         ast_unref(self->collect[i]);
572     MEM_VECTOR_CLEAR(self, collect);
573     for (i = 0; i < self->exprs_count; ++i)
574         ast_unref(self->exprs[i]);
575     MEM_VECTOR_CLEAR(self, exprs);
576     for (i = 0; i < self->locals_count; ++i)
577         ast_delete(self->locals[i]);
578     MEM_VECTOR_CLEAR(self, locals);
579     ast_expression_delete((ast_expression*)self);
580     mem_d(self);
581 }
582
583 bool ast_block_set_type(ast_block *self, ast_expression *from)
584 {
585     if (self->expression.next)
586         ast_delete(self->expression.next);
587     self->expression.vtype = from->expression.vtype;
588     if (from->expression.next) {
589         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
590         if (!self->expression.next)
591             return false;
592     }
593     return true;
594 }
595
596 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
597 {
598     ast_instantiate(ast_function, ctx, ast_function_delete);
599
600     if (!vtype ||
601         vtype->isconst ||
602         vtype->expression.vtype != TYPE_FUNCTION)
603     {
604         mem_d(self);
605         return NULL;
606     }
607
608     self->vtype = vtype;
609     self->name = name ? util_strdup(name) : NULL;
610     MEM_VECTOR_INIT(self, blocks);
611
612     self->labelcount = 0;
613     self->builtin = 0;
614
615     self->ir_func = NULL;
616     self->curblock = NULL;
617
618     self->breakblock    = NULL;
619     self->continueblock = NULL;
620
621     vtype->isconst = true;
622     vtype->constval.vfunc = self;
623
624     return self;
625 }
626
627 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
628
629 void ast_function_delete(ast_function *self)
630 {
631     size_t i;
632     if (self->name)
633         mem_d((void*)self->name);
634     if (self->vtype) {
635         /* ast_value_delete(self->vtype); */
636         self->vtype->isconst = false;
637         self->vtype->constval.vfunc = NULL;
638         /* We use unref - if it was stored in a global table it is supposed
639          * to be deleted from *there*
640          */
641         ast_unref(self->vtype);
642     }
643     for (i = 0; i < self->blocks_count; ++i)
644         ast_delete(self->blocks[i]);
645     MEM_VECTOR_CLEAR(self, blocks);
646     mem_d(self);
647 }
648
649 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
650 {
651     unsigned int base = 10;
652 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
653 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
654     if (size < 1)
655         return;
656     checknul();
657     if (!num)
658         addch('0');
659     else {
660         while (num)
661         {
662             int digit = num % base;
663             num /= base;
664             addch('0' + digit);
665         }
666     }
667
668     *buf = 0;
669 #undef addch
670 #undef checknul
671 }
672
673 const char* ast_function_label(ast_function *self, const char *prefix)
674 {
675     size_t id = (self->labelcount++);
676     size_t len = strlen(prefix);
677     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
678     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
679     return self->labelbuf;
680 }
681
682 /*********************************************************************/
683 /* AST codegen part
684  * by convention you must never pass NULL to the 'ir_value **out'
685  * parameter. If you really don't care about the output, pass a dummy.
686  * But I can't imagine a pituation where the output is truly unnecessary.
687  */
688
689 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
690 {
691     /* NOTE: This is the codegen for a variable used in an expression.
692      * It is not the codegen to generate the value. For this purpose,
693      * ast_local_codegen and ast_global_codegen are to be used before this
694      * is executed. ast_function_codegen should take care of its locals,
695      * and the ast-user should take care of ast_global_codegen to be used
696      * on all the globals.
697      */
698     if (!self->ir_v) {
699         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
700         return false;
701     }
702     *out = self->ir_v;
703     return true;
704 }
705
706 bool ast_global_codegen(ast_value *self, ir_builder *ir)
707 {
708     ir_value *v = NULL;
709     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
710     {
711         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
712         if (!func)
713             return false;
714
715         self->constval.vfunc->ir_func = func;
716         self->ir_v = func->value;
717         /* The function is filled later on ast_function_codegen... */
718         return true;
719     }
720
721     if (self->expression.vtype == TYPE_FIELD) {
722         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
723         if (!v)
724             return false;
725         if (self->isconst) {
726             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
727             goto error;
728         }
729         self->ir_v = v;
730         return true;
731     }
732
733     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
734     if (!v) {
735         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
736         return false;
737     }
738
739     if (self->isconst) {
740         switch (self->expression.vtype)
741         {
742             case TYPE_FLOAT:
743                 if (!ir_value_set_float(v, self->constval.vfloat))
744                     goto error;
745                 break;
746             case TYPE_VECTOR:
747                 if (!ir_value_set_vector(v, self->constval.vvec))
748                     goto error;
749                 break;
750             case TYPE_STRING:
751                 if (!ir_value_set_string(v, self->constval.vstring))
752                     goto error;
753                 break;
754             case TYPE_FUNCTION:
755                 asterror(ast_ctx(self), "global of type function not properly generated\n");
756                 goto error;
757                 /* Cannot generate an IR value for a function,
758                  * need a pointer pointing to a function rather.
759                  */
760             default:
761                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
762                 break;
763         }
764     }
765
766     /* link us to the ir_value */
767     self->ir_v = v;
768     return true;
769
770 error: /* clean up */
771     ir_value_delete(v);
772     return false;
773 }
774
775 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
776 {
777     ir_value *v = NULL;
778     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
779     {
780         /* Do we allow local functions? I think not...
781          * this is NOT a function pointer atm.
782          */
783         return false;
784     }
785
786     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
787     if (!v)
788         return false;
789
790     /* A constant local... hmmm...
791      * I suppose the IR will have to deal with this
792      */
793     if (self->isconst) {
794         switch (self->expression.vtype)
795         {
796             case TYPE_FLOAT:
797                 if (!ir_value_set_float(v, self->constval.vfloat))
798                     goto error;
799                 break;
800             case TYPE_VECTOR:
801                 if (!ir_value_set_vector(v, self->constval.vvec))
802                     goto error;
803                 break;
804             case TYPE_STRING:
805                 if (!ir_value_set_string(v, self->constval.vstring))
806                     goto error;
807                 break;
808             default:
809                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
810                 break;
811         }
812     }
813
814     /* link us to the ir_value */
815     self->ir_v = v;
816     return true;
817
818 error: /* clean up */
819     ir_value_delete(v);
820     return false;
821 }
822
823 bool ast_function_codegen(ast_function *self, ir_builder *ir)
824 {
825     ir_function *irf;
826     ir_value    *dummy;
827     ast_expression_common *ec;
828     size_t    i;
829
830     irf = self->ir_func;
831     if (!irf) {
832         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
833         return false;
834     }
835
836     /* fill the parameter list */
837     ec = &self->vtype->expression;
838     for (i = 0; i < ec->params_count; ++i)
839     {
840         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
841             return false;
842         if (!self->builtin) {
843             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
844                 return false;
845         }
846     }
847
848     if (self->builtin) {
849         irf->builtin = self->builtin;
850         return true;
851     }
852
853     if (!self->blocks_count) {
854         asterror(ast_ctx(self), "function `%s` has no body", self->name);
855         return false;
856     }
857
858     self->curblock = ir_function_create_block(irf, "entry");
859     if (!self->curblock)
860         return false;
861
862     for (i = 0; i < self->blocks_count; ++i) {
863         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
864         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
865             return false;
866     }
867
868     /* TODO: check return types */
869     if (!self->curblock->is_return)
870     {
871         if (!self->vtype->expression.next ||
872             self->vtype->expression.next->expression.vtype == TYPE_VOID)
873         {
874             return ir_block_create_return(self->curblock, NULL);
875         }
876         else
877         {
878             /* error("missing return"); */
879             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
880             return false;
881         }
882     }
883     return true;
884 }
885
886 /* Note, you will not see ast_block_codegen generate ir_blocks.
887  * To the AST and the IR, blocks are 2 different things.
888  * In the AST it represents a block of code, usually enclosed in
889  * curly braces {...}.
890  * While in the IR it represents a block in terms of control-flow.
891  */
892 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
893 {
894     size_t i;
895
896     /* We don't use this
897      * Note: an ast-representation using the comma-operator
898      * of the form: (a, b, c) = x should not assign to c...
899      */
900     (void)lvalue;
901     if (self->expression.outr) {
902         *out = self->expression.outr;
903         return true;
904     }
905
906     /* output is NULL at first, we'll have each expression
907      * assign to out output, thus, a comma-operator represention
908      * using an ast_block will return the last generated value,
909      * so: (b, c) + a  executed both b and c, and returns c,
910      * which is then added to a.
911      */
912     *out = NULL;
913
914     /* generate locals */
915     for (i = 0; i < self->locals_count; ++i)
916     {
917         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
918             return false;
919     }
920
921     for (i = 0; i < self->exprs_count; ++i)
922     {
923         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
924         if (!(*gen)(self->exprs[i], func, false, out))
925             return false;
926     }
927
928     self->expression.outr = *out;
929
930     return true;
931 }
932
933 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
934 {
935     ast_expression_codegen *cgen;
936     ir_value *left, *right;
937
938     if (lvalue && self->expression.outl) {
939         *out = self->expression.outl;
940         return true;
941     }
942
943     if (!lvalue && self->expression.outr) {
944         *out = self->expression.outr;
945         return true;
946     }
947
948     cgen = self->dest->expression.codegen;
949     /* lvalue! */
950     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
951         return false;
952     self->expression.outl = left;
953
954     cgen = self->source->expression.codegen;
955     /* rvalue! */
956     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
957         return false;
958
959     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
960         return false;
961     self->expression.outr = right;
962
963     /* Theoretically, an assinment returns its left side as an
964      * lvalue, if we don't need an lvalue though, we return
965      * the right side as an rvalue, otherwise we have to
966      * somehow know whether or not we need to dereference the pointer
967      * on the left side - that is: OP_LOAD if it was an address.
968      * Also: in original QC we cannot OP_LOADP *anyway*.
969      */
970     *out = (lvalue ? left : right);
971
972     return true;
973 }
974
975 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
976 {
977     ast_expression_codegen *cgen;
978     ir_value *left, *right;
979
980     /* In the context of a binary operation, we can disregard
981      * the lvalue flag.
982      */
983     (void)lvalue;
984     if (self->expression.outr) {
985         *out = self->expression.outr;
986         return true;
987     }
988
989     cgen = self->left->expression.codegen;
990     /* lvalue! */
991     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
992         return false;
993
994     cgen = self->right->expression.codegen;
995     /* rvalue! */
996     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
997         return false;
998
999     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1000                                  self->op, left, right);
1001     if (!*out)
1002         return false;
1003     self->expression.outr = *out;
1004
1005     return true;
1006 }
1007
1008 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1009 {
1010     ast_expression_codegen *cgen;
1011     ir_value *leftl, *leftr, *right, *bin;
1012
1013     if (lvalue && self->expression.outl) {
1014         *out = self->expression.outl;
1015         return true;
1016     }
1017
1018     if (!lvalue && self->expression.outr) {
1019         *out = self->expression.outr;
1020         return true;
1021     }
1022
1023     /* for a binstore we need both an lvalue and an rvalue for the left side */
1024     /* rvalue of destination! */
1025     cgen = self->dest->expression.codegen;
1026     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1027         return false;
1028
1029     /* source as rvalue only */
1030     cgen = self->source->expression.codegen;
1031     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1032         return false;
1033
1034     /* now the binary */
1035     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1036                                 self->opbin, leftr, right);
1037     self->expression.outr = bin;
1038
1039     /* now store them */
1040     cgen = self->dest->expression.codegen;
1041     /* lvalue of destination */
1042     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1043         return false;
1044     self->expression.outl = leftl;
1045
1046     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1047         return false;
1048     self->expression.outr = bin;
1049
1050     /* Theoretically, an assinment returns its left side as an
1051      * lvalue, if we don't need an lvalue though, we return
1052      * the right side as an rvalue, otherwise we have to
1053      * somehow know whether or not we need to dereference the pointer
1054      * on the left side - that is: OP_LOAD if it was an address.
1055      * Also: in original QC we cannot OP_LOADP *anyway*.
1056      */
1057     *out = (lvalue ? leftl : bin);
1058
1059     return true;
1060 }
1061
1062 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1063 {
1064     ast_expression_codegen *cgen;
1065     ir_value *operand;
1066
1067     /* In the context of a unary operation, we can disregard
1068      * the lvalue flag.
1069      */
1070     (void)lvalue;
1071     if (self->expression.outr) {
1072         *out = self->expression.outr;
1073         return true;
1074     }
1075
1076     cgen = self->operand->expression.codegen;
1077     /* lvalue! */
1078     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1079         return false;
1080
1081     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1082                                  self->op, operand);
1083     if (!*out)
1084         return false;
1085     self->expression.outr = *out;
1086
1087     return true;
1088 }
1089
1090 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1091 {
1092     ast_expression_codegen *cgen;
1093     ir_value *operand;
1094
1095     /* In the context of a return operation, we can disregard
1096      * the lvalue flag.
1097      */
1098     (void)lvalue;
1099     if (self->expression.outr) {
1100         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1101         return false;
1102     }
1103     self->expression.outr = (ir_value*)1;
1104
1105     cgen = self->operand->expression.codegen;
1106     /* lvalue! */
1107     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1108         return false;
1109
1110     if (!ir_block_create_return(func->curblock, operand))
1111         return false;
1112
1113     return true;
1114 }
1115
1116 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1117 {
1118     ast_expression_codegen *cgen;
1119     ir_value *ent, *field;
1120
1121     /* This function needs to take the 'lvalue' flag into account!
1122      * As lvalue we provide a field-pointer, as rvalue we provide the
1123      * value in a temp.
1124      */
1125
1126     if (lvalue && self->expression.outl) {
1127         *out = self->expression.outl;
1128         return true;
1129     }
1130
1131     if (!lvalue && self->expression.outr) {
1132         *out = self->expression.outr;
1133         return true;
1134     }
1135
1136     cgen = self->entity->expression.codegen;
1137     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1138         return false;
1139
1140     cgen = self->field->expression.codegen;
1141     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1142         return false;
1143
1144     if (lvalue) {
1145         /* address! */
1146         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1147                                             ent, field);
1148     } else {
1149         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1150                                              ent, field, self->expression.vtype);
1151     }
1152     if (!*out) {
1153         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1154                  (lvalue ? "ADDRESS" : "FIELD"),
1155                  type_name[self->expression.vtype]);
1156         return false;
1157     }
1158
1159     if (lvalue)
1160         self->expression.outl = *out;
1161     else
1162         self->expression.outr = *out;
1163
1164     /* Hm that should be it... */
1165     return true;
1166 }
1167
1168 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1169 {
1170     ast_expression_codegen *cgen;
1171     ir_value *vec;
1172
1173     /* in QC this is always an lvalue */
1174     (void)lvalue;
1175     if (self->expression.outl) {
1176         *out = self->expression.outl;
1177         return true;
1178     }
1179
1180     cgen = self->owner->expression.codegen;
1181     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1182         return false;
1183
1184     if (vec->vtype != TYPE_VECTOR &&
1185         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1186     {
1187         return false;
1188     }
1189
1190     *out = ir_value_vector_member(vec, self->field);
1191     self->expression.outl = *out;
1192
1193     return (*out != NULL);
1194 }
1195
1196 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1197 {
1198     ast_expression_codegen *cgen;
1199
1200     ir_value *condval;
1201     ir_value *dummy;
1202
1203     ir_block *cond = func->curblock;
1204     ir_block *ontrue;
1205     ir_block *onfalse;
1206     ir_block *merge;
1207
1208     /* We don't output any value, thus also don't care about r/lvalue */
1209     (void)out;
1210     (void)lvalue;
1211
1212     if (self->expression.outr) {
1213         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1214         return false;
1215     }
1216     self->expression.outr = (ir_value*)1;
1217
1218     /* generate the condition */
1219     func->curblock = cond;
1220     cgen = self->cond->expression.codegen;
1221     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1222         return false;
1223
1224     /* on-true path */
1225
1226     if (self->on_true) {
1227         /* create on-true block */
1228         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1229         if (!ontrue)
1230             return false;
1231
1232         /* enter the block */
1233         func->curblock = ontrue;
1234
1235         /* generate */
1236         cgen = self->on_true->expression.codegen;
1237         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1238             return false;
1239     } else
1240         ontrue = NULL;
1241
1242     /* on-false path */
1243     if (self->on_false) {
1244         /* create on-false block */
1245         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1246         if (!onfalse)
1247             return false;
1248
1249         /* enter the block */
1250         func->curblock = onfalse;
1251
1252         /* generate */
1253         cgen = self->on_false->expression.codegen;
1254         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1255             return false;
1256     } else
1257         onfalse = NULL;
1258
1259     /* Merge block were they all merge in to */
1260     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1261     if (!merge)
1262         return false;
1263
1264     /* add jumps ot the merge block */
1265     if (ontrue && !ir_block_create_jump(ontrue, merge))
1266         return false;
1267     if (onfalse && !ir_block_create_jump(onfalse, merge))
1268         return false;
1269
1270     /* we create the if here, that way all blocks are ordered :)
1271      */
1272     if (!ir_block_create_if(cond, condval,
1273                             (ontrue  ? ontrue  : merge),
1274                             (onfalse ? onfalse : merge)))
1275     {
1276         return false;
1277     }
1278
1279     /* Now enter the merge block */
1280     func->curblock = merge;
1281
1282     return true;
1283 }
1284
1285 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1286 {
1287     ast_expression_codegen *cgen;
1288
1289     ir_value *condval;
1290     ir_value *trueval, *falseval;
1291     ir_instr *phi;
1292
1293     ir_block *cond = func->curblock;
1294     ir_block *ontrue;
1295     ir_block *onfalse;
1296     ir_block *merge;
1297
1298     /* Ternary can never create an lvalue... */
1299     if (lvalue)
1300         return false;
1301
1302     /* In theory it shouldn't be possible to pass through a node twice, but
1303      * in case we add any kind of optimization pass for the AST itself, it
1304      * may still happen, thus we remember a created ir_value and simply return one
1305      * if it already exists.
1306      */
1307     if (self->phi_out) {
1308         *out = self->phi_out;
1309         return true;
1310     }
1311
1312     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1313
1314     /* generate the condition */
1315     func->curblock = cond;
1316     cgen = self->cond->expression.codegen;
1317     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1318         return false;
1319
1320     /* create on-true block */
1321     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1322     if (!ontrue)
1323         return false;
1324     else
1325     {
1326         /* enter the block */
1327         func->curblock = ontrue;
1328
1329         /* generate */
1330         cgen = self->on_true->expression.codegen;
1331         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1332             return false;
1333     }
1334
1335     /* create on-false block */
1336     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1337     if (!onfalse)
1338         return false;
1339     else
1340     {
1341         /* enter the block */
1342         func->curblock = onfalse;
1343
1344         /* generate */
1345         cgen = self->on_false->expression.codegen;
1346         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1347             return false;
1348     }
1349
1350     /* create merge block */
1351     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1352     if (!merge)
1353         return false;
1354     /* jump to merge block */
1355     if (!ir_block_create_jump(ontrue, merge))
1356         return false;
1357     if (!ir_block_create_jump(onfalse, merge))
1358         return false;
1359
1360     /* create if instruction */
1361     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1362         return false;
1363
1364     /* Now enter the merge block */
1365     func->curblock = merge;
1366
1367     /* Here, now, we need a PHI node
1368      * but first some sanity checking...
1369      */
1370     if (trueval->vtype != falseval->vtype) {
1371         /* error("ternary with different types on the two sides"); */
1372         return false;
1373     }
1374
1375     /* create PHI */
1376     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1377     if (!phi ||
1378         !ir_phi_add(phi, ontrue,  trueval) ||
1379         !ir_phi_add(phi, onfalse, falseval))
1380     {
1381         return false;
1382     }
1383
1384     self->phi_out = ir_phi_value(phi);
1385     *out = self->phi_out;
1386
1387     return true;
1388 }
1389
1390 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1391 {
1392     ast_expression_codegen *cgen;
1393
1394     ir_value *dummy      = NULL;
1395     ir_value *precond    = NULL;
1396     ir_value *postcond   = NULL;
1397
1398     /* Since we insert some jumps "late" so we have blocks
1399      * ordered "nicely", we need to keep track of the actual end-blocks
1400      * of expressions to add the jumps to.
1401      */
1402     ir_block *bbody      = NULL, *end_bbody      = NULL;
1403     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1404     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1405     ir_block *bincrement = NULL, *end_bincrement = NULL;
1406     ir_block *bout       = NULL, *bin            = NULL;
1407
1408     /* let's at least move the outgoing block to the end */
1409     size_t    bout_id;
1410
1411     /* 'break' and 'continue' need to be able to find the right blocks */
1412     ir_block *bcontinue     = NULL;
1413     ir_block *bbreak        = NULL;
1414
1415     ir_block *old_bcontinue = NULL;
1416     ir_block *old_bbreak    = NULL;
1417
1418     ir_block *tmpblock      = NULL;
1419
1420     (void)lvalue;
1421     (void)out;
1422
1423     if (self->expression.outr) {
1424         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1425         return false;
1426     }
1427     self->expression.outr = (ir_value*)1;
1428
1429     /* NOTE:
1430      * Should we ever need some kind of block ordering, better make this function
1431      * move blocks around than write a block ordering algorithm later... after all
1432      * the ast and ir should work together, not against each other.
1433      */
1434
1435     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1436      * anyway if for example it contains a ternary.
1437      */
1438     if (self->initexpr)
1439     {
1440         cgen = self->initexpr->expression.codegen;
1441         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1442             return false;
1443     }
1444
1445     /* Store the block from which we enter this chaos */
1446     bin = func->curblock;
1447
1448     /* The pre-loop condition needs its own block since we
1449      * need to be able to jump to the start of that expression.
1450      */
1451     if (self->precond)
1452     {
1453         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1454         if (!bprecond)
1455             return false;
1456
1457         /* the pre-loop-condition the least important place to 'continue' at */
1458         bcontinue = bprecond;
1459
1460         /* enter */
1461         func->curblock = bprecond;
1462
1463         /* generate */
1464         cgen = self->precond->expression.codegen;
1465         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1466             return false;
1467
1468         end_bprecond = func->curblock;
1469     } else {
1470         bprecond = end_bprecond = NULL;
1471     }
1472
1473     /* Now the next blocks won't be ordered nicely, but we need to
1474      * generate them this early for 'break' and 'continue'.
1475      */
1476     if (self->increment) {
1477         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1478         if (!bincrement)
1479             return false;
1480         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1481     } else {
1482         bincrement = end_bincrement = NULL;
1483     }
1484
1485     if (self->postcond) {
1486         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1487         if (!bpostcond)
1488             return false;
1489         bcontinue = bpostcond; /* postcond comes before the increment */
1490     } else {
1491         bpostcond = end_bpostcond = NULL;
1492     }
1493
1494     bout_id = func->ir_func->blocks_count;
1495     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1496     if (!bout)
1497         return false;
1498     bbreak = bout;
1499
1500     /* The loop body... */
1501     if (self->body)
1502     {
1503         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1504         if (!bbody)
1505             return false;
1506
1507         /* enter */
1508         func->curblock = bbody;
1509
1510         old_bbreak          = func->breakblock;
1511         old_bcontinue       = func->continueblock;
1512         func->breakblock    = bbreak;
1513         func->continueblock = bcontinue;
1514
1515         /* generate */
1516         cgen = self->body->expression.codegen;
1517         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1518             return false;
1519
1520         end_bbody = func->curblock;
1521         func->breakblock    = old_bbreak;
1522         func->continueblock = old_bcontinue;
1523     }
1524
1525     /* post-loop-condition */
1526     if (self->postcond)
1527     {
1528         /* enter */
1529         func->curblock = bpostcond;
1530
1531         /* generate */
1532         cgen = self->postcond->expression.codegen;
1533         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1534             return false;
1535
1536         end_bpostcond = func->curblock;
1537     }
1538
1539     /* The incrementor */
1540     if (self->increment)
1541     {
1542         /* enter */
1543         func->curblock = bincrement;
1544
1545         /* generate */
1546         cgen = self->increment->expression.codegen;
1547         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1548             return false;
1549
1550         end_bincrement = func->curblock;
1551     }
1552
1553     /* In any case now, we continue from the outgoing block */
1554     func->curblock = bout;
1555
1556     /* Now all blocks are in place */
1557     /* From 'bin' we jump to whatever comes first */
1558     if      (bprecond)   tmpblock = bprecond;
1559     else if (bbody)      tmpblock = bbody;
1560     else if (bpostcond)  tmpblock = bpostcond;
1561     else                 tmpblock = bout;
1562     if (!ir_block_create_jump(bin, tmpblock))
1563         return false;
1564
1565     /* From precond */
1566     if (bprecond)
1567     {
1568         ir_block *ontrue, *onfalse;
1569         if      (bbody)      ontrue = bbody;
1570         else if (bincrement) ontrue = bincrement;
1571         else if (bpostcond)  ontrue = bpostcond;
1572         else                 ontrue = bprecond;
1573         onfalse = bout;
1574         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1575             return false;
1576     }
1577
1578     /* from body */
1579     if (bbody)
1580     {
1581         if      (bincrement) tmpblock = bincrement;
1582         else if (bpostcond)  tmpblock = bpostcond;
1583         else if (bprecond)   tmpblock = bprecond;
1584         else                 tmpblock = bout;
1585         if (!ir_block_create_jump(end_bbody, tmpblock))
1586             return false;
1587     }
1588
1589     /* from increment */
1590     if (bincrement)
1591     {
1592         if      (bpostcond)  tmpblock = bpostcond;
1593         else if (bprecond)   tmpblock = bprecond;
1594         else if (bbody)      tmpblock = bbody;
1595         else                 tmpblock = bout;
1596         if (!ir_block_create_jump(end_bincrement, tmpblock))
1597             return false;
1598     }
1599
1600     /* from postcond */
1601     if (bpostcond)
1602     {
1603         ir_block *ontrue, *onfalse;
1604         if      (bprecond)   ontrue = bprecond;
1605         else if (bbody)      ontrue = bbody;
1606         else if (bincrement) ontrue = bincrement;
1607         else                 ontrue = bpostcond;
1608         onfalse = bout;
1609         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1610             return false;
1611     }
1612
1613     /* Move 'bout' to the end */
1614     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1615         !ir_function_blocks_add(func->ir_func, bout))
1616     {
1617         ir_block_delete(bout);
1618         return false;
1619     }
1620
1621     return true;
1622 }
1623
1624 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1625 {
1626     ast_expression_codegen *cgen;
1627     ir_value_vector         params;
1628     ir_instr               *callinstr;
1629     size_t i;
1630
1631     ir_value *funval = NULL;
1632
1633     /* return values are never lvalues */
1634     (void)lvalue;
1635
1636     if (self->expression.outr) {
1637         *out = self->expression.outr;
1638         return true;
1639     }
1640
1641     cgen = self->func->expression.codegen;
1642     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1643         return false;
1644     if (!funval)
1645         return false;
1646
1647     MEM_VECTOR_INIT(&params, v);
1648
1649     /* parameters */
1650     for (i = 0; i < self->params_count; ++i)
1651     {
1652         ir_value *param;
1653         ast_expression *expr = self->params[i];
1654
1655         cgen = expr->expression.codegen;
1656         if (!(*cgen)(expr, func, false, &param))
1657             goto error;
1658         if (!param)
1659             goto error;
1660         if (!ir_value_vector_v_add(&params, param))
1661             goto error;
1662     }
1663
1664     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1665     if (!callinstr)
1666         goto error;
1667
1668     for (i = 0; i < params.v_count; ++i) {
1669         if (!ir_call_param(callinstr, params.v[i]))
1670             goto error;
1671     }
1672
1673     *out = ir_call_value(callinstr);
1674     self->expression.outr = *out;
1675
1676     MEM_VECTOR_CLEAR(&params, v);
1677     return true;
1678 error:
1679     MEM_VECTOR_CLEAR(&params, v);
1680     return false;
1681 }