]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
initialize ast_block->collect properly
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391
392     if (owner->expression.vtype == TYPE_VECTOR) {
393         self->expression.vtype = TYPE_FLOAT;
394         self->expression.next  = NULL;
395     } else {
396         self->expression.vtype = TYPE_FIELD;
397         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
398     }
399
400     self->owner = owner;
401     self->field = field;
402
403     return self;
404 }
405
406 void ast_member_delete(ast_member *self)
407 {
408     ast_unref(self->owner);
409     ast_expression_delete((ast_expression*)self);
410     mem_d(self);
411 }
412
413 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
414 {
415     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
416     if (!ontrue && !onfalse) {
417         /* because it is invalid */
418         mem_d(self);
419         return NULL;
420     }
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
422
423     self->cond     = cond;
424     self->on_true  = ontrue;
425     self->on_false = onfalse;
426
427     return self;
428 }
429
430 void ast_ifthen_delete(ast_ifthen *self)
431 {
432     ast_unref(self->cond);
433     if (self->on_true)
434         ast_unref(self->on_true);
435     if (self->on_false)
436         ast_unref(self->on_false);
437     ast_expression_delete((ast_expression*)self);
438     mem_d(self);
439 }
440
441 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
442 {
443     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
444     /* This time NEITHER must be NULL */
445     if (!ontrue || !onfalse) {
446         mem_d(self);
447         return NULL;
448     }
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
450
451     self->cond     = cond;
452     self->on_true  = ontrue;
453     self->on_false = onfalse;
454     self->phi_out  = NULL;
455
456     return self;
457 }
458
459 void ast_ternary_delete(ast_ternary *self)
460 {
461     ast_unref(self->cond);
462     ast_unref(self->on_true);
463     ast_unref(self->on_false);
464     ast_expression_delete((ast_expression*)self);
465     mem_d(self);
466 }
467
468 ast_loop* ast_loop_new(lex_ctx ctx,
469                        ast_expression *initexpr,
470                        ast_expression *precond,
471                        ast_expression *postcond,
472                        ast_expression *increment,
473                        ast_expression *body)
474 {
475     ast_instantiate(ast_loop, ctx, ast_loop_delete);
476     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
477
478     self->initexpr  = initexpr;
479     self->precond   = precond;
480     self->postcond  = postcond;
481     self->increment = increment;
482     self->body      = body;
483
484     return self;
485 }
486
487 void ast_loop_delete(ast_loop *self)
488 {
489     if (self->initexpr)
490         ast_unref(self->initexpr);
491     if (self->precond)
492         ast_unref(self->precond);
493     if (self->postcond)
494         ast_unref(self->postcond);
495     if (self->increment)
496         ast_unref(self->increment);
497     if (self->body)
498         ast_unref(self->body);
499     ast_expression_delete((ast_expression*)self);
500     mem_d(self);
501 }
502
503 ast_call* ast_call_new(lex_ctx ctx,
504                        ast_expression *funcexpr)
505 {
506     ast_instantiate(ast_call, ctx, ast_call_delete);
507     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
508
509     MEM_VECTOR_INIT(self, params);
510
511     self->func = funcexpr;
512
513     return self;
514 }
515 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
516
517 void ast_call_delete(ast_call *self)
518 {
519     size_t i;
520     for (i = 0; i < self->params_count; ++i)
521         ast_unref(self->params[i]);
522     MEM_VECTOR_CLEAR(self, params);
523
524     if (self->func)
525         ast_unref(self->func);
526
527     ast_expression_delete((ast_expression*)self);
528     mem_d(self);
529 }
530
531 ast_store* ast_store_new(lex_ctx ctx, int op,
532                          ast_expression *dest, ast_expression *source)
533 {
534     ast_instantiate(ast_store, ctx, ast_store_delete);
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
536
537     self->op = op;
538     self->dest = dest;
539     self->source = source;
540
541     return self;
542 }
543
544 void ast_store_delete(ast_store *self)
545 {
546     ast_unref(self->dest);
547     ast_unref(self->source);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_block* ast_block_new(lex_ctx ctx)
553 {
554     ast_instantiate(ast_block, ctx, ast_block_delete);
555     ast_expression_init((ast_expression*)self,
556                         (ast_expression_codegen*)&ast_block_codegen);
557
558     MEM_VECTOR_INIT(self, locals);
559     MEM_VECTOR_INIT(self, exprs);
560     MEM_VECTOR_INIT(self, collect);
561
562     return self;
563 }
564 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
565 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
566 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
567
568 void ast_block_delete(ast_block *self)
569 {
570     size_t i;
571     for (i = 0; i < self->collect_count; ++i)
572         ast_unref(self->collect[i]);
573     MEM_VECTOR_CLEAR(self, collect);
574     for (i = 0; i < self->exprs_count; ++i)
575         ast_unref(self->exprs[i]);
576     MEM_VECTOR_CLEAR(self, exprs);
577     for (i = 0; i < self->locals_count; ++i)
578         ast_delete(self->locals[i]);
579     MEM_VECTOR_CLEAR(self, locals);
580     ast_expression_delete((ast_expression*)self);
581     mem_d(self);
582 }
583
584 bool ast_block_set_type(ast_block *self, ast_expression *from)
585 {
586     if (self->expression.next)
587         ast_delete(self->expression.next);
588     self->expression.vtype = from->expression.vtype;
589     if (from->expression.next) {
590         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
591         if (!self->expression.next)
592             return false;
593     }
594     return true;
595 }
596
597 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
598 {
599     ast_instantiate(ast_function, ctx, ast_function_delete);
600
601     if (!vtype ||
602         vtype->isconst ||
603         vtype->expression.vtype != TYPE_FUNCTION)
604     {
605         mem_d(self);
606         return NULL;
607     }
608
609     self->vtype = vtype;
610     self->name = name ? util_strdup(name) : NULL;
611     MEM_VECTOR_INIT(self, blocks);
612
613     self->labelcount = 0;
614     self->builtin = 0;
615
616     self->ir_func = NULL;
617     self->curblock = NULL;
618
619     self->breakblock    = NULL;
620     self->continueblock = NULL;
621
622     vtype->isconst = true;
623     vtype->constval.vfunc = self;
624
625     return self;
626 }
627
628 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
629
630 void ast_function_delete(ast_function *self)
631 {
632     size_t i;
633     if (self->name)
634         mem_d((void*)self->name);
635     if (self->vtype) {
636         /* ast_value_delete(self->vtype); */
637         self->vtype->isconst = false;
638         self->vtype->constval.vfunc = NULL;
639         /* We use unref - if it was stored in a global table it is supposed
640          * to be deleted from *there*
641          */
642         ast_unref(self->vtype);
643     }
644     for (i = 0; i < self->blocks_count; ++i)
645         ast_delete(self->blocks[i]);
646     MEM_VECTOR_CLEAR(self, blocks);
647     mem_d(self);
648 }
649
650 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
651 {
652     unsigned int base = 10;
653 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
654 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
655     if (size < 1)
656         return;
657     checknul();
658     if (!num)
659         addch('0');
660     else {
661         while (num)
662         {
663             int digit = num % base;
664             num /= base;
665             addch('0' + digit);
666         }
667     }
668
669     *buf = 0;
670 #undef addch
671 #undef checknul
672 }
673
674 const char* ast_function_label(ast_function *self, const char *prefix)
675 {
676     size_t id = (self->labelcount++);
677     size_t len = strlen(prefix);
678     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
679     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
680     return self->labelbuf;
681 }
682
683 /*********************************************************************/
684 /* AST codegen part
685  * by convention you must never pass NULL to the 'ir_value **out'
686  * parameter. If you really don't care about the output, pass a dummy.
687  * But I can't imagine a pituation where the output is truly unnecessary.
688  */
689
690 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
691 {
692     /* NOTE: This is the codegen for a variable used in an expression.
693      * It is not the codegen to generate the value. For this purpose,
694      * ast_local_codegen and ast_global_codegen are to be used before this
695      * is executed. ast_function_codegen should take care of its locals,
696      * and the ast-user should take care of ast_global_codegen to be used
697      * on all the globals.
698      */
699     if (!self->ir_v) {
700         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
701         return false;
702     }
703     *out = self->ir_v;
704     return true;
705 }
706
707 bool ast_global_codegen(ast_value *self, ir_builder *ir)
708 {
709     ir_value *v = NULL;
710     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
711     {
712         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
713         if (!func)
714             return false;
715
716         self->constval.vfunc->ir_func = func;
717         self->ir_v = func->value;
718         /* The function is filled later on ast_function_codegen... */
719         return true;
720     }
721
722     if (self->expression.vtype == TYPE_FIELD) {
723         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
724         if (!v)
725             return false;
726         if (self->isconst) {
727             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
728             goto error;
729         }
730         self->ir_v = v;
731         return true;
732     }
733
734     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
735     if (!v) {
736         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
737         return false;
738     }
739
740     if (self->isconst) {
741         switch (self->expression.vtype)
742         {
743             case TYPE_FLOAT:
744                 if (!ir_value_set_float(v, self->constval.vfloat))
745                     goto error;
746                 break;
747             case TYPE_VECTOR:
748                 if (!ir_value_set_vector(v, self->constval.vvec))
749                     goto error;
750                 break;
751             case TYPE_STRING:
752                 if (!ir_value_set_string(v, self->constval.vstring))
753                     goto error;
754                 break;
755             case TYPE_FUNCTION:
756                 asterror(ast_ctx(self), "global of type function not properly generated\n");
757                 goto error;
758                 /* Cannot generate an IR value for a function,
759                  * need a pointer pointing to a function rather.
760                  */
761             default:
762                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
763                 break;
764         }
765     }
766
767     /* link us to the ir_value */
768     self->ir_v = v;
769     return true;
770
771 error: /* clean up */
772     ir_value_delete(v);
773     return false;
774 }
775
776 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
777 {
778     ir_value *v = NULL;
779     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
780     {
781         /* Do we allow local functions? I think not...
782          * this is NOT a function pointer atm.
783          */
784         return false;
785     }
786
787     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
788     if (!v)
789         return false;
790
791     /* A constant local... hmmm...
792      * I suppose the IR will have to deal with this
793      */
794     if (self->isconst) {
795         switch (self->expression.vtype)
796         {
797             case TYPE_FLOAT:
798                 if (!ir_value_set_float(v, self->constval.vfloat))
799                     goto error;
800                 break;
801             case TYPE_VECTOR:
802                 if (!ir_value_set_vector(v, self->constval.vvec))
803                     goto error;
804                 break;
805             case TYPE_STRING:
806                 if (!ir_value_set_string(v, self->constval.vstring))
807                     goto error;
808                 break;
809             default:
810                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
811                 break;
812         }
813     }
814
815     /* link us to the ir_value */
816     self->ir_v = v;
817     return true;
818
819 error: /* clean up */
820     ir_value_delete(v);
821     return false;
822 }
823
824 bool ast_function_codegen(ast_function *self, ir_builder *ir)
825 {
826     ir_function *irf;
827     ir_value    *dummy;
828     ast_expression_common *ec;
829     size_t    i;
830
831     irf = self->ir_func;
832     if (!irf) {
833         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
834         return false;
835     }
836
837     /* fill the parameter list */
838     ec = &self->vtype->expression;
839     for (i = 0; i < ec->params_count; ++i)
840     {
841         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
842             return false;
843         if (!self->builtin) {
844             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
845                 return false;
846         }
847     }
848
849     if (self->builtin) {
850         irf->builtin = self->builtin;
851         return true;
852     }
853
854     if (!self->blocks_count) {
855         asterror(ast_ctx(self), "function `%s` has no body", self->name);
856         return false;
857     }
858
859     self->curblock = ir_function_create_block(irf, "entry");
860     if (!self->curblock)
861         return false;
862
863     for (i = 0; i < self->blocks_count; ++i) {
864         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
865         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
866             return false;
867     }
868
869     /* TODO: check return types */
870     if (!self->curblock->is_return)
871     {
872         if (!self->vtype->expression.next ||
873             self->vtype->expression.next->expression.vtype == TYPE_VOID)
874         {
875             return ir_block_create_return(self->curblock, NULL);
876         }
877         else
878         {
879             /* error("missing return"); */
880             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
881             return false;
882         }
883     }
884     return true;
885 }
886
887 /* Note, you will not see ast_block_codegen generate ir_blocks.
888  * To the AST and the IR, blocks are 2 different things.
889  * In the AST it represents a block of code, usually enclosed in
890  * curly braces {...}.
891  * While in the IR it represents a block in terms of control-flow.
892  */
893 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
894 {
895     size_t i;
896
897     /* We don't use this
898      * Note: an ast-representation using the comma-operator
899      * of the form: (a, b, c) = x should not assign to c...
900      */
901     (void)lvalue;
902     if (self->expression.outr) {
903         *out = self->expression.outr;
904         return true;
905     }
906
907     /* output is NULL at first, we'll have each expression
908      * assign to out output, thus, a comma-operator represention
909      * using an ast_block will return the last generated value,
910      * so: (b, c) + a  executed both b and c, and returns c,
911      * which is then added to a.
912      */
913     *out = NULL;
914
915     /* generate locals */
916     for (i = 0; i < self->locals_count; ++i)
917     {
918         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
919             return false;
920     }
921
922     for (i = 0; i < self->exprs_count; ++i)
923     {
924         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
925         if (!(*gen)(self->exprs[i], func, false, out))
926             return false;
927     }
928
929     self->expression.outr = *out;
930
931     return true;
932 }
933
934 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
935 {
936     ast_expression_codegen *cgen;
937     ir_value *left, *right;
938
939     if (lvalue && self->expression.outl) {
940         *out = self->expression.outl;
941         return true;
942     }
943
944     if (!lvalue && self->expression.outr) {
945         *out = self->expression.outr;
946         return true;
947     }
948
949     cgen = self->dest->expression.codegen;
950     /* lvalue! */
951     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
952         return false;
953     self->expression.outl = left;
954
955     cgen = self->source->expression.codegen;
956     /* rvalue! */
957     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
958         return false;
959
960     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
961         return false;
962     self->expression.outr = right;
963
964     /* Theoretically, an assinment returns its left side as an
965      * lvalue, if we don't need an lvalue though, we return
966      * the right side as an rvalue, otherwise we have to
967      * somehow know whether or not we need to dereference the pointer
968      * on the left side - that is: OP_LOAD if it was an address.
969      * Also: in original QC we cannot OP_LOADP *anyway*.
970      */
971     *out = (lvalue ? left : right);
972
973     return true;
974 }
975
976 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
977 {
978     ast_expression_codegen *cgen;
979     ir_value *left, *right;
980
981     /* In the context of a binary operation, we can disregard
982      * the lvalue flag.
983      */
984     (void)lvalue;
985     if (self->expression.outr) {
986         *out = self->expression.outr;
987         return true;
988     }
989
990     cgen = self->left->expression.codegen;
991     /* lvalue! */
992     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
993         return false;
994
995     cgen = self->right->expression.codegen;
996     /* rvalue! */
997     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
998         return false;
999
1000     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1001                                  self->op, left, right);
1002     if (!*out)
1003         return false;
1004     self->expression.outr = *out;
1005
1006     return true;
1007 }
1008
1009 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1010 {
1011     ast_expression_codegen *cgen;
1012     ir_value *leftl, *leftr, *right, *bin;
1013
1014     if (lvalue && self->expression.outl) {
1015         *out = self->expression.outl;
1016         return true;
1017     }
1018
1019     if (!lvalue && self->expression.outr) {
1020         *out = self->expression.outr;
1021         return true;
1022     }
1023
1024     /* for a binstore we need both an lvalue and an rvalue for the left side */
1025     /* rvalue of destination! */
1026     cgen = self->dest->expression.codegen;
1027     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1028         return false;
1029
1030     /* source as rvalue only */
1031     cgen = self->source->expression.codegen;
1032     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1033         return false;
1034
1035     /* now the binary */
1036     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1037                                 self->opbin, leftr, right);
1038     self->expression.outr = bin;
1039
1040     /* now store them */
1041     cgen = self->dest->expression.codegen;
1042     /* lvalue of destination */
1043     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1044         return false;
1045     self->expression.outl = leftl;
1046
1047     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1048         return false;
1049     self->expression.outr = bin;
1050
1051     /* Theoretically, an assinment returns its left side as an
1052      * lvalue, if we don't need an lvalue though, we return
1053      * the right side as an rvalue, otherwise we have to
1054      * somehow know whether or not we need to dereference the pointer
1055      * on the left side - that is: OP_LOAD if it was an address.
1056      * Also: in original QC we cannot OP_LOADP *anyway*.
1057      */
1058     *out = (lvalue ? leftl : bin);
1059
1060     return true;
1061 }
1062
1063 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1064 {
1065     ast_expression_codegen *cgen;
1066     ir_value *operand;
1067
1068     /* In the context of a unary operation, we can disregard
1069      * the lvalue flag.
1070      */
1071     (void)lvalue;
1072     if (self->expression.outr) {
1073         *out = self->expression.outr;
1074         return true;
1075     }
1076
1077     cgen = self->operand->expression.codegen;
1078     /* lvalue! */
1079     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1080         return false;
1081
1082     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1083                                  self->op, operand);
1084     if (!*out)
1085         return false;
1086     self->expression.outr = *out;
1087
1088     return true;
1089 }
1090
1091 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1092 {
1093     ast_expression_codegen *cgen;
1094     ir_value *operand;
1095
1096     /* In the context of a return operation, we can disregard
1097      * the lvalue flag.
1098      */
1099     (void)lvalue;
1100     if (self->expression.outr) {
1101         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1102         return false;
1103     }
1104     self->expression.outr = (ir_value*)1;
1105
1106     cgen = self->operand->expression.codegen;
1107     /* lvalue! */
1108     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1109         return false;
1110
1111     if (!ir_block_create_return(func->curblock, operand))
1112         return false;
1113
1114     return true;
1115 }
1116
1117 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1118 {
1119     ast_expression_codegen *cgen;
1120     ir_value *ent, *field;
1121
1122     /* This function needs to take the 'lvalue' flag into account!
1123      * As lvalue we provide a field-pointer, as rvalue we provide the
1124      * value in a temp.
1125      */
1126
1127     if (lvalue && self->expression.outl) {
1128         *out = self->expression.outl;
1129         return true;
1130     }
1131
1132     if (!lvalue && self->expression.outr) {
1133         *out = self->expression.outr;
1134         return true;
1135     }
1136
1137     cgen = self->entity->expression.codegen;
1138     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1139         return false;
1140
1141     cgen = self->field->expression.codegen;
1142     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1143         return false;
1144
1145     if (lvalue) {
1146         /* address! */
1147         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1148                                             ent, field);
1149     } else {
1150         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1151                                              ent, field, self->expression.vtype);
1152     }
1153     if (!*out) {
1154         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1155                  (lvalue ? "ADDRESS" : "FIELD"),
1156                  type_name[self->expression.vtype]);
1157         return false;
1158     }
1159
1160     if (lvalue)
1161         self->expression.outl = *out;
1162     else
1163         self->expression.outr = *out;
1164
1165     /* Hm that should be it... */
1166     return true;
1167 }
1168
1169 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1170 {
1171     ast_expression_codegen *cgen;
1172     ir_value *vec;
1173
1174     /* in QC this is always an lvalue */
1175     (void)lvalue;
1176     if (self->expression.outl) {
1177         *out = self->expression.outl;
1178         return true;
1179     }
1180
1181     cgen = self->owner->expression.codegen;
1182     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1183         return false;
1184
1185     if (vec->vtype != TYPE_VECTOR &&
1186         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1187     {
1188         return false;
1189     }
1190
1191     *out = ir_value_vector_member(vec, self->field);
1192     self->expression.outl = *out;
1193
1194     return (*out != NULL);
1195 }
1196
1197 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1198 {
1199     ast_expression_codegen *cgen;
1200
1201     ir_value *condval;
1202     ir_value *dummy;
1203
1204     ir_block *cond = func->curblock;
1205     ir_block *ontrue;
1206     ir_block *onfalse;
1207     ir_block *merge;
1208
1209     /* We don't output any value, thus also don't care about r/lvalue */
1210     (void)out;
1211     (void)lvalue;
1212
1213     if (self->expression.outr) {
1214         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1215         return false;
1216     }
1217     self->expression.outr = (ir_value*)1;
1218
1219     /* generate the condition */
1220     func->curblock = cond;
1221     cgen = self->cond->expression.codegen;
1222     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1223         return false;
1224
1225     /* on-true path */
1226
1227     if (self->on_true) {
1228         /* create on-true block */
1229         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1230         if (!ontrue)
1231             return false;
1232
1233         /* enter the block */
1234         func->curblock = ontrue;
1235
1236         /* generate */
1237         cgen = self->on_true->expression.codegen;
1238         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1239             return false;
1240     } else
1241         ontrue = NULL;
1242
1243     /* on-false path */
1244     if (self->on_false) {
1245         /* create on-false block */
1246         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1247         if (!onfalse)
1248             return false;
1249
1250         /* enter the block */
1251         func->curblock = onfalse;
1252
1253         /* generate */
1254         cgen = self->on_false->expression.codegen;
1255         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1256             return false;
1257     } else
1258         onfalse = NULL;
1259
1260     /* Merge block were they all merge in to */
1261     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1262     if (!merge)
1263         return false;
1264
1265     /* add jumps ot the merge block */
1266     if (ontrue && !ir_block_create_jump(ontrue, merge))
1267         return false;
1268     if (onfalse && !ir_block_create_jump(onfalse, merge))
1269         return false;
1270
1271     /* we create the if here, that way all blocks are ordered :)
1272      */
1273     if (!ir_block_create_if(cond, condval,
1274                             (ontrue  ? ontrue  : merge),
1275                             (onfalse ? onfalse : merge)))
1276     {
1277         return false;
1278     }
1279
1280     /* Now enter the merge block */
1281     func->curblock = merge;
1282
1283     return true;
1284 }
1285
1286 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1287 {
1288     ast_expression_codegen *cgen;
1289
1290     ir_value *condval;
1291     ir_value *trueval, *falseval;
1292     ir_instr *phi;
1293
1294     ir_block *cond = func->curblock;
1295     ir_block *ontrue;
1296     ir_block *onfalse;
1297     ir_block *merge;
1298
1299     /* Ternary can never create an lvalue... */
1300     if (lvalue)
1301         return false;
1302
1303     /* In theory it shouldn't be possible to pass through a node twice, but
1304      * in case we add any kind of optimization pass for the AST itself, it
1305      * may still happen, thus we remember a created ir_value and simply return one
1306      * if it already exists.
1307      */
1308     if (self->phi_out) {
1309         *out = self->phi_out;
1310         return true;
1311     }
1312
1313     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1314
1315     /* generate the condition */
1316     func->curblock = cond;
1317     cgen = self->cond->expression.codegen;
1318     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1319         return false;
1320
1321     /* create on-true block */
1322     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1323     if (!ontrue)
1324         return false;
1325     else
1326     {
1327         /* enter the block */
1328         func->curblock = ontrue;
1329
1330         /* generate */
1331         cgen = self->on_true->expression.codegen;
1332         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1333             return false;
1334     }
1335
1336     /* create on-false block */
1337     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1338     if (!onfalse)
1339         return false;
1340     else
1341     {
1342         /* enter the block */
1343         func->curblock = onfalse;
1344
1345         /* generate */
1346         cgen = self->on_false->expression.codegen;
1347         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1348             return false;
1349     }
1350
1351     /* create merge block */
1352     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1353     if (!merge)
1354         return false;
1355     /* jump to merge block */
1356     if (!ir_block_create_jump(ontrue, merge))
1357         return false;
1358     if (!ir_block_create_jump(onfalse, merge))
1359         return false;
1360
1361     /* create if instruction */
1362     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1363         return false;
1364
1365     /* Now enter the merge block */
1366     func->curblock = merge;
1367
1368     /* Here, now, we need a PHI node
1369      * but first some sanity checking...
1370      */
1371     if (trueval->vtype != falseval->vtype) {
1372         /* error("ternary with different types on the two sides"); */
1373         return false;
1374     }
1375
1376     /* create PHI */
1377     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1378     if (!phi ||
1379         !ir_phi_add(phi, ontrue,  trueval) ||
1380         !ir_phi_add(phi, onfalse, falseval))
1381     {
1382         return false;
1383     }
1384
1385     self->phi_out = ir_phi_value(phi);
1386     *out = self->phi_out;
1387
1388     return true;
1389 }
1390
1391 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1392 {
1393     ast_expression_codegen *cgen;
1394
1395     ir_value *dummy      = NULL;
1396     ir_value *precond    = NULL;
1397     ir_value *postcond   = NULL;
1398
1399     /* Since we insert some jumps "late" so we have blocks
1400      * ordered "nicely", we need to keep track of the actual end-blocks
1401      * of expressions to add the jumps to.
1402      */
1403     ir_block *bbody      = NULL, *end_bbody      = NULL;
1404     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1405     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1406     ir_block *bincrement = NULL, *end_bincrement = NULL;
1407     ir_block *bout       = NULL, *bin            = NULL;
1408
1409     /* let's at least move the outgoing block to the end */
1410     size_t    bout_id;
1411
1412     /* 'break' and 'continue' need to be able to find the right blocks */
1413     ir_block *bcontinue     = NULL;
1414     ir_block *bbreak        = NULL;
1415
1416     ir_block *old_bcontinue = NULL;
1417     ir_block *old_bbreak    = NULL;
1418
1419     ir_block *tmpblock      = NULL;
1420
1421     (void)lvalue;
1422     (void)out;
1423
1424     if (self->expression.outr) {
1425         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1426         return false;
1427     }
1428     self->expression.outr = (ir_value*)1;
1429
1430     /* NOTE:
1431      * Should we ever need some kind of block ordering, better make this function
1432      * move blocks around than write a block ordering algorithm later... after all
1433      * the ast and ir should work together, not against each other.
1434      */
1435
1436     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1437      * anyway if for example it contains a ternary.
1438      */
1439     if (self->initexpr)
1440     {
1441         cgen = self->initexpr->expression.codegen;
1442         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1443             return false;
1444     }
1445
1446     /* Store the block from which we enter this chaos */
1447     bin = func->curblock;
1448
1449     /* The pre-loop condition needs its own block since we
1450      * need to be able to jump to the start of that expression.
1451      */
1452     if (self->precond)
1453     {
1454         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1455         if (!bprecond)
1456             return false;
1457
1458         /* the pre-loop-condition the least important place to 'continue' at */
1459         bcontinue = bprecond;
1460
1461         /* enter */
1462         func->curblock = bprecond;
1463
1464         /* generate */
1465         cgen = self->precond->expression.codegen;
1466         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1467             return false;
1468
1469         end_bprecond = func->curblock;
1470     } else {
1471         bprecond = end_bprecond = NULL;
1472     }
1473
1474     /* Now the next blocks won't be ordered nicely, but we need to
1475      * generate them this early for 'break' and 'continue'.
1476      */
1477     if (self->increment) {
1478         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1479         if (!bincrement)
1480             return false;
1481         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1482     } else {
1483         bincrement = end_bincrement = NULL;
1484     }
1485
1486     if (self->postcond) {
1487         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1488         if (!bpostcond)
1489             return false;
1490         bcontinue = bpostcond; /* postcond comes before the increment */
1491     } else {
1492         bpostcond = end_bpostcond = NULL;
1493     }
1494
1495     bout_id = func->ir_func->blocks_count;
1496     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1497     if (!bout)
1498         return false;
1499     bbreak = bout;
1500
1501     /* The loop body... */
1502     if (self->body)
1503     {
1504         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1505         if (!bbody)
1506             return false;
1507
1508         /* enter */
1509         func->curblock = bbody;
1510
1511         old_bbreak          = func->breakblock;
1512         old_bcontinue       = func->continueblock;
1513         func->breakblock    = bbreak;
1514         func->continueblock = bcontinue;
1515
1516         /* generate */
1517         cgen = self->body->expression.codegen;
1518         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1519             return false;
1520
1521         end_bbody = func->curblock;
1522         func->breakblock    = old_bbreak;
1523         func->continueblock = old_bcontinue;
1524     }
1525
1526     /* post-loop-condition */
1527     if (self->postcond)
1528     {
1529         /* enter */
1530         func->curblock = bpostcond;
1531
1532         /* generate */
1533         cgen = self->postcond->expression.codegen;
1534         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1535             return false;
1536
1537         end_bpostcond = func->curblock;
1538     }
1539
1540     /* The incrementor */
1541     if (self->increment)
1542     {
1543         /* enter */
1544         func->curblock = bincrement;
1545
1546         /* generate */
1547         cgen = self->increment->expression.codegen;
1548         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1549             return false;
1550
1551         end_bincrement = func->curblock;
1552     }
1553
1554     /* In any case now, we continue from the outgoing block */
1555     func->curblock = bout;
1556
1557     /* Now all blocks are in place */
1558     /* From 'bin' we jump to whatever comes first */
1559     if      (bprecond)   tmpblock = bprecond;
1560     else if (bbody)      tmpblock = bbody;
1561     else if (bpostcond)  tmpblock = bpostcond;
1562     else                 tmpblock = bout;
1563     if (!ir_block_create_jump(bin, tmpblock))
1564         return false;
1565
1566     /* From precond */
1567     if (bprecond)
1568     {
1569         ir_block *ontrue, *onfalse;
1570         if      (bbody)      ontrue = bbody;
1571         else if (bincrement) ontrue = bincrement;
1572         else if (bpostcond)  ontrue = bpostcond;
1573         else                 ontrue = bprecond;
1574         onfalse = bout;
1575         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1576             return false;
1577     }
1578
1579     /* from body */
1580     if (bbody)
1581     {
1582         if      (bincrement) tmpblock = bincrement;
1583         else if (bpostcond)  tmpblock = bpostcond;
1584         else if (bprecond)   tmpblock = bprecond;
1585         else                 tmpblock = bout;
1586         if (!ir_block_create_jump(end_bbody, tmpblock))
1587             return false;
1588     }
1589
1590     /* from increment */
1591     if (bincrement)
1592     {
1593         if      (bpostcond)  tmpblock = bpostcond;
1594         else if (bprecond)   tmpblock = bprecond;
1595         else if (bbody)      tmpblock = bbody;
1596         else                 tmpblock = bout;
1597         if (!ir_block_create_jump(end_bincrement, tmpblock))
1598             return false;
1599     }
1600
1601     /* from postcond */
1602     if (bpostcond)
1603     {
1604         ir_block *ontrue, *onfalse;
1605         if      (bprecond)   ontrue = bprecond;
1606         else if (bbody)      ontrue = bbody;
1607         else if (bincrement) ontrue = bincrement;
1608         else                 ontrue = bpostcond;
1609         onfalse = bout;
1610         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1611             return false;
1612     }
1613
1614     /* Move 'bout' to the end */
1615     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1616         !ir_function_blocks_add(func->ir_func, bout))
1617     {
1618         ir_block_delete(bout);
1619         return false;
1620     }
1621
1622     return true;
1623 }
1624
1625 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1626 {
1627     ast_expression_codegen *cgen;
1628     ir_value_vector         params;
1629     ir_instr               *callinstr;
1630     size_t i;
1631
1632     ir_value *funval = NULL;
1633
1634     /* return values are never lvalues */
1635     (void)lvalue;
1636
1637     if (self->expression.outr) {
1638         *out = self->expression.outr;
1639         return true;
1640     }
1641
1642     cgen = self->func->expression.codegen;
1643     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1644         return false;
1645     if (!funval)
1646         return false;
1647
1648     MEM_VECTOR_INIT(&params, v);
1649
1650     /* parameters */
1651     for (i = 0; i < self->params_count; ++i)
1652     {
1653         ir_value *param;
1654         ast_expression *expr = self->params[i];
1655
1656         cgen = expr->expression.codegen;
1657         if (!(*cgen)(expr, func, false, &param))
1658             goto error;
1659         if (!param)
1660             goto error;
1661         if (!ir_value_vector_v_add(&params, param))
1662             goto error;
1663     }
1664
1665     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1666     if (!callinstr)
1667         goto error;
1668
1669     for (i = 0; i < params.v_count; ++i) {
1670         if (!ir_call_param(callinstr, params.v[i]))
1671             goto error;
1672     }
1673
1674     *out = ir_call_value(callinstr);
1675     self->expression.outr = *out;
1676
1677     MEM_VECTOR_CLEAR(&params, v);
1678     return true;
1679 error:
1680     MEM_VECTOR_CLEAR(&params, v);
1681     return false;
1682 }