]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
add error for function parameters of invalid types
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 bool ast_call_check_types(ast_call *self)
593 {
594     size_t i;
595     bool   retval = true;
596     const ast_expression *func = self->func;
597
598     for (i = 0; i < self->params_count; ++i) {
599         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
600             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
601                      (unsigned int)(i+1));
602             /* we don't immediately return */
603             retval = false;
604         }
605     }
606     return retval;
607 }
608
609 ast_store* ast_store_new(lex_ctx ctx, int op,
610                          ast_expression *dest, ast_expression *source)
611 {
612     ast_instantiate(ast_store, ctx, ast_store_delete);
613     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
614
615     self->op = op;
616     self->dest = dest;
617     self->source = source;
618
619     return self;
620 }
621
622 void ast_store_delete(ast_store *self)
623 {
624     ast_unref(self->dest);
625     ast_unref(self->source);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_block* ast_block_new(lex_ctx ctx)
631 {
632     ast_instantiate(ast_block, ctx, ast_block_delete);
633     ast_expression_init((ast_expression*)self,
634                         (ast_expression_codegen*)&ast_block_codegen);
635
636     MEM_VECTOR_INIT(self, locals);
637     MEM_VECTOR_INIT(self, exprs);
638     MEM_VECTOR_INIT(self, collect);
639
640     return self;
641 }
642 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
643 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
644 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
645
646 bool ast_block_collect(ast_block *self, ast_expression *expr)
647 {
648     if (!ast_block_collect_add(self, expr))
649         return false;
650     expr->expression.node.keep = true;
651     return true;
652 }
653
654 void ast_block_delete(ast_block *self)
655 {
656     size_t i;
657     for (i = 0; i < self->exprs_count; ++i)
658         ast_unref(self->exprs[i]);
659     MEM_VECTOR_CLEAR(self, exprs);
660     for (i = 0; i < self->locals_count; ++i)
661         ast_delete(self->locals[i]);
662     MEM_VECTOR_CLEAR(self, locals);
663     for (i = 0; i < self->collect_count; ++i)
664         ast_delete(self->collect[i]);
665     MEM_VECTOR_CLEAR(self, collect);
666     ast_expression_delete((ast_expression*)self);
667     mem_d(self);
668 }
669
670 bool ast_block_set_type(ast_block *self, ast_expression *from)
671 {
672     if (self->expression.next)
673         ast_delete(self->expression.next);
674     self->expression.vtype = from->expression.vtype;
675     if (from->expression.next) {
676         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
677         if (!self->expression.next)
678             return false;
679     }
680     else
681         self->expression.next = NULL;
682     return true;
683 }
684
685 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
686 {
687     ast_instantiate(ast_function, ctx, ast_function_delete);
688
689     if (!vtype ||
690         vtype->isconst ||
691         vtype->expression.vtype != TYPE_FUNCTION)
692     {
693         mem_d(self);
694         return NULL;
695     }
696
697     self->vtype = vtype;
698     self->name = name ? util_strdup(name) : NULL;
699     MEM_VECTOR_INIT(self, blocks);
700
701     self->labelcount = 0;
702     self->builtin = 0;
703
704     self->ir_func = NULL;
705     self->curblock = NULL;
706
707     self->breakblock    = NULL;
708     self->continueblock = NULL;
709
710     vtype->isconst = true;
711     vtype->constval.vfunc = self;
712
713     return self;
714 }
715
716 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
717
718 void ast_function_delete(ast_function *self)
719 {
720     size_t i;
721     if (self->name)
722         mem_d((void*)self->name);
723     if (self->vtype) {
724         /* ast_value_delete(self->vtype); */
725         self->vtype->isconst = false;
726         self->vtype->constval.vfunc = NULL;
727         /* We use unref - if it was stored in a global table it is supposed
728          * to be deleted from *there*
729          */
730         ast_unref(self->vtype);
731     }
732     for (i = 0; i < self->blocks_count; ++i)
733         ast_delete(self->blocks[i]);
734     MEM_VECTOR_CLEAR(self, blocks);
735     mem_d(self);
736 }
737
738 const char* ast_function_label(ast_function *self, const char *prefix)
739 {
740     size_t id;
741     size_t len;
742     char  *from;
743
744     if (!opts_dump)
745         return NULL;
746
747     id  = (self->labelcount++);
748     len = strlen(prefix);
749
750     from = self->labelbuf + sizeof(self->labelbuf)-1;
751     *from-- = 0;
752     do {
753         unsigned int digit = id % 10;
754         *from = digit + '0';
755         id /= 10;
756     } while (id);
757     memcpy(from - len, prefix, len);
758     return from - len;
759 }
760
761 /*********************************************************************/
762 /* AST codegen part
763  * by convention you must never pass NULL to the 'ir_value **out'
764  * parameter. If you really don't care about the output, pass a dummy.
765  * But I can't imagine a pituation where the output is truly unnecessary.
766  */
767
768 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
769 {
770     /* NOTE: This is the codegen for a variable used in an expression.
771      * It is not the codegen to generate the value. For this purpose,
772      * ast_local_codegen and ast_global_codegen are to be used before this
773      * is executed. ast_function_codegen should take care of its locals,
774      * and the ast-user should take care of ast_global_codegen to be used
775      * on all the globals.
776      */
777     if (!self->ir_v) {
778         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
779         return false;
780     }
781     *out = self->ir_v;
782     return true;
783 }
784
785 bool ast_global_codegen(ast_value *self, ir_builder *ir)
786 {
787     ir_value *v = NULL;
788     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
789     {
790         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
791         if (!func)
792             return false;
793         func->context = ast_ctx(self);
794         func->value->context = ast_ctx(self);
795
796         self->constval.vfunc->ir_func = func;
797         self->ir_v = func->value;
798         /* The function is filled later on ast_function_codegen... */
799         return true;
800     }
801
802     if (self->expression.vtype == TYPE_FIELD) {
803         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
804         if (!v)
805             return false;
806         v->context = ast_ctx(self);
807         if (self->isconst) {
808             asterror(ast_ctx(self), "TODO: constant field pointers with value");
809             goto error;
810         }
811         self->ir_v = v;
812         return true;
813     }
814
815     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
816     if (!v) {
817         asterror(ast_ctx(self), "ir_builder_create_global failed");
818         return false;
819     }
820     v->context = ast_ctx(self);
821
822     if (self->isconst) {
823         switch (self->expression.vtype)
824         {
825             case TYPE_FLOAT:
826                 if (!ir_value_set_float(v, self->constval.vfloat))
827                     goto error;
828                 break;
829             case TYPE_VECTOR:
830                 if (!ir_value_set_vector(v, self->constval.vvec))
831                     goto error;
832                 break;
833             case TYPE_STRING:
834                 if (!ir_value_set_string(v, self->constval.vstring))
835                     goto error;
836                 break;
837             case TYPE_FUNCTION:
838                 asterror(ast_ctx(self), "global of type function not properly generated");
839                 goto error;
840                 /* Cannot generate an IR value for a function,
841                  * need a pointer pointing to a function rather.
842                  */
843             default:
844                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
845                 break;
846         }
847     }
848
849     /* link us to the ir_value */
850     self->ir_v = v;
851     return true;
852
853 error: /* clean up */
854     ir_value_delete(v);
855     return false;
856 }
857
858 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
859 {
860     ir_value *v = NULL;
861     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
862     {
863         /* Do we allow local functions? I think not...
864          * this is NOT a function pointer atm.
865          */
866         return false;
867     }
868
869     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
870     if (!v)
871         return false;
872     v->context = ast_ctx(self);
873
874     /* A constant local... hmmm...
875      * I suppose the IR will have to deal with this
876      */
877     if (self->isconst) {
878         switch (self->expression.vtype)
879         {
880             case TYPE_FLOAT:
881                 if (!ir_value_set_float(v, self->constval.vfloat))
882                     goto error;
883                 break;
884             case TYPE_VECTOR:
885                 if (!ir_value_set_vector(v, self->constval.vvec))
886                     goto error;
887                 break;
888             case TYPE_STRING:
889                 if (!ir_value_set_string(v, self->constval.vstring))
890                     goto error;
891                 break;
892             default:
893                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
894                 break;
895         }
896     }
897
898     /* link us to the ir_value */
899     self->ir_v = v;
900     return true;
901
902 error: /* clean up */
903     ir_value_delete(v);
904     return false;
905 }
906
907 bool ast_function_codegen(ast_function *self, ir_builder *ir)
908 {
909     ir_function *irf;
910     ir_value    *dummy;
911     ast_expression_common *ec;
912     size_t    i;
913
914     irf = self->ir_func;
915     if (!irf) {
916         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
917         return false;
918     }
919
920     /* fill the parameter list */
921     ec = &self->vtype->expression;
922     for (i = 0; i < ec->params_count; ++i)
923     {
924         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
925             return false;
926         if (!self->builtin) {
927             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
928                 return false;
929         }
930     }
931
932     if (self->builtin) {
933         irf->builtin = self->builtin;
934         return true;
935     }
936
937     if (!self->blocks_count) {
938         asterror(ast_ctx(self), "function `%s` has no body", self->name);
939         return false;
940     }
941
942     self->curblock = ir_function_create_block(irf, "entry");
943     if (!self->curblock) {
944         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
945         return false;
946     }
947
948     for (i = 0; i < self->blocks_count; ++i) {
949         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
950         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
951             return false;
952     }
953
954     /* TODO: check return types */
955     if (!self->curblock->is_return)
956     {
957         return ir_block_create_return(self->curblock, NULL);
958         /* From now on the parser has to handle this situation */
959 #if 0
960         if (!self->vtype->expression.next ||
961             self->vtype->expression.next->expression.vtype == TYPE_VOID)
962         {
963             return ir_block_create_return(self->curblock, NULL);
964         }
965         else
966         {
967             /* error("missing return"); */
968             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
969             return false;
970         }
971 #endif
972     }
973     return true;
974 }
975
976 /* Note, you will not see ast_block_codegen generate ir_blocks.
977  * To the AST and the IR, blocks are 2 different things.
978  * In the AST it represents a block of code, usually enclosed in
979  * curly braces {...}.
980  * While in the IR it represents a block in terms of control-flow.
981  */
982 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
983 {
984     size_t i;
985
986     /* We don't use this
987      * Note: an ast-representation using the comma-operator
988      * of the form: (a, b, c) = x should not assign to c...
989      */
990     (void)lvalue;
991     if (self->expression.outr) {
992         *out = self->expression.outr;
993         return true;
994     }
995
996     /* output is NULL at first, we'll have each expression
997      * assign to out output, thus, a comma-operator represention
998      * using an ast_block will return the last generated value,
999      * so: (b, c) + a  executed both b and c, and returns c,
1000      * which is then added to a.
1001      */
1002     *out = NULL;
1003
1004     /* generate locals */
1005     for (i = 0; i < self->locals_count; ++i)
1006     {
1007         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1008             if (opts_debug)
1009                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1010             return false;
1011         }
1012     }
1013
1014     for (i = 0; i < self->exprs_count; ++i)
1015     {
1016         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1017         if (!(*gen)(self->exprs[i], func, false, out))
1018             return false;
1019     }
1020
1021     self->expression.outr = *out;
1022
1023     return true;
1024 }
1025
1026 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1027 {
1028     ast_expression_codegen *cgen;
1029     ir_value *left, *right;
1030
1031     if (lvalue && self->expression.outl) {
1032         *out = self->expression.outl;
1033         return true;
1034     }
1035
1036     if (!lvalue && self->expression.outr) {
1037         *out = self->expression.outr;
1038         return true;
1039     }
1040
1041     cgen = self->dest->expression.codegen;
1042     /* lvalue! */
1043     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1044         return false;
1045     self->expression.outl = left;
1046
1047     cgen = self->source->expression.codegen;
1048     /* rvalue! */
1049     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1050         return false;
1051
1052     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1053         return false;
1054     self->expression.outr = right;
1055
1056     /* Theoretically, an assinment returns its left side as an
1057      * lvalue, if we don't need an lvalue though, we return
1058      * the right side as an rvalue, otherwise we have to
1059      * somehow know whether or not we need to dereference the pointer
1060      * on the left side - that is: OP_LOAD if it was an address.
1061      * Also: in original QC we cannot OP_LOADP *anyway*.
1062      */
1063     *out = (lvalue ? left : right);
1064
1065     return true;
1066 }
1067
1068 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1069 {
1070     ast_expression_codegen *cgen;
1071     ir_value *left, *right;
1072
1073     /* In the context of a binary operation, we can disregard
1074      * the lvalue flag.
1075      */
1076     (void)lvalue;
1077     if (self->expression.outr) {
1078         *out = self->expression.outr;
1079         return true;
1080     }
1081
1082     cgen = self->left->expression.codegen;
1083     /* lvalue! */
1084     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1085         return false;
1086
1087     cgen = self->right->expression.codegen;
1088     /* rvalue! */
1089     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1090         return false;
1091
1092     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1093                                  self->op, left, right);
1094     if (!*out)
1095         return false;
1096     self->expression.outr = *out;
1097
1098     return true;
1099 }
1100
1101 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1102 {
1103     ast_expression_codegen *cgen;
1104     ir_value *leftl, *leftr, *right, *bin;
1105
1106     if (lvalue && self->expression.outl) {
1107         *out = self->expression.outl;
1108         return true;
1109     }
1110
1111     if (!lvalue && self->expression.outr) {
1112         *out = self->expression.outr;
1113         return true;
1114     }
1115
1116     /* for a binstore we need both an lvalue and an rvalue for the left side */
1117     /* rvalue of destination! */
1118     cgen = self->dest->expression.codegen;
1119     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1120         return false;
1121
1122     /* source as rvalue only */
1123     cgen = self->source->expression.codegen;
1124     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1125         return false;
1126
1127     /* now the binary */
1128     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1129                                 self->opbin, leftr, right);
1130     self->expression.outr = bin;
1131
1132     /* now store them */
1133     cgen = self->dest->expression.codegen;
1134     /* lvalue of destination */
1135     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1136         return false;
1137     self->expression.outl = leftl;
1138
1139     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1140         return false;
1141     self->expression.outr = bin;
1142
1143     /* Theoretically, an assinment returns its left side as an
1144      * lvalue, if we don't need an lvalue though, we return
1145      * the right side as an rvalue, otherwise we have to
1146      * somehow know whether or not we need to dereference the pointer
1147      * on the left side - that is: OP_LOAD if it was an address.
1148      * Also: in original QC we cannot OP_LOADP *anyway*.
1149      */
1150     *out = (lvalue ? leftl : bin);
1151
1152     return true;
1153 }
1154
1155 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1156 {
1157     ast_expression_codegen *cgen;
1158     ir_value *operand;
1159
1160     /* In the context of a unary operation, we can disregard
1161      * the lvalue flag.
1162      */
1163     (void)lvalue;
1164     if (self->expression.outr) {
1165         *out = self->expression.outr;
1166         return true;
1167     }
1168
1169     cgen = self->operand->expression.codegen;
1170     /* lvalue! */
1171     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1172         return false;
1173
1174     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1175                                  self->op, operand);
1176     if (!*out)
1177         return false;
1178     self->expression.outr = *out;
1179
1180     return true;
1181 }
1182
1183 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1184 {
1185     ast_expression_codegen *cgen;
1186     ir_value *operand;
1187
1188     /* In the context of a return operation, we can disregard
1189      * the lvalue flag.
1190      */
1191     (void)lvalue;
1192     if (self->expression.outr) {
1193         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1194         return false;
1195     }
1196     self->expression.outr = (ir_value*)1;
1197
1198     if (self->operand) {
1199         cgen = self->operand->expression.codegen;
1200         /* lvalue! */
1201         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1202             return false;
1203
1204         if (!ir_block_create_return(func->curblock, operand))
1205             return false;
1206     } else {
1207         if (!ir_block_create_return(func->curblock, NULL))
1208             return false;
1209     }
1210
1211     return true;
1212 }
1213
1214 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1215 {
1216     ast_expression_codegen *cgen;
1217     ir_value *ent, *field;
1218
1219     /* This function needs to take the 'lvalue' flag into account!
1220      * As lvalue we provide a field-pointer, as rvalue we provide the
1221      * value in a temp.
1222      */
1223
1224     if (lvalue && self->expression.outl) {
1225         *out = self->expression.outl;
1226         return true;
1227     }
1228
1229     if (!lvalue && self->expression.outr) {
1230         *out = self->expression.outr;
1231         return true;
1232     }
1233
1234     cgen = self->entity->expression.codegen;
1235     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1236         return false;
1237
1238     cgen = self->field->expression.codegen;
1239     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1240         return false;
1241
1242     if (lvalue) {
1243         /* address! */
1244         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1245                                             ent, field);
1246     } else {
1247         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1248                                              ent, field, self->expression.vtype);
1249     }
1250     if (!*out) {
1251         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1252                  (lvalue ? "ADDRESS" : "FIELD"),
1253                  type_name[self->expression.vtype]);
1254         return false;
1255     }
1256
1257     if (lvalue)
1258         self->expression.outl = *out;
1259     else
1260         self->expression.outr = *out;
1261
1262     /* Hm that should be it... */
1263     return true;
1264 }
1265
1266 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1267 {
1268     ast_expression_codegen *cgen;
1269     ir_value *vec;
1270
1271     /* in QC this is always an lvalue */
1272     (void)lvalue;
1273     if (self->expression.outl) {
1274         *out = self->expression.outl;
1275         return true;
1276     }
1277
1278     cgen = self->owner->expression.codegen;
1279     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1280         return false;
1281
1282     if (vec->vtype != TYPE_VECTOR &&
1283         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1284     {
1285         return false;
1286     }
1287
1288     *out = ir_value_vector_member(vec, self->field);
1289     self->expression.outl = *out;
1290
1291     return (*out != NULL);
1292 }
1293
1294 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1295 {
1296     ast_expression_codegen *cgen;
1297
1298     ir_value *condval;
1299     ir_value *dummy;
1300
1301     ir_block *cond = func->curblock;
1302     ir_block *ontrue;
1303     ir_block *onfalse;
1304     ir_block *ontrue_endblock;
1305     ir_block *onfalse_endblock;
1306     ir_block *merge;
1307
1308     /* We don't output any value, thus also don't care about r/lvalue */
1309     (void)out;
1310     (void)lvalue;
1311
1312     if (self->expression.outr) {
1313         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1314         return false;
1315     }
1316     self->expression.outr = (ir_value*)1;
1317
1318     /* generate the condition */
1319     func->curblock = cond;
1320     cgen = self->cond->expression.codegen;
1321     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1322         return false;
1323
1324     /* on-true path */
1325
1326     if (self->on_true) {
1327         /* create on-true block */
1328         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1329         if (!ontrue)
1330             return false;
1331
1332         /* enter the block */
1333         func->curblock = ontrue;
1334
1335         /* generate */
1336         cgen = self->on_true->expression.codegen;
1337         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1338             return false;
1339
1340         /* we now need to work from the current endpoint */
1341         ontrue_endblock = func->curblock;
1342     } else
1343         ontrue = NULL;
1344
1345     /* on-false path */
1346     if (self->on_false) {
1347         /* create on-false block */
1348         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1349         if (!onfalse)
1350             return false;
1351
1352         /* enter the block */
1353         func->curblock = onfalse;
1354
1355         /* generate */
1356         cgen = self->on_false->expression.codegen;
1357         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1358             return false;
1359
1360         /* we now need to work from the current endpoint */
1361         onfalse_endblock = func->curblock;
1362     } else
1363         onfalse = NULL;
1364
1365     /* Merge block were they all merge in to */
1366     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1367     if (!merge)
1368         return false;
1369
1370     /* add jumps ot the merge block */
1371     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1372         return false;
1373     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1374         return false;
1375
1376     /* we create the if here, that way all blocks are ordered :)
1377      */
1378     if (!ir_block_create_if(cond, condval,
1379                             (ontrue  ? ontrue  : merge),
1380                             (onfalse ? onfalse : merge)))
1381     {
1382         return false;
1383     }
1384
1385     /* Now enter the merge block */
1386     func->curblock = merge;
1387
1388     return true;
1389 }
1390
1391 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1392 {
1393     ast_expression_codegen *cgen;
1394
1395     ir_value *condval;
1396     ir_value *trueval, *falseval;
1397     ir_instr *phi;
1398
1399     ir_block *cond = func->curblock;
1400     ir_block *ontrue;
1401     ir_block *onfalse;
1402     ir_block *merge;
1403
1404     /* Ternary can never create an lvalue... */
1405     if (lvalue)
1406         return false;
1407
1408     /* In theory it shouldn't be possible to pass through a node twice, but
1409      * in case we add any kind of optimization pass for the AST itself, it
1410      * may still happen, thus we remember a created ir_value and simply return one
1411      * if it already exists.
1412      */
1413     if (self->phi_out) {
1414         *out = self->phi_out;
1415         return true;
1416     }
1417
1418     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1419
1420     /* generate the condition */
1421     func->curblock = cond;
1422     cgen = self->cond->expression.codegen;
1423     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1424         return false;
1425
1426     /* create on-true block */
1427     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1428     if (!ontrue)
1429         return false;
1430     else
1431     {
1432         /* enter the block */
1433         func->curblock = ontrue;
1434
1435         /* generate */
1436         cgen = self->on_true->expression.codegen;
1437         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1438             return false;
1439     }
1440
1441     /* create on-false block */
1442     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1443     if (!onfalse)
1444         return false;
1445     else
1446     {
1447         /* enter the block */
1448         func->curblock = onfalse;
1449
1450         /* generate */
1451         cgen = self->on_false->expression.codegen;
1452         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1453             return false;
1454     }
1455
1456     /* create merge block */
1457     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1458     if (!merge)
1459         return false;
1460     /* jump to merge block */
1461     if (!ir_block_create_jump(ontrue, merge))
1462         return false;
1463     if (!ir_block_create_jump(onfalse, merge))
1464         return false;
1465
1466     /* create if instruction */
1467     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1468         return false;
1469
1470     /* Now enter the merge block */
1471     func->curblock = merge;
1472
1473     /* Here, now, we need a PHI node
1474      * but first some sanity checking...
1475      */
1476     if (trueval->vtype != falseval->vtype) {
1477         /* error("ternary with different types on the two sides"); */
1478         return false;
1479     }
1480
1481     /* create PHI */
1482     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1483     if (!phi ||
1484         !ir_phi_add(phi, ontrue,  trueval) ||
1485         !ir_phi_add(phi, onfalse, falseval))
1486     {
1487         return false;
1488     }
1489
1490     self->phi_out = ir_phi_value(phi);
1491     *out = self->phi_out;
1492
1493     return true;
1494 }
1495
1496 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1497 {
1498     ast_expression_codegen *cgen;
1499
1500     ir_value *dummy      = NULL;
1501     ir_value *precond    = NULL;
1502     ir_value *postcond   = NULL;
1503
1504     /* Since we insert some jumps "late" so we have blocks
1505      * ordered "nicely", we need to keep track of the actual end-blocks
1506      * of expressions to add the jumps to.
1507      */
1508     ir_block *bbody      = NULL, *end_bbody      = NULL;
1509     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1510     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1511     ir_block *bincrement = NULL, *end_bincrement = NULL;
1512     ir_block *bout       = NULL, *bin            = NULL;
1513
1514     /* let's at least move the outgoing block to the end */
1515     size_t    bout_id;
1516
1517     /* 'break' and 'continue' need to be able to find the right blocks */
1518     ir_block *bcontinue     = NULL;
1519     ir_block *bbreak        = NULL;
1520
1521     ir_block *old_bcontinue = NULL;
1522     ir_block *old_bbreak    = NULL;
1523
1524     ir_block *tmpblock      = NULL;
1525
1526     (void)lvalue;
1527     (void)out;
1528
1529     if (self->expression.outr) {
1530         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1531         return false;
1532     }
1533     self->expression.outr = (ir_value*)1;
1534
1535     /* NOTE:
1536      * Should we ever need some kind of block ordering, better make this function
1537      * move blocks around than write a block ordering algorithm later... after all
1538      * the ast and ir should work together, not against each other.
1539      */
1540
1541     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1542      * anyway if for example it contains a ternary.
1543      */
1544     if (self->initexpr)
1545     {
1546         cgen = self->initexpr->expression.codegen;
1547         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1548             return false;
1549     }
1550
1551     /* Store the block from which we enter this chaos */
1552     bin = func->curblock;
1553
1554     /* The pre-loop condition needs its own block since we
1555      * need to be able to jump to the start of that expression.
1556      */
1557     if (self->precond)
1558     {
1559         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1560         if (!bprecond)
1561             return false;
1562
1563         /* the pre-loop-condition the least important place to 'continue' at */
1564         bcontinue = bprecond;
1565
1566         /* enter */
1567         func->curblock = bprecond;
1568
1569         /* generate */
1570         cgen = self->precond->expression.codegen;
1571         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1572             return false;
1573
1574         end_bprecond = func->curblock;
1575     } else {
1576         bprecond = end_bprecond = NULL;
1577     }
1578
1579     /* Now the next blocks won't be ordered nicely, but we need to
1580      * generate them this early for 'break' and 'continue'.
1581      */
1582     if (self->increment) {
1583         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1584         if (!bincrement)
1585             return false;
1586         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1587     } else {
1588         bincrement = end_bincrement = NULL;
1589     }
1590
1591     if (self->postcond) {
1592         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1593         if (!bpostcond)
1594             return false;
1595         bcontinue = bpostcond; /* postcond comes before the increment */
1596     } else {
1597         bpostcond = end_bpostcond = NULL;
1598     }
1599
1600     bout_id = func->ir_func->blocks_count;
1601     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1602     if (!bout)
1603         return false;
1604     bbreak = bout;
1605
1606     /* The loop body... */
1607     if (self->body)
1608     {
1609         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1610         if (!bbody)
1611             return false;
1612
1613         /* enter */
1614         func->curblock = bbody;
1615
1616         old_bbreak          = func->breakblock;
1617         old_bcontinue       = func->continueblock;
1618         func->breakblock    = bbreak;
1619         func->continueblock = bcontinue;
1620
1621         /* generate */
1622         cgen = self->body->expression.codegen;
1623         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1624             return false;
1625
1626         end_bbody = func->curblock;
1627         func->breakblock    = old_bbreak;
1628         func->continueblock = old_bcontinue;
1629     }
1630
1631     /* post-loop-condition */
1632     if (self->postcond)
1633     {
1634         /* enter */
1635         func->curblock = bpostcond;
1636
1637         /* generate */
1638         cgen = self->postcond->expression.codegen;
1639         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1640             return false;
1641
1642         end_bpostcond = func->curblock;
1643     }
1644
1645     /* The incrementor */
1646     if (self->increment)
1647     {
1648         /* enter */
1649         func->curblock = bincrement;
1650
1651         /* generate */
1652         cgen = self->increment->expression.codegen;
1653         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1654             return false;
1655
1656         end_bincrement = func->curblock;
1657     }
1658
1659     /* In any case now, we continue from the outgoing block */
1660     func->curblock = bout;
1661
1662     /* Now all blocks are in place */
1663     /* From 'bin' we jump to whatever comes first */
1664     if      (bprecond)   tmpblock = bprecond;
1665     else if (bbody)      tmpblock = bbody;
1666     else if (bpostcond)  tmpblock = bpostcond;
1667     else                 tmpblock = bout;
1668     if (!ir_block_create_jump(bin, tmpblock))
1669         return false;
1670
1671     /* From precond */
1672     if (bprecond)
1673     {
1674         ir_block *ontrue, *onfalse;
1675         if      (bbody)      ontrue = bbody;
1676         else if (bincrement) ontrue = bincrement;
1677         else if (bpostcond)  ontrue = bpostcond;
1678         else                 ontrue = bprecond;
1679         onfalse = bout;
1680         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1681             return false;
1682     }
1683
1684     /* from body */
1685     if (bbody)
1686     {
1687         if      (bincrement) tmpblock = bincrement;
1688         else if (bpostcond)  tmpblock = bpostcond;
1689         else if (bprecond)   tmpblock = bprecond;
1690         else                 tmpblock = bout;
1691         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1692             return false;
1693     }
1694
1695     /* from increment */
1696     if (bincrement)
1697     {
1698         if      (bpostcond)  tmpblock = bpostcond;
1699         else if (bprecond)   tmpblock = bprecond;
1700         else if (bbody)      tmpblock = bbody;
1701         else                 tmpblock = bout;
1702         if (!ir_block_create_jump(end_bincrement, tmpblock))
1703             return false;
1704     }
1705
1706     /* from postcond */
1707     if (bpostcond)
1708     {
1709         ir_block *ontrue, *onfalse;
1710         if      (bprecond)   ontrue = bprecond;
1711         else if (bbody)      ontrue = bbody;
1712         else if (bincrement) ontrue = bincrement;
1713         else                 ontrue = bpostcond;
1714         onfalse = bout;
1715         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1716             return false;
1717     }
1718
1719     /* Move 'bout' to the end */
1720     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1721         !ir_function_blocks_add(func->ir_func, bout))
1722     {
1723         ir_block_delete(bout);
1724         return false;
1725     }
1726
1727     return true;
1728 }
1729
1730 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1731 {
1732     ast_expression_codegen *cgen;
1733     ir_value_vector         params;
1734     ir_instr               *callinstr;
1735     size_t i;
1736
1737     ir_value *funval = NULL;
1738
1739     /* return values are never lvalues */
1740     (void)lvalue;
1741
1742     if (self->expression.outr) {
1743         *out = self->expression.outr;
1744         return true;
1745     }
1746
1747     cgen = self->func->expression.codegen;
1748     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1749         return false;
1750     if (!funval)
1751         return false;
1752
1753     MEM_VECTOR_INIT(&params, v);
1754
1755     /* parameters */
1756     for (i = 0; i < self->params_count; ++i)
1757     {
1758         ir_value *param;
1759         ast_expression *expr = self->params[i];
1760
1761         cgen = expr->expression.codegen;
1762         if (!(*cgen)(expr, func, false, &param))
1763             goto error;
1764         if (!param)
1765             goto error;
1766         if (!ir_value_vector_v_add(&params, param))
1767             goto error;
1768     }
1769
1770     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1771     if (!callinstr)
1772         goto error;
1773
1774     for (i = 0; i < params.v_count; ++i) {
1775         if (!ir_call_param(callinstr, params.v[i]))
1776             goto error;
1777     }
1778
1779     *out = ir_call_value(callinstr);
1780     self->expression.outr = *out;
1781
1782     MEM_VECTOR_CLEAR(&params, v);
1783     return true;
1784 error:
1785     MEM_VECTOR_CLEAR(&params, v);
1786     return false;
1787 }