]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Merge branch 'master' into blub/bc3
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51     self->node.nodetype = nodetype;
52 }
53
54 /* General expression initialization */
55 static void ast_expression_init(ast_expression *self,
56                                 ast_expression_codegen *codegen)
57 {
58     self->expression.codegen = codegen;
59     self->expression.vtype   = TYPE_VOID;
60     self->expression.next    = NULL;
61     MEM_VECTOR_INIT(&self->expression, params);
62 }
63
64 static void ast_expression_delete(ast_expression *self)
65 {
66     size_t i;
67     if (self->expression.next)
68         ast_delete(self->expression.next);
69     for (i = 0; i < self->expression.params_count; ++i) {
70         ast_delete(self->expression.params[i]);
71     }
72     MEM_VECTOR_CLEAR(&self->expression, params);
73 }
74
75 static void ast_expression_delete_full(ast_expression *self)
76 {
77     ast_expression_delete(self);
78     mem_d(self);
79 }
80
81 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
82
83 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
84 static ast_value* ast_value_copy(const ast_value *self)
85 {
86     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
87     if (self->expression.next) {
88         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
89         if (!cp->expression.next) {
90             ast_value_delete(cp);
91             return NULL;
92         }
93     }
94     return cp;
95 }
96
97 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
98 {
99     size_t i;
100     const ast_expression_common *fromex;
101     ast_expression_common *selfex;
102
103     if (!ex)
104         return NULL;
105     else
106     {
107         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
108
109         fromex   = &ex->expression;
110         selfex = &self->expression;
111
112         /* This may never be codegen()d */
113         selfex->codegen = NULL;
114
115         selfex->vtype = fromex->vtype;
116         if (fromex->next)
117         {
118             selfex->next = ast_type_copy(ctx, fromex->next);
119             if (!selfex->next) {
120                 ast_expression_delete_full(self);
121                 return NULL;
122             }
123         }
124         else
125             selfex->next = NULL;
126
127         for (i = 0; i < fromex->params_count; ++i) {
128             ast_value *v = ast_value_copy(fromex->params[i]);
129             if (!v || !ast_expression_common_params_add(selfex, v)) {
130                 ast_expression_delete_full(self);
131                 return NULL;
132             }
133         }
134
135         return self;
136     }
137 }
138
139 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
140 {
141     ast_instantiate(ast_value, ctx, ast_value_delete);
142     ast_expression_init((ast_expression*)self,
143                         (ast_expression_codegen*)&ast_value_codegen);
144     self->expression.node.keep = true; /* keep */
145
146     self->name = name ? util_strdup(name) : NULL;
147     self->expression.vtype = t;
148     self->expression.next  = NULL;
149     self->isconst = false;
150     memset(&self->constval, 0, sizeof(self->constval));
151
152     self->ir_v    = NULL;
153
154     return self;
155 }
156
157 void ast_value_delete(ast_value* self)
158 {
159     if (self->name)
160         mem_d((void*)self->name);
161     if (self->isconst) {
162         switch (self->expression.vtype)
163         {
164         case TYPE_STRING:
165             mem_d((void*)self->constval.vstring);
166             break;
167         case TYPE_FUNCTION:
168             /* unlink us from the function node */
169             self->constval.vfunc->vtype = NULL;
170             break;
171         /* NOTE: delete function? currently collected in
172          * the parser structure
173          */
174         default:
175             break;
176         }
177     }
178     ast_expression_delete((ast_expression*)self);
179     mem_d(self);
180 }
181
182 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
183 {
184     return ast_expression_common_params_add(&self->expression, p);
185 }
186
187 bool ast_value_set_name(ast_value *self, const char *name)
188 {
189     if (self->name)
190         mem_d((void*)self->name);
191     self->name = util_strdup(name);
192     return !!self->name;
193 }
194
195 ast_binary* ast_binary_new(lex_ctx ctx, int op,
196                            ast_expression* left, ast_expression* right)
197 {
198     ast_instantiate(ast_binary, ctx, ast_binary_delete);
199     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
200
201     self->op = op;
202     self->left = left;
203     self->right = right;
204
205     if (op >= INSTR_EQ_F && op <= INSTR_GT)
206         self->expression.vtype = TYPE_FLOAT;
207     else if (op == INSTR_AND || op == INSTR_OR ||
208              op == INSTR_BITAND || op == INSTR_BITOR)
209         self->expression.vtype = TYPE_FLOAT;
210     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
211         self->expression.vtype = TYPE_VECTOR;
212     else if (op == INSTR_MUL_V)
213         self->expression.vtype = TYPE_FLOAT;
214     else
215         self->expression.vtype = left->expression.vtype;
216
217     return self;
218 }
219
220 void ast_binary_delete(ast_binary *self)
221 {
222     ast_unref(self->left);
223     ast_unref(self->right);
224     ast_expression_delete((ast_expression*)self);
225     mem_d(self);
226 }
227
228 ast_unary* ast_unary_new(lex_ctx ctx, int op,
229                          ast_expression *expr)
230 {
231     ast_instantiate(ast_unary, ctx, ast_unary_delete);
232     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
233
234     self->op = op;
235     self->operand = expr;
236
237     return self;
238 }
239
240 void ast_unary_delete(ast_unary *self)
241 {
242     ast_unref(self->operand);
243     ast_expression_delete((ast_expression*)self);
244     mem_d(self);
245 }
246
247 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
248 {
249     ast_instantiate(ast_return, ctx, ast_return_delete);
250     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
251
252     self->operand = expr;
253
254     return self;
255 }
256
257 void ast_return_delete(ast_return *self)
258 {
259     ast_unref(self->operand);
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
265 {
266     const ast_expression *outtype;
267
268     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
269
270     if (field->expression.vtype != TYPE_FIELD) {
271         mem_d(self);
272         return NULL;
273     }
274
275     outtype = field->expression.next;
276     if (!outtype) {
277         mem_d(self);
278         /* Error: field has no type... */
279         return NULL;
280     }
281
282     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
283
284     self->expression.vtype = outtype->expression.vtype;
285     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
286
287     self->entity = entity;
288     self->field  = field;
289
290     return self;
291 }
292
293 void ast_entfield_delete(ast_entfield *self)
294 {
295     ast_unref(self->entity);
296     ast_unref(self->field);
297     ast_expression_delete((ast_expression*)self);
298     mem_d(self);
299 }
300
301 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
302 {
303     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
304     if (!ontrue && !onfalse) {
305         /* because it is invalid */
306         mem_d(self);
307         return NULL;
308     }
309     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
310
311     self->cond     = cond;
312     self->on_true  = ontrue;
313     self->on_false = onfalse;
314
315     return self;
316 }
317
318 void ast_ifthen_delete(ast_ifthen *self)
319 {
320     ast_unref(self->cond);
321     if (self->on_true)
322         ast_unref(self->on_true);
323     if (self->on_false)
324         ast_unref(self->on_false);
325     ast_expression_delete((ast_expression*)self);
326     mem_d(self);
327 }
328
329 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
330 {
331     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
332     /* This time NEITHER must be NULL */
333     if (!ontrue || !onfalse) {
334         mem_d(self);
335         return NULL;
336     }
337     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
338
339     self->cond     = cond;
340     self->on_true  = ontrue;
341     self->on_false = onfalse;
342     self->phi_out  = NULL;
343
344     return self;
345 }
346
347 void ast_ternary_delete(ast_ternary *self)
348 {
349     ast_unref(self->cond);
350     ast_unref(self->on_true);
351     ast_unref(self->on_false);
352     ast_expression_delete((ast_expression*)self);
353     mem_d(self);
354 }
355
356 ast_loop* ast_loop_new(lex_ctx ctx,
357                        ast_expression *initexpr,
358                        ast_expression *precond,
359                        ast_expression *postcond,
360                        ast_expression *increment,
361                        ast_expression *body)
362 {
363     ast_instantiate(ast_loop, ctx, ast_loop_delete);
364     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
365
366     self->initexpr  = initexpr;
367     self->precond   = precond;
368     self->postcond  = postcond;
369     self->increment = increment;
370     self->body      = body;
371
372     return self;
373 }
374
375 void ast_loop_delete(ast_loop *self)
376 {
377     if (self->initexpr)
378         ast_unref(self->initexpr);
379     if (self->precond)
380         ast_unref(self->precond);
381     if (self->postcond)
382         ast_unref(self->postcond);
383     if (self->increment)
384         ast_unref(self->increment);
385     if (self->body)
386         ast_unref(self->body);
387     ast_expression_delete((ast_expression*)self);
388     mem_d(self);
389 }
390
391 ast_call* ast_call_new(lex_ctx ctx,
392                        ast_expression *funcexpr)
393 {
394     ast_instantiate(ast_call, ctx, ast_call_delete);
395     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
396
397     MEM_VECTOR_INIT(self, params);
398
399     self->func = funcexpr;
400
401     return self;
402 }
403 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
404
405 void ast_call_delete(ast_call *self)
406 {
407     size_t i;
408     for (i = 0; i < self->params_count; ++i)
409         ast_unref(self->params[i]);
410     MEM_VECTOR_CLEAR(self, params);
411
412     if (self->func)
413         ast_unref(self->func);
414
415     ast_expression_delete((ast_expression*)self);
416     mem_d(self);
417 }
418
419 ast_store* ast_store_new(lex_ctx ctx, int op,
420                          ast_expression *dest, ast_expression *source)
421 {
422     ast_instantiate(ast_store, ctx, ast_store_delete);
423     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
424
425     self->op = op;
426     self->dest = dest;
427     self->source = source;
428
429     return self;
430 }
431
432 void ast_store_delete(ast_store *self)
433 {
434     ast_unref(self->dest);
435     ast_unref(self->source);
436     ast_expression_delete((ast_expression*)self);
437     mem_d(self);
438 }
439
440 ast_block* ast_block_new(lex_ctx ctx)
441 {
442     ast_instantiate(ast_block, ctx, ast_block_delete);
443     ast_expression_init((ast_expression*)self,
444                         (ast_expression_codegen*)&ast_block_codegen);
445
446     MEM_VECTOR_INIT(self, locals);
447     MEM_VECTOR_INIT(self, exprs);
448
449     return self;
450 }
451 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
452 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
453
454 void ast_block_delete(ast_block *self)
455 {
456     size_t i;
457     for (i = 0; i < self->exprs_count; ++i)
458         ast_unref(self->exprs[i]);
459     MEM_VECTOR_CLEAR(self, exprs);
460     for (i = 0; i < self->locals_count; ++i)
461         ast_delete(self->locals[i]);
462     MEM_VECTOR_CLEAR(self, locals);
463     ast_expression_delete((ast_expression*)self);
464     mem_d(self);
465 }
466
467 bool ast_block_set_type(ast_block *self, ast_expression *from)
468 {
469     if (self->expression.next)
470         ast_delete(self->expression.next);
471     self->expression.vtype = from->expression.vtype;
472     if (from->expression.next) {
473         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
474         if (!self->expression.next)
475             return false;
476     }
477     return true;
478 }
479
480 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
481 {
482     ast_instantiate(ast_function, ctx, ast_function_delete);
483
484     if (!vtype ||
485         vtype->isconst ||
486         vtype->expression.vtype != TYPE_FUNCTION)
487     {
488         mem_d(self);
489         return NULL;
490     }
491
492     self->vtype = vtype;
493     self->name = name ? util_strdup(name) : NULL;
494     MEM_VECTOR_INIT(self, blocks);
495
496     self->labelcount = 0;
497     self->builtin = 0;
498
499     self->ir_func = NULL;
500     self->curblock = NULL;
501
502     self->breakblock    = NULL;
503     self->continueblock = NULL;
504
505     vtype->isconst = true;
506     vtype->constval.vfunc = self;
507
508     return self;
509 }
510
511 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
512
513 void ast_function_delete(ast_function *self)
514 {
515     size_t i;
516     if (self->name)
517         mem_d((void*)self->name);
518     if (self->vtype) {
519         /* ast_value_delete(self->vtype); */
520         self->vtype->isconst = false;
521         self->vtype->constval.vfunc = NULL;
522         /* We use unref - if it was stored in a global table it is supposed
523          * to be deleted from *there*
524          */
525         ast_unref(self->vtype);
526     }
527     for (i = 0; i < self->blocks_count; ++i)
528         ast_delete(self->blocks[i]);
529     MEM_VECTOR_CLEAR(self, blocks);
530     mem_d(self);
531 }
532
533 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
534 {
535     unsigned int base = 10;
536 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
537 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
538     if (size < 1)
539         return;
540     checknul();
541     if (!num)
542         addch('0');
543     else {
544         while (num)
545         {
546             int digit = num % base;
547             num /= base;
548             addch('0' + digit);
549         }
550     }
551
552     *buf = 0;
553 #undef addch
554 #undef checknul
555 }
556
557 const char* ast_function_label(ast_function *self, const char *prefix)
558 {
559     size_t id = (self->labelcount++);
560     size_t len = strlen(prefix);
561     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
562     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
563     return self->labelbuf;
564 }
565
566 /*********************************************************************/
567 /* AST codegen part
568  * by convention you must never pass NULL to the 'ir_value **out'
569  * parameter. If you really don't care about the output, pass a dummy.
570  * But I can't imagine a pituation where the output is truly unnecessary.
571  */
572
573 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
574 {
575     /* NOTE: This is the codegen for a variable used in an expression.
576      * It is not the codegen to generate the value. For this purpose,
577      * ast_local_codegen and ast_global_codegen are to be used before this
578      * is executed. ast_function_codegen should take care of its locals,
579      * and the ast-user should take care of ast_global_codegen to be used
580      * on all the globals.
581      */
582     if (!self->ir_v) {
583         printf("ast_value used before generated (%s)\n", self->name);
584         return false;
585     }
586     *out = self->ir_v;
587     return true;
588 }
589
590 bool ast_global_codegen(ast_value *self, ir_builder *ir)
591 {
592     ir_value *v = NULL;
593     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
594     {
595         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
596         if (!func)
597             return false;
598
599         self->constval.vfunc->ir_func = func;
600         self->ir_v = func->value;
601         /* The function is filled later on ast_function_codegen... */
602         return true;
603     }
604
605     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
606     if (!v) {
607         printf("ir_builder_create_global failed\n");
608         return false;
609     }
610
611     if (self->isconst) {
612         switch (self->expression.vtype)
613         {
614             case TYPE_FLOAT:
615                 if (!ir_value_set_float(v, self->constval.vfloat))
616                     goto error;
617                 break;
618             case TYPE_VECTOR:
619                 if (!ir_value_set_vector(v, self->constval.vvec))
620                     goto error;
621                 break;
622             case TYPE_STRING:
623                 if (!ir_value_set_string(v, self->constval.vstring))
624                     goto error;
625                 break;
626             case TYPE_FUNCTION:
627                 printf("global of type function not properly generated\n");
628                 goto error;
629                 /* Cannot generate an IR value for a function,
630                  * need a pointer pointing to a function rather.
631                  */
632             default:
633                 printf("TODO: global constant type %i\n", self->expression.vtype);
634                 break;
635         }
636     }
637
638     /* link us to the ir_value */
639     self->ir_v = v;
640     return true;
641
642 error: /* clean up */
643     ir_value_delete(v);
644     return false;
645 }
646
647 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
648 {
649     ir_value *v = NULL;
650     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
651     {
652         /* Do we allow local functions? I think not...
653          * this is NOT a function pointer atm.
654          */
655         return false;
656     }
657
658     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
659     if (!v)
660         return false;
661
662     /* A constant local... hmmm...
663      * I suppose the IR will have to deal with this
664      */
665     if (self->isconst) {
666         switch (self->expression.vtype)
667         {
668             case TYPE_FLOAT:
669                 if (!ir_value_set_float(v, self->constval.vfloat))
670                     goto error;
671                 break;
672             case TYPE_VECTOR:
673                 if (!ir_value_set_vector(v, self->constval.vvec))
674                     goto error;
675                 break;
676             case TYPE_STRING:
677                 if (!ir_value_set_string(v, self->constval.vstring))
678                     goto error;
679                 break;
680             default:
681                 printf("TODO: global constant type %i\n", self->expression.vtype);
682                 break;
683         }
684     }
685
686     /* link us to the ir_value */
687     self->ir_v = v;
688     return true;
689
690 error: /* clean up */
691     ir_value_delete(v);
692     return false;
693 }
694
695 bool ast_function_codegen(ast_function *self, ir_builder *ir)
696 {
697     ir_function *irf;
698     ir_value    *dummy;
699     ast_expression_common *ec;
700     size_t    i;
701
702     irf = self->ir_func;
703     if (!irf) {
704         printf("ast_function's related ast_value was not generated yet\n");
705         return false;
706     }
707
708     /* fill the parameter list */
709     ec = &self->vtype->expression;
710     for (i = 0; i < ec->params_count; ++i)
711     {
712         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
713             return false;
714         if (!self->builtin) {
715             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
716                 return false;
717         }
718     }
719
720     if (self->builtin) {
721         irf->builtin = self->builtin;
722         return true;
723     }
724
725     self->curblock = ir_function_create_block(irf, "entry");
726     if (!self->curblock)
727         return false;
728
729     for (i = 0; i < self->blocks_count; ++i) {
730         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
731         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
732             return false;
733     }
734
735     /* TODO: check return types */
736     if (!self->curblock->is_return)
737     {
738         if (!self->vtype->expression.next ||
739             self->vtype->expression.next->expression.vtype == TYPE_VOID)
740         {
741             return ir_block_create_return(self->curblock, NULL);
742         }
743         else
744         {
745             /* error("missing return"); */
746             return false;
747         }
748     }
749     return true;
750 }
751
752 /* Note, you will not see ast_block_codegen generate ir_blocks.
753  * To the AST and the IR, blocks are 2 different things.
754  * In the AST it represents a block of code, usually enclosed in
755  * curly braces {...}.
756  * While in the IR it represents a block in terms of control-flow.
757  */
758 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
759 {
760     size_t i;
761
762     /* We don't use this
763      * Note: an ast-representation using the comma-operator
764      * of the form: (a, b, c) = x should not assign to c...
765      */
766     (void)lvalue;
767
768     /* output is NULL at first, we'll have each expression
769      * assign to out output, thus, a comma-operator represention
770      * using an ast_block will return the last generated value,
771      * so: (b, c) + a  executed both b and c, and returns c,
772      * which is then added to a.
773      */
774     *out = NULL;
775
776     /* generate locals */
777     for (i = 0; i < self->locals_count; ++i)
778     {
779         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
780             return false;
781     }
782
783     for (i = 0; i < self->exprs_count; ++i)
784     {
785         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
786         if (!(*gen)(self->exprs[i], func, false, out))
787             return false;
788     }
789
790     return true;
791 }
792
793 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
794 {
795     ast_expression_codegen *cgen;
796     ir_value *left, *right;
797
798     cgen = self->dest->expression.codegen;
799     /* lvalue! */
800     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
801         return false;
802
803     cgen = self->source->expression.codegen;
804     /* rvalue! */
805     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
806         return false;
807
808     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
809         return false;
810
811     /* Theoretically, an assinment returns its left side as an
812      * lvalue, if we don't need an lvalue though, we return
813      * the right side as an rvalue, otherwise we have to
814      * somehow know whether or not we need to dereference the pointer
815      * on the left side - that is: OP_LOAD if it was an address.
816      * Also: in original QC we cannot OP_LOADP *anyway*.
817      */
818     *out = (lvalue ? left : right);
819
820     return true;
821 }
822
823 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
824 {
825     ast_expression_codegen *cgen;
826     ir_value *left, *right;
827
828     /* In the context of a binary operation, we can disregard
829      * the lvalue flag.
830      */
831      (void)lvalue;
832
833     cgen = self->left->expression.codegen;
834     /* lvalue! */
835     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
836         return false;
837
838     cgen = self->right->expression.codegen;
839     /* rvalue! */
840     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
841         return false;
842
843     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
844                                  self->op, left, right);
845     if (!*out)
846         return false;
847
848     return true;
849 }
850
851 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
852 {
853     ast_expression_codegen *cgen;
854     ir_value *operand;
855
856     /* In the context of a unary operation, we can disregard
857      * the lvalue flag.
858      */
859     (void)lvalue;
860
861     cgen = self->operand->expression.codegen;
862     /* lvalue! */
863     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
864         return false;
865
866     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
867                                  self->op, operand);
868     if (!*out)
869         return false;
870
871     return true;
872 }
873
874 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
875 {
876     ast_expression_codegen *cgen;
877     ir_value *operand;
878
879     /* In the context of a return operation, we can disregard
880      * the lvalue flag.
881      */
882     (void)lvalue;
883
884     cgen = self->operand->expression.codegen;
885     /* lvalue! */
886     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
887         return false;
888
889     if (!ir_block_create_return(func->curblock, operand))
890         return false;
891
892     return true;
893 }
894
895 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
896 {
897     ast_expression_codegen *cgen;
898     ir_value *ent, *field;
899
900     /* This function needs to take the 'lvalue' flag into account!
901      * As lvalue we provide a field-pointer, as rvalue we provide the
902      * value in a temp.
903      */
904
905     cgen = self->entity->expression.codegen;
906     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
907         return false;
908
909     cgen = self->field->expression.codegen;
910     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
911         return false;
912
913     if (lvalue) {
914         /* address! */
915         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
916                                             ent, field);
917     } else {
918         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
919                                              ent, field, self->expression.vtype);
920     }
921     if (!*out)
922         return false;
923
924     /* Hm that should be it... */
925     return true;
926 }
927
928 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
929 {
930     ast_expression_codegen *cgen;
931
932     ir_value *condval;
933     ir_value *dummy;
934
935     ir_block *cond = func->curblock;
936     ir_block *ontrue;
937     ir_block *onfalse;
938     ir_block *merge;
939
940     /* We don't output any value, thus also don't care about r/lvalue */
941     (void)out;
942     (void)lvalue;
943
944     /* generate the condition */
945     func->curblock = cond;
946     cgen = self->cond->expression.codegen;
947     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
948         return false;
949
950     /* on-true path */
951
952     if (self->on_true) {
953         /* create on-true block */
954         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
955         if (!ontrue)
956             return false;
957
958         /* enter the block */
959         func->curblock = ontrue;
960
961         /* generate */
962         cgen = self->on_true->expression.codegen;
963         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
964             return false;
965     } else
966         ontrue = NULL;
967
968     /* on-false path */
969     if (self->on_false) {
970         /* create on-false block */
971         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
972         if (!onfalse)
973             return false;
974
975         /* enter the block */
976         func->curblock = onfalse;
977
978         /* generate */
979         cgen = self->on_false->expression.codegen;
980         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
981             return false;
982     } else
983         onfalse = NULL;
984
985     /* Merge block were they all merge in to */
986     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
987     if (!merge)
988         return false;
989
990     /* add jumps ot the merge block */
991     if (ontrue && !ir_block_create_jump(ontrue, merge))
992         return false;
993     if (onfalse && !ir_block_create_jump(onfalse, merge))
994         return false;
995
996     /* we create the if here, that way all blocks are ordered :)
997      */
998     if (!ir_block_create_if(cond, condval,
999                             (ontrue  ? ontrue  : merge),
1000                             (onfalse ? onfalse : merge)))
1001     {
1002         return false;
1003     }
1004
1005     /* Now enter the merge block */
1006     func->curblock = merge;
1007
1008     return true;
1009 }
1010
1011 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1012 {
1013     ast_expression_codegen *cgen;
1014
1015     ir_value *condval;
1016     ir_value *trueval, *falseval;
1017     ir_instr *phi;
1018
1019     ir_block *cond = func->curblock;
1020     ir_block *ontrue;
1021     ir_block *onfalse;
1022     ir_block *merge;
1023
1024     /* In theory it shouldn't be possible to pass through a node twice, but
1025      * in case we add any kind of optimization pass for the AST itself, it
1026      * may still happen, thus we remember a created ir_value and simply return one
1027      * if it already exists.
1028      */
1029     if (self->phi_out) {
1030         *out = self->phi_out;
1031         return true;
1032     }
1033
1034     /* Ternary can never create an lvalue... */
1035     if (lvalue)
1036         return false;
1037
1038     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1039
1040     /* generate the condition */
1041     func->curblock = cond;
1042     cgen = self->cond->expression.codegen;
1043     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1044         return false;
1045
1046     /* create on-true block */
1047     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1048     if (!ontrue)
1049         return false;
1050     else
1051     {
1052         /* enter the block */
1053         func->curblock = ontrue;
1054
1055         /* generate */
1056         cgen = self->on_true->expression.codegen;
1057         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1058             return false;
1059     }
1060
1061     /* create on-false block */
1062     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1063     if (!onfalse)
1064         return false;
1065     else
1066     {
1067         /* enter the block */
1068         func->curblock = onfalse;
1069
1070         /* generate */
1071         cgen = self->on_false->expression.codegen;
1072         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1073             return false;
1074     }
1075
1076     /* create merge block */
1077     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1078     if (!merge)
1079         return false;
1080     /* jump to merge block */
1081     if (!ir_block_create_jump(ontrue, merge))
1082         return false;
1083     if (!ir_block_create_jump(onfalse, merge))
1084         return false;
1085
1086     /* create if instruction */
1087     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1088         return false;
1089
1090     /* Now enter the merge block */
1091     func->curblock = merge;
1092
1093     /* Here, now, we need a PHI node
1094      * but first some sanity checking...
1095      */
1096     if (trueval->vtype != falseval->vtype) {
1097         /* error("ternary with different types on the two sides"); */
1098         return false;
1099     }
1100
1101     /* create PHI */
1102     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1103     if (!phi ||
1104         !ir_phi_add(phi, ontrue,  trueval) ||
1105         !ir_phi_add(phi, onfalse, falseval))
1106     {
1107         return false;
1108     }
1109
1110     self->phi_out = ir_phi_value(phi);
1111     *out = self->phi_out;
1112
1113     return true;
1114 }
1115
1116 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1117 {
1118     ast_expression_codegen *cgen;
1119
1120     ir_value *dummy      = NULL;
1121     ir_value *precond    = NULL;
1122     ir_value *postcond   = NULL;
1123
1124     /* Since we insert some jumps "late" so we have blocks
1125      * ordered "nicely", we need to keep track of the actual end-blocks
1126      * of expressions to add the jumps to.
1127      */
1128     ir_block *bbody      = NULL, *end_bbody      = NULL;
1129     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1130     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1131     ir_block *bincrement = NULL, *end_bincrement = NULL;
1132     ir_block *bout       = NULL, *bin            = NULL;
1133
1134     /* let's at least move the outgoing block to the end */
1135     size_t    bout_id;
1136
1137     /* 'break' and 'continue' need to be able to find the right blocks */
1138     ir_block *bcontinue     = NULL;
1139     ir_block *bbreak        = NULL;
1140
1141     ir_block *old_bcontinue = NULL;
1142     ir_block *old_bbreak    = NULL;
1143
1144     ir_block *tmpblock      = NULL;
1145
1146     (void)lvalue;
1147     (void)out;
1148
1149     /* NOTE:
1150      * Should we ever need some kind of block ordering, better make this function
1151      * move blocks around than write a block ordering algorithm later... after all
1152      * the ast and ir should work together, not against each other.
1153      */
1154
1155     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1156      * anyway if for example it contains a ternary.
1157      */
1158     if (self->initexpr)
1159     {
1160         cgen = self->initexpr->expression.codegen;
1161         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1162             return false;
1163     }
1164
1165     /* Store the block from which we enter this chaos */
1166     bin = func->curblock;
1167
1168     /* The pre-loop condition needs its own block since we
1169      * need to be able to jump to the start of that expression.
1170      */
1171     if (self->precond)
1172     {
1173         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1174         if (!bprecond)
1175             return false;
1176
1177         /* the pre-loop-condition the least important place to 'continue' at */
1178         bcontinue = bprecond;
1179
1180         /* enter */
1181         func->curblock = bprecond;
1182
1183         /* generate */
1184         cgen = self->precond->expression.codegen;
1185         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1186             return false;
1187
1188         end_bprecond = func->curblock;
1189     } else {
1190         bprecond = end_bprecond = NULL;
1191     }
1192
1193     /* Now the next blocks won't be ordered nicely, but we need to
1194      * generate them this early for 'break' and 'continue'.
1195      */
1196     if (self->increment) {
1197         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1198         if (!bincrement)
1199             return false;
1200         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1201     } else {
1202         bincrement = end_bincrement = NULL;
1203     }
1204
1205     if (self->postcond) {
1206         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1207         if (!bpostcond)
1208             return false;
1209         bcontinue = bpostcond; /* postcond comes before the increment */
1210     } else {
1211         bpostcond = end_bpostcond = NULL;
1212     }
1213
1214     bout_id = func->ir_func->blocks_count;
1215     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1216     if (!bout)
1217         return false;
1218     bbreak = bout;
1219
1220     /* The loop body... */
1221     if (self->body)
1222     {
1223         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1224         if (!bbody)
1225             return false;
1226
1227         /* enter */
1228         func->curblock = bbody;
1229
1230         old_bbreak          = func->breakblock;
1231         old_bcontinue       = func->continueblock;
1232         func->breakblock    = bbreak;
1233         func->continueblock = bcontinue;
1234
1235         /* generate */
1236         cgen = self->body->expression.codegen;
1237         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1238             return false;
1239
1240         end_bbody = func->curblock;
1241         func->breakblock    = old_bbreak;
1242         func->continueblock = old_bcontinue;
1243     }
1244
1245     /* post-loop-condition */
1246     if (self->postcond)
1247     {
1248         /* enter */
1249         func->curblock = bpostcond;
1250
1251         /* generate */
1252         cgen = self->postcond->expression.codegen;
1253         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1254             return false;
1255
1256         end_bpostcond = func->curblock;
1257     }
1258
1259     /* The incrementor */
1260     if (self->increment)
1261     {
1262         /* enter */
1263         func->curblock = bincrement;
1264
1265         /* generate */
1266         cgen = self->increment->expression.codegen;
1267         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1268             return false;
1269
1270         end_bincrement = func->curblock;
1271     }
1272
1273     /* In any case now, we continue from the outgoing block */
1274     func->curblock = bout;
1275
1276     /* Now all blocks are in place */
1277     /* From 'bin' we jump to whatever comes first */
1278     if      (bprecond)   tmpblock = bprecond;
1279     else if (bbody)      tmpblock = bbody;
1280     else if (bpostcond)  tmpblock = bpostcond;
1281     else                 tmpblock = bout;
1282     if (!ir_block_create_jump(bin, tmpblock))
1283         return false;
1284
1285     /* From precond */
1286     if (bprecond)
1287     {
1288         ir_block *ontrue, *onfalse;
1289         if      (bbody)      ontrue = bbody;
1290         else if (bincrement) ontrue = bincrement;
1291         else if (bpostcond)  ontrue = bpostcond;
1292         else                 ontrue = bprecond;
1293         onfalse = bout;
1294         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1295             return false;
1296     }
1297
1298     /* from body */
1299     if (bbody)
1300     {
1301         if      (bincrement) tmpblock = bincrement;
1302         else if (bpostcond)  tmpblock = bpostcond;
1303         else if (bprecond)   tmpblock = bprecond;
1304         else                 tmpblock = bout;
1305         if (!ir_block_create_jump(end_bbody, tmpblock))
1306             return false;
1307     }
1308
1309     /* from increment */
1310     if (bincrement)
1311     {
1312         if      (bpostcond)  tmpblock = bpostcond;
1313         else if (bprecond)   tmpblock = bprecond;
1314         else if (bbody)      tmpblock = bbody;
1315         else                 tmpblock = bout;
1316         if (!ir_block_create_jump(end_bincrement, tmpblock))
1317             return false;
1318     }
1319
1320     /* from postcond */
1321     if (bpostcond)
1322     {
1323         ir_block *ontrue, *onfalse;
1324         if      (bprecond)   ontrue = bprecond;
1325         else if (bbody)      ontrue = bbody;
1326         else if (bincrement) ontrue = bincrement;
1327         else                 ontrue = bpostcond;
1328         onfalse = bout;
1329         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1330             return false;
1331     }
1332
1333     /* Move 'bout' to the end */
1334     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1335         !ir_function_blocks_add(func->ir_func, bout))
1336     {
1337         ir_block_delete(bout);
1338         return false;
1339     }
1340
1341     return true;
1342 }
1343
1344 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1345 {
1346     ast_expression_codegen *cgen;
1347     ir_value_vector         params;
1348     ir_instr               *callinstr;
1349     size_t i;
1350
1351     ir_value *funval = NULL;
1352
1353     /* return values are never rvalues */
1354     (void)lvalue;
1355
1356     cgen = self->func->expression.codegen;
1357     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1358         return false;
1359     if (!funval)
1360         return false;
1361
1362     MEM_VECTOR_INIT(&params, v);
1363
1364     /* parameters */
1365     for (i = 0; i < self->params_count; ++i)
1366     {
1367         ir_value *param;
1368         ast_expression *expr = self->params[i];
1369
1370         cgen = expr->expression.codegen;
1371         if (!(*cgen)(expr, func, false, &param))
1372             goto error;
1373         if (!param)
1374             goto error;
1375         if (!ir_value_vector_v_add(&params, param))
1376             goto error;
1377     }
1378
1379     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1380     if (!callinstr)
1381         goto error;
1382
1383     for (i = 0; i < params.v_count; ++i) {
1384         if (!ir_call_param(callinstr, params.v[i]))
1385             goto error;
1386     }
1387
1388     *out = ir_call_value(callinstr);
1389
1390     MEM_VECTOR_CLEAR(&params, v);
1391     return true;
1392 error:
1393     MEM_VECTOR_CLEAR(&params, v);
1394     return false;
1395 }