]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_binary_new should determine the return type...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     if (op >= INSTR_EQ_F && op <= INSTR_GT)
174         self->expression.vtype = TYPE_FLOAT;
175     else if (op == INSTR_AND || op == INSTR_OR ||
176              op == INSTR_BITAND || op == INSTR_BITOR)
177         self->expression.vtype = TYPE_FLOAT;
178     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
179         self->expression.vtype = TYPE_VECTOR;
180     else if (op == INSTR_MUL_V)
181         self->expression.vtype = TYPE_FLOAT;
182     else
183         self->expression.vtype = left->expression.vtype;
184
185     return self;
186 }
187
188 void ast_binary_delete(ast_binary *self)
189 {
190     ast_unref(self->left);
191     ast_unref(self->right);
192     ast_expression_delete((ast_expression*)self);
193     mem_d(self);
194 }
195
196 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
197 {
198     const ast_expression *outtype;
199
200     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
201
202     if (field->expression.vtype != TYPE_FIELD) {
203         mem_d(self);
204         return NULL;
205     }
206
207     outtype = field->expression.next;
208     if (!outtype) {
209         mem_d(self);
210         /* Error: field has no type... */
211         return NULL;
212     }
213
214     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
215
216     self->expression.vtype = outtype->expression.vtype;
217     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
218
219     self->entity = entity;
220     self->field  = field;
221
222     return self;
223 }
224
225 void ast_entfield_delete(ast_entfield *self)
226 {
227     ast_unref(self->entity);
228     ast_unref(self->field);
229     ast_expression_delete((ast_expression*)self);
230     mem_d(self);
231 }
232
233 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
234 {
235     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
236     if (!ontrue && !onfalse) {
237         /* because it is invalid */
238         mem_d(self);
239         return NULL;
240     }
241     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
242
243     self->cond     = cond;
244     self->on_true  = ontrue;
245     self->on_false = onfalse;
246
247     return self;
248 }
249
250 void ast_ifthen_delete(ast_ifthen *self)
251 {
252     ast_unref(self->cond);
253     if (self->on_true)
254         ast_unref(self->on_true);
255     if (self->on_false)
256         ast_unref(self->on_false);
257     ast_expression_delete((ast_expression*)self);
258     mem_d(self);
259 }
260
261 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
262 {
263     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
264     /* This time NEITHER must be NULL */
265     if (!ontrue || !onfalse) {
266         mem_d(self);
267         return NULL;
268     }
269     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
270
271     self->cond     = cond;
272     self->on_true  = ontrue;
273     self->on_false = onfalse;
274     self->phi_out  = NULL;
275
276     return self;
277 }
278
279 void ast_ternary_delete(ast_ternary *self)
280 {
281     ast_unref(self->cond);
282     ast_unref(self->on_true);
283     ast_unref(self->on_false);
284     ast_expression_delete((ast_expression*)self);
285     mem_d(self);
286 }
287
288 ast_loop* ast_loop_new(lex_ctx ctx,
289                        ast_expression *initexpr,
290                        ast_expression *precond,
291                        ast_expression *postcond,
292                        ast_expression *increment,
293                        ast_expression *body)
294 {
295     ast_instantiate(ast_loop, ctx, ast_loop_delete);
296     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
297
298     self->initexpr  = initexpr;
299     self->precond   = precond;
300     self->postcond  = postcond;
301     self->increment = increment;
302     self->body      = body;
303
304     return self;
305 }
306
307 void ast_loop_delete(ast_loop *self)
308 {
309     if (self->initexpr)
310         ast_unref(self->initexpr);
311     if (self->precond)
312         ast_unref(self->precond);
313     if (self->postcond)
314         ast_unref(self->postcond);
315     if (self->increment)
316         ast_unref(self->increment);
317     if (self->body)
318         ast_unref(self->body);
319     ast_expression_delete((ast_expression*)self);
320     mem_d(self);
321 }
322
323 ast_call* ast_call_new(lex_ctx ctx,
324                        ast_expression *funcexpr)
325 {
326     ast_instantiate(ast_call, ctx, ast_call_delete);
327     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
328
329     MEM_VECTOR_INIT(self, params);
330
331     self->func = funcexpr;
332
333     return self;
334 }
335 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
336
337 void ast_call_delete(ast_call *self)
338 {
339     size_t i;
340     for (i = 0; i < self->params_count; ++i)
341         ast_unref(self->params[i]);
342     MEM_VECTOR_CLEAR(self, params);
343
344     if (self->func)
345         ast_unref(self->func);
346
347     ast_expression_delete((ast_expression*)self);
348     mem_d(self);
349 }
350
351 ast_store* ast_store_new(lex_ctx ctx, int op,
352                          ast_value *dest, ast_expression *source)
353 {
354     ast_instantiate(ast_store, ctx, ast_store_delete);
355     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
356
357     self->op = op;
358     self->dest = dest;
359     self->source = source;
360
361     return self;
362 }
363
364 void ast_store_delete(ast_store *self)
365 {
366     ast_unref(self->dest);
367     ast_unref(self->source);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 ast_block* ast_block_new(lex_ctx ctx)
373 {
374     ast_instantiate(ast_block, ctx, ast_block_delete);
375     ast_expression_init((ast_expression*)self,
376                         (ast_expression_codegen*)&ast_block_codegen);
377
378     MEM_VECTOR_INIT(self, locals);
379     MEM_VECTOR_INIT(self, exprs);
380
381     return self;
382 }
383 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
384 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
385
386 void ast_block_delete(ast_block *self)
387 {
388     size_t i;
389     for (i = 0; i < self->exprs_count; ++i)
390         ast_unref(self->exprs[i]);
391     MEM_VECTOR_CLEAR(self, exprs);
392     for (i = 0; i < self->locals_count; ++i)
393         ast_delete(self->locals[i]);
394     MEM_VECTOR_CLEAR(self, locals);
395     ast_expression_delete((ast_expression*)self);
396     mem_d(self);
397 }
398
399 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
400 {
401     ast_instantiate(ast_function, ctx, ast_function_delete);
402
403     if (!vtype ||
404         vtype->isconst ||
405         vtype->expression.vtype != TYPE_FUNCTION)
406     {
407         mem_d(self);
408         return NULL;
409     }
410
411     self->vtype = vtype;
412     self->name = name ? util_strdup(name) : NULL;
413     MEM_VECTOR_INIT(self, blocks);
414
415     self->labelcount = 0;
416     self->builtin = 0;
417
418     self->ir_func = NULL;
419     self->curblock = NULL;
420
421     self->breakblock    = NULL;
422     self->continueblock = NULL;
423
424     vtype->isconst = true;
425     vtype->constval.vfunc = self;
426
427     return self;
428 }
429
430 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
431
432 void ast_function_delete(ast_function *self)
433 {
434     size_t i;
435     if (self->name)
436         mem_d((void*)self->name);
437     if (self->vtype) {
438         /* ast_value_delete(self->vtype); */
439         self->vtype->isconst = false;
440         self->vtype->constval.vfunc = NULL;
441         /* We use unref - if it was stored in a global table it is supposed
442          * to be deleted from *there*
443          */
444         ast_unref(self->vtype);
445     }
446     for (i = 0; i < self->blocks_count; ++i)
447         ast_delete(self->blocks[i]);
448     MEM_VECTOR_CLEAR(self, blocks);
449     mem_d(self);
450 }
451
452 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
453 {
454     unsigned int base = 10;
455 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
456 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
457     if (size < 1)
458         return;
459     checknul();
460     if (!num)
461         addch('0');
462     else {
463         while (num)
464         {
465             int digit = num % base;
466             num /= base;
467             addch('0' + digit);
468         }
469     }
470
471     *buf = 0;
472 #undef addch
473 #undef checknul
474 }
475
476 const char* ast_function_label(ast_function *self, const char *prefix)
477 {
478     size_t id = (self->labelcount++);
479     size_t len = strlen(prefix);
480     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
481     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
482     return self->labelbuf;
483 }
484
485 /*********************************************************************/
486 /* AST codegen part
487  * by convention you must never pass NULL to the 'ir_value **out'
488  * parameter. If you really don't care about the output, pass a dummy.
489  * But I can't imagine a pituation where the output is truly unnecessary.
490  */
491
492 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
493 {
494     /* NOTE: This is the codegen for a variable used in an expression.
495      * It is not the codegen to generate the value. For this purpose,
496      * ast_local_codegen and ast_global_codegen are to be used before this
497      * is executed. ast_function_codegen should take care of its locals,
498      * and the ast-user should take care of ast_global_codegen to be used
499      * on all the globals.
500      */
501     if (!self->ir_v) {
502         printf("ast_value used before generated (%s)\n", self->name);
503         return false;
504     }
505     *out = self->ir_v;
506     return true;
507 }
508
509 bool ast_global_codegen(ast_value *self, ir_builder *ir)
510 {
511     ir_value *v = NULL;
512     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
513     {
514         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
515         if (!func)
516             return false;
517
518         self->constval.vfunc->ir_func = func;
519         self->ir_v = func->value;
520         /* The function is filled later on ast_function_codegen... */
521         return true;
522     }
523
524     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
525     if (!v) {
526         printf("ir_builder_create_global failed\n");
527         return false;
528     }
529
530     if (self->isconst) {
531         switch (self->expression.vtype)
532         {
533             case TYPE_FLOAT:
534                 if (!ir_value_set_float(v, self->constval.vfloat))
535                     goto error;
536                 break;
537             case TYPE_VECTOR:
538                 if (!ir_value_set_vector(v, self->constval.vvec))
539                     goto error;
540                 break;
541             case TYPE_STRING:
542                 if (!ir_value_set_string(v, self->constval.vstring))
543                     goto error;
544                 break;
545             case TYPE_FUNCTION:
546                 printf("global of type function not properly generated\n");
547                 goto error;
548                 /* Cannot generate an IR value for a function,
549                  * need a pointer pointing to a function rather.
550                  */
551             default:
552                 printf("TODO: global constant type %i\n", self->expression.vtype);
553                 break;
554         }
555     }
556
557     /* link us to the ir_value */
558     self->ir_v = v;
559     return true;
560
561 error: /* clean up */
562     ir_value_delete(v);
563     return false;
564 }
565
566 bool ast_local_codegen(ast_value *self, ir_function *func)
567 {
568     ir_value *v = NULL;
569     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
570     {
571         /* Do we allow local functions? I think not...
572          * this is NOT a function pointer atm.
573          */
574         return false;
575     }
576
577     v = ir_function_create_local(func, self->name, self->expression.vtype);
578     if (!v)
579         return false;
580
581     /* A constant local... hmmm...
582      * I suppose the IR will have to deal with this
583      */
584     if (self->isconst) {
585         switch (self->expression.vtype)
586         {
587             case TYPE_FLOAT:
588                 if (!ir_value_set_float(v, self->constval.vfloat))
589                     goto error;
590                 break;
591             case TYPE_VECTOR:
592                 if (!ir_value_set_vector(v, self->constval.vvec))
593                     goto error;
594                 break;
595             case TYPE_STRING:
596                 if (!ir_value_set_string(v, self->constval.vstring))
597                     goto error;
598                 break;
599             default:
600                 printf("TODO: global constant type %i\n", self->expression.vtype);
601                 break;
602         }
603     }
604
605     /* link us to the ir_value */
606     self->ir_v = v;
607     return true;
608
609 error: /* clean up */
610     ir_value_delete(v);
611     return false;
612 }
613
614 bool ast_function_codegen(ast_function *self, ir_builder *ir)
615 {
616     ir_function *irf;
617     ir_value    *dummy;
618     size_t    i;
619
620     irf = self->ir_func;
621     if (!irf) {
622         printf("ast_function's related ast_value was not generated yet\n");
623         return false;
624     }
625
626     for (i = 0; i < self->vtype->params_count; ++i)
627     {
628         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
629             return false;
630     }
631
632     if (self->builtin) {
633         irf->builtin = self->builtin;
634         return true;
635     }
636
637     self->curblock = ir_function_create_block(irf, "entry");
638     if (!self->curblock)
639         return false;
640
641     for (i = 0; i < self->blocks_count; ++i) {
642         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
643         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
644             return false;
645     }
646
647     /* TODO: check return types */
648     if (!self->curblock->is_return)
649     {
650         if (!self->vtype->expression.next ||
651             self->vtype->expression.next->expression.vtype == TYPE_VOID)
652         {
653             return ir_block_create_return(self->curblock, NULL);
654         }
655         else
656         {
657             /* error("missing return"); */
658             return false;
659         }
660     }
661     return true;
662 }
663
664 /* Note, you will not see ast_block_codegen generate ir_blocks.
665  * To the AST and the IR, blocks are 2 different things.
666  * In the AST it represents a block of code, usually enclosed in
667  * curly braces {...}.
668  * While in the IR it represents a block in terms of control-flow.
669  */
670 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
671 {
672     size_t i;
673
674     /* We don't use this
675      * Note: an ast-representation using the comma-operator
676      * of the form: (a, b, c) = x should not assign to c...
677      */
678     (void)lvalue;
679
680     /* output is NULL at first, we'll have each expression
681      * assign to out output, thus, a comma-operator represention
682      * using an ast_block will return the last generated value,
683      * so: (b, c) + a  executed both b and c, and returns c,
684      * which is then added to a.
685      */
686     *out = NULL;
687
688     /* generate locals */
689     for (i = 0; i < self->locals_count; ++i)
690     {
691         if (!ast_local_codegen(self->locals[i], func->ir_func))
692             return false;
693     }
694
695     for (i = 0; i < self->exprs_count; ++i)
696     {
697         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
698         if (!(*gen)(self->exprs[i], func, false, out))
699             return false;
700     }
701
702     return true;
703 }
704
705 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
706 {
707     ast_expression_codegen *cgen;
708     ir_value *left, *right;
709
710     cgen = self->dest->expression.codegen;
711     /* lvalue! */
712     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
713         return false;
714
715     cgen = self->source->expression.codegen;
716     /* rvalue! */
717     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
718         return false;
719
720     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
721         return false;
722
723     /* Theoretically, an assinment returns its left side as an
724      * lvalue, if we don't need an lvalue though, we return
725      * the right side as an rvalue, otherwise we have to
726      * somehow know whether or not we need to dereference the pointer
727      * on the left side - that is: OP_LOAD if it was an address.
728      * Also: in original QC we cannot OP_LOADP *anyway*.
729      */
730     *out = (lvalue ? left : right);
731
732     return true;
733 }
734
735 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
736 {
737     ast_expression_codegen *cgen;
738     ir_value *left, *right;
739
740     /* In the context of a binary operation, we can disregard
741      * the lvalue flag.
742      */
743      (void)lvalue;
744
745     cgen = self->left->expression.codegen;
746     /* lvalue! */
747     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
748         return false;
749
750     cgen = self->right->expression.codegen;
751     /* rvalue! */
752     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
753         return false;
754
755     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
756                                  self->op, left, right);
757     if (!*out)
758         return false;
759
760     return true;
761 }
762
763 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
764 {
765     ast_expression_codegen *cgen;
766     ir_value *ent, *field;
767
768     /* This function needs to take the 'lvalue' flag into account!
769      * As lvalue we provide a field-pointer, as rvalue we provide the
770      * value in a temp.
771      */
772
773     cgen = self->entity->expression.codegen;
774     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
775         return false;
776
777     cgen = self->field->expression.codegen;
778     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
779         return false;
780
781     if (lvalue) {
782         /* address! */
783         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
784                                             ent, field);
785     } else {
786         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
787                                              ent, field, self->expression.vtype);
788     }
789     if (!*out)
790         return false;
791
792     /* Hm that should be it... */
793     return true;
794 }
795
796 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
797 {
798     ast_expression_codegen *cgen;
799
800     ir_value *condval;
801     ir_value *dummy;
802
803     ir_block *cond = func->curblock;
804     ir_block *ontrue;
805     ir_block *onfalse;
806     ir_block *merge;
807
808     /* We don't output any value, thus also don't care about r/lvalue */
809     (void)out;
810     (void)lvalue;
811
812     /* generate the condition */
813     func->curblock = cond;
814     cgen = self->cond->expression.codegen;
815     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
816         return false;
817
818     /* on-true path */
819
820     if (self->on_true) {
821         /* create on-true block */
822         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
823         if (!ontrue)
824             return false;
825
826         /* enter the block */
827         func->curblock = ontrue;
828
829         /* generate */
830         cgen = self->on_true->expression.codegen;
831         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
832             return false;
833     } else
834         ontrue = NULL;
835
836     /* on-false path */
837     if (self->on_false) {
838         /* create on-false block */
839         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
840         if (!onfalse)
841             return false;
842
843         /* enter the block */
844         func->curblock = onfalse;
845
846         /* generate */
847         cgen = self->on_false->expression.codegen;
848         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
849             return false;
850     } else
851         onfalse = NULL;
852
853     /* Merge block were they all merge in to */
854     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
855     if (!merge)
856         return false;
857
858     /* add jumps ot the merge block */
859     if (ontrue && !ir_block_create_jump(ontrue, merge))
860         return false;
861     if (onfalse && !ir_block_create_jump(onfalse, merge))
862         return false;
863
864     /* we create the if here, that way all blocks are ordered :)
865      */
866     if (!ir_block_create_if(cond, condval,
867                             (ontrue  ? ontrue  : merge),
868                             (onfalse ? onfalse : merge)))
869     {
870         return false;
871     }
872
873     /* Now enter the merge block */
874     func->curblock = merge;
875
876     return true;
877 }
878
879 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
880 {
881     ast_expression_codegen *cgen;
882
883     ir_value *condval;
884     ir_value *trueval, *falseval;
885     ir_instr *phi;
886
887     ir_block *cond = func->curblock;
888     ir_block *ontrue;
889     ir_block *onfalse;
890     ir_block *merge;
891
892     /* In theory it shouldn't be possible to pass through a node twice, but
893      * in case we add any kind of optimization pass for the AST itself, it
894      * may still happen, thus we remember a created ir_value and simply return one
895      * if it already exists.
896      */
897     if (self->phi_out) {
898         *out = self->phi_out;
899         return true;
900     }
901
902     /* Ternary can never create an lvalue... */
903     if (lvalue)
904         return false;
905
906     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
907
908     /* generate the condition */
909     func->curblock = cond;
910     cgen = self->cond->expression.codegen;
911     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
912         return false;
913
914     /* create on-true block */
915     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
916     if (!ontrue)
917         return false;
918     else
919     {
920         /* enter the block */
921         func->curblock = ontrue;
922
923         /* generate */
924         cgen = self->on_true->expression.codegen;
925         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
926             return false;
927     }
928
929     /* create on-false block */
930     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
931     if (!onfalse)
932         return false;
933     else
934     {
935         /* enter the block */
936         func->curblock = onfalse;
937
938         /* generate */
939         cgen = self->on_false->expression.codegen;
940         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
941             return false;
942     }
943
944     /* create merge block */
945     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
946     if (!merge)
947         return false;
948     /* jump to merge block */
949     if (!ir_block_create_jump(ontrue, merge))
950         return false;
951     if (!ir_block_create_jump(onfalse, merge))
952         return false;
953
954     /* create if instruction */
955     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
956         return false;
957
958     /* Now enter the merge block */
959     func->curblock = merge;
960
961     /* Here, now, we need a PHI node
962      * but first some sanity checking...
963      */
964     if (trueval->vtype != falseval->vtype) {
965         /* error("ternary with different types on the two sides"); */
966         return false;
967     }
968
969     /* create PHI */
970     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
971     if (!phi ||
972         !ir_phi_add(phi, ontrue,  trueval) ||
973         !ir_phi_add(phi, onfalse, falseval))
974     {
975         return false;
976     }
977
978     self->phi_out = ir_phi_value(phi);
979     *out = self->phi_out;
980
981     return true;
982 }
983
984 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
985 {
986     ast_expression_codegen *cgen;
987
988     ir_value *dummy      = NULL;
989     ir_value *precond    = NULL;
990     ir_value *postcond   = NULL;
991
992     /* Since we insert some jumps "late" so we have blocks
993      * ordered "nicely", we need to keep track of the actual end-blocks
994      * of expressions to add the jumps to.
995      */
996     ir_block *bbody      = NULL, *end_bbody      = NULL;
997     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
998     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
999     ir_block *bincrement = NULL, *end_bincrement = NULL;
1000     ir_block *bout       = NULL, *bin            = NULL;
1001
1002     /* let's at least move the outgoing block to the end */
1003     size_t    bout_id;
1004
1005     /* 'break' and 'continue' need to be able to find the right blocks */
1006     ir_block *bcontinue     = NULL;
1007     ir_block *bbreak        = NULL;
1008
1009     ir_block *old_bcontinue = NULL;
1010     ir_block *old_bbreak    = NULL;
1011
1012     ir_block *tmpblock      = NULL;
1013
1014     (void)lvalue;
1015     (void)out;
1016
1017     /* NOTE:
1018      * Should we ever need some kind of block ordering, better make this function
1019      * move blocks around than write a block ordering algorithm later... after all
1020      * the ast and ir should work together, not against each other.
1021      */
1022
1023     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1024      * anyway if for example it contains a ternary.
1025      */
1026     if (self->initexpr)
1027     {
1028         cgen = self->initexpr->expression.codegen;
1029         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1030             return false;
1031     }
1032
1033     /* Store the block from which we enter this chaos */
1034     bin = func->curblock;
1035
1036     /* The pre-loop condition needs its own block since we
1037      * need to be able to jump to the start of that expression.
1038      */
1039     if (self->precond)
1040     {
1041         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1042         if (!bprecond)
1043             return false;
1044
1045         /* the pre-loop-condition the least important place to 'continue' at */
1046         bcontinue = bprecond;
1047
1048         /* enter */
1049         func->curblock = bprecond;
1050
1051         /* generate */
1052         cgen = self->precond->expression.codegen;
1053         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1054             return false;
1055
1056         end_bprecond = func->curblock;
1057     } else {
1058         bprecond = end_bprecond = NULL;
1059     }
1060
1061     /* Now the next blocks won't be ordered nicely, but we need to
1062      * generate them this early for 'break' and 'continue'.
1063      */
1064     if (self->increment) {
1065         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1066         if (!bincrement)
1067             return false;
1068         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1069     } else {
1070         bincrement = end_bincrement = NULL;
1071     }
1072
1073     if (self->postcond) {
1074         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1075         if (!bpostcond)
1076             return false;
1077         bcontinue = bpostcond; /* postcond comes before the increment */
1078     } else {
1079         bpostcond = end_bpostcond = NULL;
1080     }
1081
1082     bout_id = func->ir_func->blocks_count;
1083     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1084     if (!bout)
1085         return false;
1086     bbreak = bout;
1087
1088     /* The loop body... */
1089     if (self->body)
1090     {
1091         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1092         if (!bbody)
1093             return false;
1094
1095         /* enter */
1096         func->curblock = bbody;
1097
1098         old_bbreak          = func->breakblock;
1099         old_bcontinue       = func->continueblock;
1100         func->breakblock    = bbreak;
1101         func->continueblock = bcontinue;
1102
1103         /* generate */
1104         cgen = self->body->expression.codegen;
1105         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1106             return false;
1107
1108         end_bbody = func->curblock;
1109         func->breakblock    = old_bbreak;
1110         func->continueblock = old_bcontinue;
1111     }
1112
1113     /* post-loop-condition */
1114     if (self->postcond)
1115     {
1116         /* enter */
1117         func->curblock = bpostcond;
1118
1119         /* generate */
1120         cgen = self->postcond->expression.codegen;
1121         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1122             return false;
1123
1124         end_bpostcond = func->curblock;
1125     }
1126
1127     /* The incrementor */
1128     if (self->increment)
1129     {
1130         /* enter */
1131         func->curblock = bincrement;
1132
1133         /* generate */
1134         cgen = self->increment->expression.codegen;
1135         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1136             return false;
1137
1138         end_bincrement = func->curblock;
1139     }
1140
1141     /* In any case now, we continue from the outgoing block */
1142     func->curblock = bout;
1143
1144     /* Now all blocks are in place */
1145     /* From 'bin' we jump to whatever comes first */
1146     if      (bprecond)   tmpblock = bprecond;
1147     else if (bbody)      tmpblock = bbody;
1148     else if (bpostcond)  tmpblock = bpostcond;
1149     else                 tmpblock = bout;
1150     if (!ir_block_create_jump(bin, tmpblock))
1151         return false;
1152
1153     /* From precond */
1154     if (bprecond)
1155     {
1156         ir_block *ontrue, *onfalse;
1157         if      (bbody)      ontrue = bbody;
1158         else if (bincrement) ontrue = bincrement;
1159         else if (bpostcond)  ontrue = bpostcond;
1160         else                 ontrue = bprecond;
1161         onfalse = bout;
1162         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1163             return false;
1164     }
1165
1166     /* from body */
1167     if (bbody)
1168     {
1169         if      (bincrement) tmpblock = bincrement;
1170         else if (bpostcond)  tmpblock = bpostcond;
1171         else if (bprecond)   tmpblock = bprecond;
1172         else                 tmpblock = bout;
1173         if (!ir_block_create_jump(end_bbody, tmpblock))
1174             return false;
1175     }
1176
1177     /* from increment */
1178     if (bincrement)
1179     {
1180         if      (bpostcond)  tmpblock = bpostcond;
1181         else if (bprecond)   tmpblock = bprecond;
1182         else if (bbody)      tmpblock = bbody;
1183         else                 tmpblock = bout;
1184         if (!ir_block_create_jump(end_bincrement, tmpblock))
1185             return false;
1186     }
1187
1188     /* from postcond */
1189     if (bpostcond)
1190     {
1191         ir_block *ontrue, *onfalse;
1192         if      (bprecond)   ontrue = bprecond;
1193         else if (bbody)      ontrue = bbody;
1194         else if (bincrement) ontrue = bincrement;
1195         else                 ontrue = bpostcond;
1196         onfalse = bout;
1197         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1198             return false;
1199     }
1200
1201     /* Move 'bout' to the end */
1202     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1203         !ir_function_blocks_add(func->ir_func, bout))
1204     {
1205         ir_block_delete(bout);
1206         return false;
1207     }
1208
1209     return true;
1210 }
1211
1212 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1213 {
1214     ast_expression_codegen *cgen;
1215     ir_value_vector         params;
1216     ir_instr               *callinstr;
1217     size_t i;
1218
1219     ir_value *funval = NULL;
1220
1221     /* return values are never rvalues */
1222     (void)lvalue;
1223
1224     cgen = self->func->expression.codegen;
1225     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1226         return false;
1227     if (!funval)
1228         return false;
1229
1230     MEM_VECTOR_INIT(&params, v);
1231
1232     /* parameters */
1233     for (i = 0; i < self->params_count; ++i)
1234     {
1235         ir_value *param;
1236         ast_expression *expr = self->params[i];
1237
1238         cgen = expr->expression.codegen;
1239         if (!(*cgen)(expr, func, false, &param))
1240             goto error;
1241         if (!param)
1242             goto error;
1243         if (!ir_value_vector_v_add(&params, param))
1244             goto error;
1245     }
1246
1247     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1248     if (!callinstr)
1249         goto error;
1250
1251     for (i = 0; i < params.v_count; ++i) {
1252         if (!ir_call_param(callinstr, params.v[i]))
1253             goto error;
1254     }
1255
1256     *out = ir_call_value(callinstr);
1257
1258     return true;
1259 error:
1260     MEM_VECTOR_CLEAR(&params, v);
1261     return false;
1262 }