]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
for arrays, ast_value will contain several ir_values, ir_v will point to the [0]...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         default:
280             typestr = type_name[e->expression.vtype];
281             typelen = strlen(typestr);
282             if (pos + typelen >= bufsize)
283                 goto full;
284             strcpy(buf + pos, typestr);
285             return pos + typelen;
286     }
287
288 full:
289     buf[bufsize-3] = '.';
290     buf[bufsize-2] = '.';
291     buf[bufsize-1] = '.';
292     return bufsize;
293 }
294
295 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
296 {
297     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
298     buf[pos] = 0;
299 }
300
301 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
302 {
303     ast_instantiate(ast_value, ctx, ast_value_delete);
304     ast_expression_init((ast_expression*)self,
305                         (ast_expression_codegen*)&ast_value_codegen);
306     self->expression.node.keep = true; /* keep */
307
308     self->name = name ? util_strdup(name) : NULL;
309     self->expression.vtype = t;
310     self->expression.next  = NULL;
311     self->isconst = false;
312     self->uses    = 0;
313     memset(&self->constval, 0, sizeof(self->constval));
314
315     self->ir_v           = NULL;
316     self->ir_values      = NULL;
317     self->ir_value_count = 0;
318
319     return self;
320 }
321
322 void ast_value_delete(ast_value* self)
323 {
324     if (self->name)
325         mem_d((void*)self->name);
326     if (self->isconst) {
327         switch (self->expression.vtype)
328         {
329         case TYPE_STRING:
330             mem_d((void*)self->constval.vstring);
331             break;
332         case TYPE_FUNCTION:
333             /* unlink us from the function node */
334             self->constval.vfunc->vtype = NULL;
335             break;
336         /* NOTE: delete function? currently collected in
337          * the parser structure
338          */
339         default:
340             break;
341         }
342     }
343     ast_expression_delete((ast_expression*)self);
344     mem_d(self);
345 }
346
347 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
348 {
349     return ast_expression_common_params_add(&self->expression, p);
350 }
351
352 bool ast_value_set_name(ast_value *self, const char *name)
353 {
354     if (self->name)
355         mem_d((void*)self->name);
356     self->name = util_strdup(name);
357     return !!self->name;
358 }
359
360 ast_binary* ast_binary_new(lex_ctx ctx, int op,
361                            ast_expression* left, ast_expression* right)
362 {
363     ast_instantiate(ast_binary, ctx, ast_binary_delete);
364     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
365
366     self->op = op;
367     self->left = left;
368     self->right = right;
369
370     if (op >= INSTR_EQ_F && op <= INSTR_GT)
371         self->expression.vtype = TYPE_FLOAT;
372     else if (op == INSTR_AND || op == INSTR_OR ||
373              op == INSTR_BITAND || op == INSTR_BITOR)
374         self->expression.vtype = TYPE_FLOAT;
375     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
376         self->expression.vtype = TYPE_VECTOR;
377     else if (op == INSTR_MUL_V)
378         self->expression.vtype = TYPE_FLOAT;
379     else
380         self->expression.vtype = left->expression.vtype;
381
382     return self;
383 }
384
385 void ast_binary_delete(ast_binary *self)
386 {
387     ast_unref(self->left);
388     ast_unref(self->right);
389     ast_expression_delete((ast_expression*)self);
390     mem_d(self);
391 }
392
393 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
394                                ast_expression* left, ast_expression* right)
395 {
396     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
397     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
398
399     self->opstore = storop;
400     self->opbin   = op;
401     self->dest    = left;
402     self->source  = right;
403
404     self->expression.vtype = left->expression.vtype;
405     if (left->expression.next) {
406         self->expression.next = ast_type_copy(ctx, left);
407         if (!self->expression.next) {
408             ast_delete(self);
409             return NULL;
410         }
411     }
412     else
413         self->expression.next = NULL;
414
415     return self;
416 }
417
418 void ast_binstore_delete(ast_binstore *self)
419 {
420     ast_unref(self->dest);
421     ast_unref(self->source);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_unary* ast_unary_new(lex_ctx ctx, int op,
427                          ast_expression *expr)
428 {
429     ast_instantiate(ast_unary, ctx, ast_unary_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
431
432     self->op = op;
433     self->operand = expr;
434
435     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
436         self->expression.vtype = TYPE_FLOAT;
437     } else
438         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
439
440     return self;
441 }
442
443 void ast_unary_delete(ast_unary *self)
444 {
445     ast_unref(self->operand);
446     ast_expression_delete((ast_expression*)self);
447     mem_d(self);
448 }
449
450 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
451 {
452     ast_instantiate(ast_return, ctx, ast_return_delete);
453     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
454
455     self->operand = expr;
456
457     return self;
458 }
459
460 void ast_return_delete(ast_return *self)
461 {
462     if (self->operand)
463         ast_unref(self->operand);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
469 {
470     const ast_expression *outtype;
471
472     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
473
474     if (field->expression.vtype != TYPE_FIELD) {
475         mem_d(self);
476         return NULL;
477     }
478
479     outtype = field->expression.next;
480     if (!outtype) {
481         mem_d(self);
482         /* Error: field has no type... */
483         return NULL;
484     }
485
486     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
487
488     self->entity = entity;
489     self->field  = field;
490
491     if (!ast_type_adopt(self, outtype)) {
492         ast_entfield_delete(self);
493         return NULL;
494     }
495
496     return self;
497 }
498
499 void ast_entfield_delete(ast_entfield *self)
500 {
501     ast_unref(self->entity);
502     ast_unref(self->field);
503     ast_expression_delete((ast_expression*)self);
504     mem_d(self);
505 }
506
507 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
508 {
509     ast_instantiate(ast_member, ctx, ast_member_delete);
510     if (field >= 3) {
511         mem_d(self);
512         return NULL;
513     }
514
515     if (owner->expression.vtype != TYPE_VECTOR &&
516         owner->expression.vtype != TYPE_FIELD) {
517         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
518         mem_d(self);
519         return NULL;
520     }
521
522     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
523     self->expression.node.keep = true; /* keep */
524
525     if (owner->expression.vtype == TYPE_VECTOR) {
526         self->expression.vtype = TYPE_FLOAT;
527         self->expression.next  = NULL;
528     } else {
529         self->expression.vtype = TYPE_FIELD;
530         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
531     }
532
533     self->owner = owner;
534     self->field = field;
535
536     return self;
537 }
538
539 void ast_member_delete(ast_member *self)
540 {
541     /* The owner is always an ast_value, which has .keep=true,
542      * also: ast_members are usually deleted after the owner, thus
543      * this will cause invalid access
544     ast_unref(self->owner);
545      * once we allow (expression).x to access a vector-member, we need
546      * to change this: preferably by creating an alternate ast node for this
547      * purpose that is not garbage-collected.
548     */
549     ast_expression_delete((ast_expression*)self);
550     mem_d(self);
551 }
552
553 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
554 {
555     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
556     if (!ontrue && !onfalse) {
557         /* because it is invalid */
558         mem_d(self);
559         return NULL;
560     }
561     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
562
563     self->cond     = cond;
564     self->on_true  = ontrue;
565     self->on_false = onfalse;
566
567     return self;
568 }
569
570 void ast_ifthen_delete(ast_ifthen *self)
571 {
572     ast_unref(self->cond);
573     if (self->on_true)
574         ast_unref(self->on_true);
575     if (self->on_false)
576         ast_unref(self->on_false);
577     ast_expression_delete((ast_expression*)self);
578     mem_d(self);
579 }
580
581 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
582 {
583     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
584     /* This time NEITHER must be NULL */
585     if (!ontrue || !onfalse) {
586         mem_d(self);
587         return NULL;
588     }
589     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
590
591     self->cond     = cond;
592     self->on_true  = ontrue;
593     self->on_false = onfalse;
594     self->phi_out  = NULL;
595
596     return self;
597 }
598
599 void ast_ternary_delete(ast_ternary *self)
600 {
601     ast_unref(self->cond);
602     ast_unref(self->on_true);
603     ast_unref(self->on_false);
604     ast_expression_delete((ast_expression*)self);
605     mem_d(self);
606 }
607
608 ast_loop* ast_loop_new(lex_ctx ctx,
609                        ast_expression *initexpr,
610                        ast_expression *precond,
611                        ast_expression *postcond,
612                        ast_expression *increment,
613                        ast_expression *body)
614 {
615     ast_instantiate(ast_loop, ctx, ast_loop_delete);
616     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
617
618     self->initexpr  = initexpr;
619     self->precond   = precond;
620     self->postcond  = postcond;
621     self->increment = increment;
622     self->body      = body;
623
624     return self;
625 }
626
627 void ast_loop_delete(ast_loop *self)
628 {
629     if (self->initexpr)
630         ast_unref(self->initexpr);
631     if (self->precond)
632         ast_unref(self->precond);
633     if (self->postcond)
634         ast_unref(self->postcond);
635     if (self->increment)
636         ast_unref(self->increment);
637     if (self->body)
638         ast_unref(self->body);
639     ast_expression_delete((ast_expression*)self);
640     mem_d(self);
641 }
642
643 ast_call* ast_call_new(lex_ctx ctx,
644                        ast_expression *funcexpr)
645 {
646     ast_instantiate(ast_call, ctx, ast_call_delete);
647     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
648
649     MEM_VECTOR_INIT(self, params);
650
651     self->func = funcexpr;
652
653     self->expression.vtype = funcexpr->expression.next->expression.vtype;
654     if (funcexpr->expression.next->expression.next)
655         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
656
657     return self;
658 }
659 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
660
661 void ast_call_delete(ast_call *self)
662 {
663     size_t i;
664     for (i = 0; i < self->params_count; ++i)
665         ast_unref(self->params[i]);
666     MEM_VECTOR_CLEAR(self, params);
667
668     if (self->func)
669         ast_unref(self->func);
670
671     ast_expression_delete((ast_expression*)self);
672     mem_d(self);
673 }
674
675 bool ast_call_check_types(ast_call *self)
676 {
677     size_t i;
678     bool   retval = true;
679     const  ast_expression *func = self->func;
680     size_t count = self->params_count;
681     if (count > func->expression.params_count)
682         count = func->expression.params_count;
683
684     for (i = 0; i < count; ++i) {
685         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
686             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
687                      (unsigned int)(i+1));
688             /* we don't immediately return */
689             retval = false;
690         }
691     }
692     return retval;
693 }
694
695 ast_store* ast_store_new(lex_ctx ctx, int op,
696                          ast_expression *dest, ast_expression *source)
697 {
698     ast_instantiate(ast_store, ctx, ast_store_delete);
699     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
700
701     self->op = op;
702     self->dest = dest;
703     self->source = source;
704
705     self->expression.vtype = dest->expression.vtype;
706     if (dest->expression.next) {
707         self->expression.next = ast_type_copy(ctx, dest);
708         if (!self->expression.next) {
709             ast_delete(self);
710             return NULL;
711         }
712     }
713     else
714         self->expression.next = NULL;
715
716     return self;
717 }
718
719 void ast_store_delete(ast_store *self)
720 {
721     ast_unref(self->dest);
722     ast_unref(self->source);
723     ast_expression_delete((ast_expression*)self);
724     mem_d(self);
725 }
726
727 ast_block* ast_block_new(lex_ctx ctx)
728 {
729     ast_instantiate(ast_block, ctx, ast_block_delete);
730     ast_expression_init((ast_expression*)self,
731                         (ast_expression_codegen*)&ast_block_codegen);
732
733     MEM_VECTOR_INIT(self, locals);
734     MEM_VECTOR_INIT(self, exprs);
735     MEM_VECTOR_INIT(self, collect);
736
737     return self;
738 }
739 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
740 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
741 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
742
743 bool ast_block_collect(ast_block *self, ast_expression *expr)
744 {
745     if (!ast_block_collect_add(self, expr))
746         return false;
747     expr->expression.node.keep = true;
748     return true;
749 }
750
751 void ast_block_delete(ast_block *self)
752 {
753     size_t i;
754     for (i = 0; i < self->exprs_count; ++i)
755         ast_unref(self->exprs[i]);
756     MEM_VECTOR_CLEAR(self, exprs);
757     for (i = 0; i < self->locals_count; ++i)
758         ast_delete(self->locals[i]);
759     MEM_VECTOR_CLEAR(self, locals);
760     for (i = 0; i < self->collect_count; ++i)
761         ast_delete(self->collect[i]);
762     MEM_VECTOR_CLEAR(self, collect);
763     ast_expression_delete((ast_expression*)self);
764     mem_d(self);
765 }
766
767 bool ast_block_set_type(ast_block *self, ast_expression *from)
768 {
769     if (self->expression.next)
770         ast_delete(self->expression.next);
771     self->expression.vtype = from->expression.vtype;
772     if (from->expression.next) {
773         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
774         if (!self->expression.next)
775             return false;
776     }
777     else
778         self->expression.next = NULL;
779     return true;
780 }
781
782 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
783 {
784     ast_instantiate(ast_function, ctx, ast_function_delete);
785
786     if (!vtype ||
787         vtype->isconst ||
788         vtype->expression.vtype != TYPE_FUNCTION)
789     {
790         mem_d(self);
791         return NULL;
792     }
793
794     self->vtype = vtype;
795     self->name = name ? util_strdup(name) : NULL;
796     MEM_VECTOR_INIT(self, blocks);
797
798     self->labelcount = 0;
799     self->builtin = 0;
800
801     self->ir_func = NULL;
802     self->curblock = NULL;
803
804     self->breakblock    = NULL;
805     self->continueblock = NULL;
806
807     vtype->isconst = true;
808     vtype->constval.vfunc = self;
809
810     return self;
811 }
812
813 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
814
815 void ast_function_delete(ast_function *self)
816 {
817     size_t i;
818     if (self->name)
819         mem_d((void*)self->name);
820     if (self->vtype) {
821         /* ast_value_delete(self->vtype); */
822         self->vtype->isconst = false;
823         self->vtype->constval.vfunc = NULL;
824         /* We use unref - if it was stored in a global table it is supposed
825          * to be deleted from *there*
826          */
827         ast_unref(self->vtype);
828     }
829     for (i = 0; i < self->blocks_count; ++i)
830         ast_delete(self->blocks[i]);
831     MEM_VECTOR_CLEAR(self, blocks);
832     mem_d(self);
833 }
834
835 const char* ast_function_label(ast_function *self, const char *prefix)
836 {
837     size_t id;
838     size_t len;
839     char  *from;
840
841     if (!opts_dump)
842         return NULL;
843
844     id  = (self->labelcount++);
845     len = strlen(prefix);
846
847     from = self->labelbuf + sizeof(self->labelbuf)-1;
848     *from-- = 0;
849     do {
850         unsigned int digit = id % 10;
851         *from = digit + '0';
852         id /= 10;
853     } while (id);
854     memcpy(from - len, prefix, len);
855     return from - len;
856 }
857
858 /*********************************************************************/
859 /* AST codegen part
860  * by convention you must never pass NULL to the 'ir_value **out'
861  * parameter. If you really don't care about the output, pass a dummy.
862  * But I can't imagine a pituation where the output is truly unnecessary.
863  */
864
865 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
866 {
867     /* NOTE: This is the codegen for a variable used in an expression.
868      * It is not the codegen to generate the value. For this purpose,
869      * ast_local_codegen and ast_global_codegen are to be used before this
870      * is executed. ast_function_codegen should take care of its locals,
871      * and the ast-user should take care of ast_global_codegen to be used
872      * on all the globals.
873      */
874     if (!self->ir_v) {
875         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
876         return false;
877     }
878     *out = self->ir_v;
879     return true;
880 }
881
882 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
883 {
884     ir_value *v = NULL;
885     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
886     {
887         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
888         if (!func)
889             return false;
890         func->context = ast_ctx(self);
891         func->value->context = ast_ctx(self);
892
893         self->constval.vfunc->ir_func = func;
894         self->ir_v = func->value;
895         /* The function is filled later on ast_function_codegen... */
896         return true;
897     }
898
899     if (isfield && self->expression.vtype == TYPE_FIELD) {
900         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
901         if (!v)
902             return false;
903         v->context = ast_ctx(self);
904         if (self->isconst) {
905             asterror(ast_ctx(self), "TODO: constant field pointers with value");
906             goto error;
907         }
908         self->ir_v = v;
909         return true;
910     }
911
912     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
913     if (!v) {
914         asterror(ast_ctx(self), "ir_builder_create_global failed");
915         return false;
916     }
917     if (self->expression.vtype == TYPE_FIELD)
918         v->fieldtype = self->expression.next->expression.vtype;
919     v->context = ast_ctx(self);
920
921     if (self->isconst) {
922         switch (self->expression.vtype)
923         {
924             case TYPE_FLOAT:
925                 if (!ir_value_set_float(v, self->constval.vfloat))
926                     goto error;
927                 break;
928             case TYPE_VECTOR:
929                 if (!ir_value_set_vector(v, self->constval.vvec))
930                     goto error;
931                 break;
932             case TYPE_STRING:
933                 if (!ir_value_set_string(v, self->constval.vstring))
934                     goto error;
935                 break;
936             case TYPE_FUNCTION:
937                 asterror(ast_ctx(self), "global of type function not properly generated");
938                 goto error;
939                 /* Cannot generate an IR value for a function,
940                  * need a pointer pointing to a function rather.
941                  */
942             default:
943                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
944                 break;
945         }
946     }
947
948     /* link us to the ir_value */
949     self->ir_v = v;
950     return true;
951
952 error: /* clean up */
953     ir_value_delete(v);
954     return false;
955 }
956
957 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
958 {
959     ir_value *v = NULL;
960     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
961     {
962         /* Do we allow local functions? I think not...
963          * this is NOT a function pointer atm.
964          */
965         return false;
966     }
967
968     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
969     if (!v)
970         return false;
971     if (self->expression.vtype == TYPE_FIELD)
972         v->fieldtype = self->expression.next->expression.vtype;
973     v->context = ast_ctx(self);
974
975     /* A constant local... hmmm...
976      * I suppose the IR will have to deal with this
977      */
978     if (self->isconst) {
979         switch (self->expression.vtype)
980         {
981             case TYPE_FLOAT:
982                 if (!ir_value_set_float(v, self->constval.vfloat))
983                     goto error;
984                 break;
985             case TYPE_VECTOR:
986                 if (!ir_value_set_vector(v, self->constval.vvec))
987                     goto error;
988                 break;
989             case TYPE_STRING:
990                 if (!ir_value_set_string(v, self->constval.vstring))
991                     goto error;
992                 break;
993             default:
994                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
995                 break;
996         }
997     }
998
999     /* link us to the ir_value */
1000     self->ir_v = v;
1001     return true;
1002
1003 error: /* clean up */
1004     ir_value_delete(v);
1005     return false;
1006 }
1007
1008 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1009 {
1010     ir_function *irf;
1011     ir_value    *dummy;
1012     ast_expression_common *ec;
1013     size_t    i;
1014
1015     irf = self->ir_func;
1016     if (!irf) {
1017         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1018         return false;
1019     }
1020
1021     /* fill the parameter list */
1022     ec = &self->vtype->expression;
1023     for (i = 0; i < ec->params_count; ++i)
1024     {
1025         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1026             return false;
1027         if (!self->builtin) {
1028             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1029                 return false;
1030         }
1031     }
1032
1033     if (self->builtin) {
1034         irf->builtin = self->builtin;
1035         return true;
1036     }
1037
1038     if (!self->blocks_count) {
1039         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1040         return false;
1041     }
1042
1043     self->curblock = ir_function_create_block(irf, "entry");
1044     if (!self->curblock) {
1045         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1046         return false;
1047     }
1048
1049     for (i = 0; i < self->blocks_count; ++i) {
1050         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1051         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1052             return false;
1053     }
1054
1055     /* TODO: check return types */
1056     if (!self->curblock->is_return)
1057     {
1058         return ir_block_create_return(self->curblock, NULL);
1059         /* From now on the parser has to handle this situation */
1060 #if 0
1061         if (!self->vtype->expression.next ||
1062             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1063         {
1064             return ir_block_create_return(self->curblock, NULL);
1065         }
1066         else
1067         {
1068             /* error("missing return"); */
1069             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1070             return false;
1071         }
1072 #endif
1073     }
1074     return true;
1075 }
1076
1077 /* Note, you will not see ast_block_codegen generate ir_blocks.
1078  * To the AST and the IR, blocks are 2 different things.
1079  * In the AST it represents a block of code, usually enclosed in
1080  * curly braces {...}.
1081  * While in the IR it represents a block in terms of control-flow.
1082  */
1083 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1084 {
1085     size_t i;
1086
1087     /* We don't use this
1088      * Note: an ast-representation using the comma-operator
1089      * of the form: (a, b, c) = x should not assign to c...
1090      */
1091     if (lvalue) {
1092         asterror(ast_ctx(self), "not an l-value (code-block)");
1093         return false;
1094     }
1095
1096     if (self->expression.outr) {
1097         *out = self->expression.outr;
1098         return true;
1099     }
1100
1101     /* output is NULL at first, we'll have each expression
1102      * assign to out output, thus, a comma-operator represention
1103      * using an ast_block will return the last generated value,
1104      * so: (b, c) + a  executed both b and c, and returns c,
1105      * which is then added to a.
1106      */
1107     *out = NULL;
1108
1109     /* generate locals */
1110     for (i = 0; i < self->locals_count; ++i)
1111     {
1112         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1113             if (opts_debug)
1114                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1115             return false;
1116         }
1117     }
1118
1119     for (i = 0; i < self->exprs_count; ++i)
1120     {
1121         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1122         if (!(*gen)(self->exprs[i], func, false, out))
1123             return false;
1124     }
1125
1126     self->expression.outr = *out;
1127
1128     return true;
1129 }
1130
1131 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1132 {
1133     ast_expression_codegen *cgen;
1134     ir_value *left, *right;
1135
1136     if (lvalue && self->expression.outl) {
1137         *out = self->expression.outl;
1138         return true;
1139     }
1140
1141     if (!lvalue && self->expression.outr) {
1142         *out = self->expression.outr;
1143         return true;
1144     }
1145
1146     cgen = self->dest->expression.codegen;
1147     /* lvalue! */
1148     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1149         return false;
1150     self->expression.outl = left;
1151
1152     cgen = self->source->expression.codegen;
1153     /* rvalue! */
1154     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1155         return false;
1156
1157     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1158         return false;
1159     self->expression.outr = right;
1160
1161     /* Theoretically, an assinment returns its left side as an
1162      * lvalue, if we don't need an lvalue though, we return
1163      * the right side as an rvalue, otherwise we have to
1164      * somehow know whether or not we need to dereference the pointer
1165      * on the left side - that is: OP_LOAD if it was an address.
1166      * Also: in original QC we cannot OP_LOADP *anyway*.
1167      */
1168     *out = (lvalue ? left : right);
1169
1170     return true;
1171 }
1172
1173 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1174 {
1175     ast_expression_codegen *cgen;
1176     ir_value *left, *right;
1177
1178     /* A binary operation cannot yield an l-value */
1179     if (lvalue) {
1180         asterror(ast_ctx(self), "not an l-value (binop)");
1181         return false;
1182     }
1183
1184     if (self->expression.outr) {
1185         *out = self->expression.outr;
1186         return true;
1187     }
1188
1189     cgen = self->left->expression.codegen;
1190     /* lvalue! */
1191     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1192         return false;
1193
1194     cgen = self->right->expression.codegen;
1195     /* rvalue! */
1196     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1197         return false;
1198
1199     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1200                                  self->op, left, right);
1201     if (!*out)
1202         return false;
1203     self->expression.outr = *out;
1204
1205     return true;
1206 }
1207
1208 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1209 {
1210     ast_expression_codegen *cgen;
1211     ir_value *leftl, *leftr, *right, *bin;
1212
1213     if (lvalue && self->expression.outl) {
1214         *out = self->expression.outl;
1215         return true;
1216     }
1217
1218     if (!lvalue && self->expression.outr) {
1219         *out = self->expression.outr;
1220         return true;
1221     }
1222
1223     /* for a binstore we need both an lvalue and an rvalue for the left side */
1224     /* rvalue of destination! */
1225     cgen = self->dest->expression.codegen;
1226     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1227         return false;
1228
1229     /* source as rvalue only */
1230     cgen = self->source->expression.codegen;
1231     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1232         return false;
1233
1234     /* now the binary */
1235     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1236                                 self->opbin, leftr, right);
1237     self->expression.outr = bin;
1238
1239     /* now store them */
1240     cgen = self->dest->expression.codegen;
1241     /* lvalue of destination */
1242     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1243         return false;
1244     self->expression.outl = leftl;
1245
1246     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1247         return false;
1248     self->expression.outr = bin;
1249
1250     /* Theoretically, an assinment returns its left side as an
1251      * lvalue, if we don't need an lvalue though, we return
1252      * the right side as an rvalue, otherwise we have to
1253      * somehow know whether or not we need to dereference the pointer
1254      * on the left side - that is: OP_LOAD if it was an address.
1255      * Also: in original QC we cannot OP_LOADP *anyway*.
1256      */
1257     *out = (lvalue ? leftl : bin);
1258
1259     return true;
1260 }
1261
1262 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1263 {
1264     ast_expression_codegen *cgen;
1265     ir_value *operand;
1266
1267     /* An unary operation cannot yield an l-value */
1268     if (lvalue) {
1269         asterror(ast_ctx(self), "not an l-value (binop)");
1270         return false;
1271     }
1272
1273     if (self->expression.outr) {
1274         *out = self->expression.outr;
1275         return true;
1276     }
1277
1278     cgen = self->operand->expression.codegen;
1279     /* lvalue! */
1280     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1281         return false;
1282
1283     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1284                                  self->op, operand);
1285     if (!*out)
1286         return false;
1287     self->expression.outr = *out;
1288
1289     return true;
1290 }
1291
1292 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1293 {
1294     ast_expression_codegen *cgen;
1295     ir_value *operand;
1296
1297     /* In the context of a return operation, we don't actually return
1298      * anything...
1299      */
1300     if (lvalue) {
1301         asterror(ast_ctx(self), "return-expression is not an l-value");
1302         return false;
1303     }
1304
1305     if (self->expression.outr) {
1306         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1307         return false;
1308     }
1309     self->expression.outr = (ir_value*)1;
1310
1311     if (self->operand) {
1312         cgen = self->operand->expression.codegen;
1313         /* lvalue! */
1314         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1315             return false;
1316
1317         if (!ir_block_create_return(func->curblock, operand))
1318             return false;
1319     } else {
1320         if (!ir_block_create_return(func->curblock, NULL))
1321             return false;
1322     }
1323
1324     return true;
1325 }
1326
1327 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1328 {
1329     ast_expression_codegen *cgen;
1330     ir_value *ent, *field;
1331
1332     /* This function needs to take the 'lvalue' flag into account!
1333      * As lvalue we provide a field-pointer, as rvalue we provide the
1334      * value in a temp.
1335      */
1336
1337     if (lvalue && self->expression.outl) {
1338         *out = self->expression.outl;
1339         return true;
1340     }
1341
1342     if (!lvalue && self->expression.outr) {
1343         *out = self->expression.outr;
1344         return true;
1345     }
1346
1347     cgen = self->entity->expression.codegen;
1348     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1349         return false;
1350
1351     cgen = self->field->expression.codegen;
1352     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1353         return false;
1354
1355     if (lvalue) {
1356         /* address! */
1357         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1358                                             ent, field);
1359     } else {
1360         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1361                                              ent, field, self->expression.vtype);
1362     }
1363     if (!*out) {
1364         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1365                  (lvalue ? "ADDRESS" : "FIELD"),
1366                  type_name[self->expression.vtype]);
1367         return false;
1368     }
1369
1370     if (lvalue)
1371         self->expression.outl = *out;
1372     else
1373         self->expression.outr = *out;
1374
1375     /* Hm that should be it... */
1376     return true;
1377 }
1378
1379 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1380 {
1381     ast_expression_codegen *cgen;
1382     ir_value *vec;
1383
1384     /* in QC this is always an lvalue */
1385     (void)lvalue;
1386     if (self->expression.outl) {
1387         *out = self->expression.outl;
1388         return true;
1389     }
1390
1391     cgen = self->owner->expression.codegen;
1392     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1393         return false;
1394
1395     if (vec->vtype != TYPE_VECTOR &&
1396         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1397     {
1398         return false;
1399     }
1400
1401     *out = ir_value_vector_member(vec, self->field);
1402     self->expression.outl = *out;
1403
1404     return (*out != NULL);
1405 }
1406
1407 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1408 {
1409     ast_expression_codegen *cgen;
1410
1411     ir_value *condval;
1412     ir_value *dummy;
1413
1414     ir_block *cond = func->curblock;
1415     ir_block *ontrue;
1416     ir_block *onfalse;
1417     ir_block *ontrue_endblock = NULL;
1418     ir_block *onfalse_endblock = NULL;
1419     ir_block *merge;
1420
1421     /* We don't output any value, thus also don't care about r/lvalue */
1422     (void)out;
1423     (void)lvalue;
1424
1425     if (self->expression.outr) {
1426         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1427         return false;
1428     }
1429     self->expression.outr = (ir_value*)1;
1430
1431     /* generate the condition */
1432     func->curblock = cond;
1433     cgen = self->cond->expression.codegen;
1434     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1435         return false;
1436
1437     /* on-true path */
1438
1439     if (self->on_true) {
1440         /* create on-true block */
1441         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1442         if (!ontrue)
1443             return false;
1444
1445         /* enter the block */
1446         func->curblock = ontrue;
1447
1448         /* generate */
1449         cgen = self->on_true->expression.codegen;
1450         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1451             return false;
1452
1453         /* we now need to work from the current endpoint */
1454         ontrue_endblock = func->curblock;
1455     } else
1456         ontrue = NULL;
1457
1458     /* on-false path */
1459     if (self->on_false) {
1460         /* create on-false block */
1461         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1462         if (!onfalse)
1463             return false;
1464
1465         /* enter the block */
1466         func->curblock = onfalse;
1467
1468         /* generate */
1469         cgen = self->on_false->expression.codegen;
1470         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1471             return false;
1472
1473         /* we now need to work from the current endpoint */
1474         onfalse_endblock = func->curblock;
1475     } else
1476         onfalse = NULL;
1477
1478     /* Merge block were they all merge in to */
1479     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1480     if (!merge)
1481         return false;
1482
1483     /* add jumps ot the merge block */
1484     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1485         return false;
1486     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1487         return false;
1488
1489     /* we create the if here, that way all blocks are ordered :)
1490      */
1491     if (!ir_block_create_if(cond, condval,
1492                             (ontrue  ? ontrue  : merge),
1493                             (onfalse ? onfalse : merge)))
1494     {
1495         return false;
1496     }
1497
1498     /* Now enter the merge block */
1499     func->curblock = merge;
1500
1501     return true;
1502 }
1503
1504 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1505 {
1506     ast_expression_codegen *cgen;
1507
1508     ir_value *condval;
1509     ir_value *trueval, *falseval;
1510     ir_instr *phi;
1511
1512     ir_block *cond = func->curblock;
1513     ir_block *ontrue;
1514     ir_block *onfalse;
1515     ir_block *merge;
1516
1517     /* Ternary can never create an lvalue... */
1518     if (lvalue)
1519         return false;
1520
1521     /* In theory it shouldn't be possible to pass through a node twice, but
1522      * in case we add any kind of optimization pass for the AST itself, it
1523      * may still happen, thus we remember a created ir_value and simply return one
1524      * if it already exists.
1525      */
1526     if (self->phi_out) {
1527         *out = self->phi_out;
1528         return true;
1529     }
1530
1531     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1532
1533     /* generate the condition */
1534     func->curblock = cond;
1535     cgen = self->cond->expression.codegen;
1536     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1537         return false;
1538
1539     /* create on-true block */
1540     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1541     if (!ontrue)
1542         return false;
1543     else
1544     {
1545         /* enter the block */
1546         func->curblock = ontrue;
1547
1548         /* generate */
1549         cgen = self->on_true->expression.codegen;
1550         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1551             return false;
1552     }
1553
1554     /* create on-false block */
1555     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1556     if (!onfalse)
1557         return false;
1558     else
1559     {
1560         /* enter the block */
1561         func->curblock = onfalse;
1562
1563         /* generate */
1564         cgen = self->on_false->expression.codegen;
1565         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1566             return false;
1567     }
1568
1569     /* create merge block */
1570     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1571     if (!merge)
1572         return false;
1573     /* jump to merge block */
1574     if (!ir_block_create_jump(ontrue, merge))
1575         return false;
1576     if (!ir_block_create_jump(onfalse, merge))
1577         return false;
1578
1579     /* create if instruction */
1580     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1581         return false;
1582
1583     /* Now enter the merge block */
1584     func->curblock = merge;
1585
1586     /* Here, now, we need a PHI node
1587      * but first some sanity checking...
1588      */
1589     if (trueval->vtype != falseval->vtype) {
1590         /* error("ternary with different types on the two sides"); */
1591         return false;
1592     }
1593
1594     /* create PHI */
1595     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1596     if (!phi ||
1597         !ir_phi_add(phi, ontrue,  trueval) ||
1598         !ir_phi_add(phi, onfalse, falseval))
1599     {
1600         return false;
1601     }
1602
1603     self->phi_out = ir_phi_value(phi);
1604     *out = self->phi_out;
1605
1606     return true;
1607 }
1608
1609 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1610 {
1611     ast_expression_codegen *cgen;
1612
1613     ir_value *dummy      = NULL;
1614     ir_value *precond    = NULL;
1615     ir_value *postcond   = NULL;
1616
1617     /* Since we insert some jumps "late" so we have blocks
1618      * ordered "nicely", we need to keep track of the actual end-blocks
1619      * of expressions to add the jumps to.
1620      */
1621     ir_block *bbody      = NULL, *end_bbody      = NULL;
1622     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1623     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1624     ir_block *bincrement = NULL, *end_bincrement = NULL;
1625     ir_block *bout       = NULL, *bin            = NULL;
1626
1627     /* let's at least move the outgoing block to the end */
1628     size_t    bout_id;
1629
1630     /* 'break' and 'continue' need to be able to find the right blocks */
1631     ir_block *bcontinue     = NULL;
1632     ir_block *bbreak        = NULL;
1633
1634     ir_block *old_bcontinue = NULL;
1635     ir_block *old_bbreak    = NULL;
1636
1637     ir_block *tmpblock      = NULL;
1638
1639     (void)lvalue;
1640     (void)out;
1641
1642     if (self->expression.outr) {
1643         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1644         return false;
1645     }
1646     self->expression.outr = (ir_value*)1;
1647
1648     /* NOTE:
1649      * Should we ever need some kind of block ordering, better make this function
1650      * move blocks around than write a block ordering algorithm later... after all
1651      * the ast and ir should work together, not against each other.
1652      */
1653
1654     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1655      * anyway if for example it contains a ternary.
1656      */
1657     if (self->initexpr)
1658     {
1659         cgen = self->initexpr->expression.codegen;
1660         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1661             return false;
1662     }
1663
1664     /* Store the block from which we enter this chaos */
1665     bin = func->curblock;
1666
1667     /* The pre-loop condition needs its own block since we
1668      * need to be able to jump to the start of that expression.
1669      */
1670     if (self->precond)
1671     {
1672         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1673         if (!bprecond)
1674             return false;
1675
1676         /* the pre-loop-condition the least important place to 'continue' at */
1677         bcontinue = bprecond;
1678
1679         /* enter */
1680         func->curblock = bprecond;
1681
1682         /* generate */
1683         cgen = self->precond->expression.codegen;
1684         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1685             return false;
1686
1687         end_bprecond = func->curblock;
1688     } else {
1689         bprecond = end_bprecond = NULL;
1690     }
1691
1692     /* Now the next blocks won't be ordered nicely, but we need to
1693      * generate them this early for 'break' and 'continue'.
1694      */
1695     if (self->increment) {
1696         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1697         if (!bincrement)
1698             return false;
1699         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1700     } else {
1701         bincrement = end_bincrement = NULL;
1702     }
1703
1704     if (self->postcond) {
1705         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1706         if (!bpostcond)
1707             return false;
1708         bcontinue = bpostcond; /* postcond comes before the increment */
1709     } else {
1710         bpostcond = end_bpostcond = NULL;
1711     }
1712
1713     bout_id = func->ir_func->blocks_count;
1714     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1715     if (!bout)
1716         return false;
1717     bbreak = bout;
1718
1719     /* The loop body... */
1720     if (self->body)
1721     {
1722         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1723         if (!bbody)
1724             return false;
1725
1726         /* enter */
1727         func->curblock = bbody;
1728
1729         old_bbreak          = func->breakblock;
1730         old_bcontinue       = func->continueblock;
1731         func->breakblock    = bbreak;
1732         func->continueblock = bcontinue;
1733
1734         /* generate */
1735         cgen = self->body->expression.codegen;
1736         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1737             return false;
1738
1739         end_bbody = func->curblock;
1740         func->breakblock    = old_bbreak;
1741         func->continueblock = old_bcontinue;
1742     }
1743
1744     /* post-loop-condition */
1745     if (self->postcond)
1746     {
1747         /* enter */
1748         func->curblock = bpostcond;
1749
1750         /* generate */
1751         cgen = self->postcond->expression.codegen;
1752         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1753             return false;
1754
1755         end_bpostcond = func->curblock;
1756     }
1757
1758     /* The incrementor */
1759     if (self->increment)
1760     {
1761         /* enter */
1762         func->curblock = bincrement;
1763
1764         /* generate */
1765         cgen = self->increment->expression.codegen;
1766         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1767             return false;
1768
1769         end_bincrement = func->curblock;
1770     }
1771
1772     /* In any case now, we continue from the outgoing block */
1773     func->curblock = bout;
1774
1775     /* Now all blocks are in place */
1776     /* From 'bin' we jump to whatever comes first */
1777     if      (bprecond)   tmpblock = bprecond;
1778     else if (bbody)      tmpblock = bbody;
1779     else if (bpostcond)  tmpblock = bpostcond;
1780     else                 tmpblock = bout;
1781     if (!ir_block_create_jump(bin, tmpblock))
1782         return false;
1783
1784     /* From precond */
1785     if (bprecond)
1786     {
1787         ir_block *ontrue, *onfalse;
1788         if      (bbody)      ontrue = bbody;
1789         else if (bincrement) ontrue = bincrement;
1790         else if (bpostcond)  ontrue = bpostcond;
1791         else                 ontrue = bprecond;
1792         onfalse = bout;
1793         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1794             return false;
1795     }
1796
1797     /* from body */
1798     if (bbody)
1799     {
1800         if      (bincrement) tmpblock = bincrement;
1801         else if (bpostcond)  tmpblock = bpostcond;
1802         else if (bprecond)   tmpblock = bprecond;
1803         else                 tmpblock = bout;
1804         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1805             return false;
1806     }
1807
1808     /* from increment */
1809     if (bincrement)
1810     {
1811         if      (bpostcond)  tmpblock = bpostcond;
1812         else if (bprecond)   tmpblock = bprecond;
1813         else if (bbody)      tmpblock = bbody;
1814         else                 tmpblock = bout;
1815         if (!ir_block_create_jump(end_bincrement, tmpblock))
1816             return false;
1817     }
1818
1819     /* from postcond */
1820     if (bpostcond)
1821     {
1822         ir_block *ontrue, *onfalse;
1823         if      (bprecond)   ontrue = bprecond;
1824         else if (bbody)      ontrue = bbody;
1825         else if (bincrement) ontrue = bincrement;
1826         else                 ontrue = bpostcond;
1827         onfalse = bout;
1828         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1829             return false;
1830     }
1831
1832     /* Move 'bout' to the end */
1833     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1834         !ir_function_blocks_add(func->ir_func, bout))
1835     {
1836         ir_block_delete(bout);
1837         return false;
1838     }
1839
1840     return true;
1841 }
1842
1843 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1844 {
1845     ast_expression_codegen *cgen;
1846     ir_value_vector         params;
1847     ir_instr               *callinstr;
1848     size_t i;
1849
1850     ir_value *funval = NULL;
1851
1852     /* return values are never lvalues */
1853     if (lvalue) {
1854         asterror(ast_ctx(self), "not an l-value (function call)");
1855         return false;
1856     }
1857
1858     if (self->expression.outr) {
1859         *out = self->expression.outr;
1860         return true;
1861     }
1862
1863     cgen = self->func->expression.codegen;
1864     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1865         return false;
1866     if (!funval)
1867         return false;
1868
1869     MEM_VECTOR_INIT(&params, v);
1870
1871     /* parameters */
1872     for (i = 0; i < self->params_count; ++i)
1873     {
1874         ir_value *param;
1875         ast_expression *expr = self->params[i];
1876
1877         cgen = expr->expression.codegen;
1878         if (!(*cgen)(expr, func, false, &param))
1879             goto error;
1880         if (!param)
1881             goto error;
1882         if (!ir_value_vector_v_add(&params, param))
1883             goto error;
1884     }
1885
1886     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1887     if (!callinstr)
1888         goto error;
1889
1890     for (i = 0; i < params.v_count; ++i) {
1891         if (!ir_call_param(callinstr, params.v[i]))
1892             goto error;
1893     }
1894
1895     *out = ir_call_value(callinstr);
1896     self->expression.outr = *out;
1897
1898     MEM_VECTOR_CLEAR(&params, v);
1899     return true;
1900 error:
1901     MEM_VECTOR_CLEAR(&params, v);
1902     return false;
1903 }