]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Locals of type .vector will now also properly generate all 3 locals
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         default:
280             typestr = type_name[e->expression.vtype];
281             typelen = strlen(typestr);
282             if (pos + typelen >= bufsize)
283                 goto full;
284             strcpy(buf + pos, typestr);
285             return pos + typelen;
286     }
287
288 full:
289     buf[bufsize-3] = '.';
290     buf[bufsize-2] = '.';
291     buf[bufsize-1] = '.';
292     return bufsize;
293 }
294
295 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
296 {
297     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
298     buf[pos] = 0;
299 }
300
301 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
302 {
303     ast_instantiate(ast_value, ctx, ast_value_delete);
304     ast_expression_init((ast_expression*)self,
305                         (ast_expression_codegen*)&ast_value_codegen);
306     self->expression.node.keep = true; /* keep */
307
308     self->name = name ? util_strdup(name) : NULL;
309     self->expression.vtype = t;
310     self->expression.next  = NULL;
311     self->isconst = false;
312     self->uses    = 0;
313     memset(&self->constval, 0, sizeof(self->constval));
314
315     self->ir_v    = NULL;
316
317     return self;
318 }
319
320 void ast_value_delete(ast_value* self)
321 {
322     if (self->name)
323         mem_d((void*)self->name);
324     if (self->isconst) {
325         switch (self->expression.vtype)
326         {
327         case TYPE_STRING:
328             mem_d((void*)self->constval.vstring);
329             break;
330         case TYPE_FUNCTION:
331             /* unlink us from the function node */
332             self->constval.vfunc->vtype = NULL;
333             break;
334         /* NOTE: delete function? currently collected in
335          * the parser structure
336          */
337         default:
338             break;
339         }
340     }
341     ast_expression_delete((ast_expression*)self);
342     mem_d(self);
343 }
344
345 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
346 {
347     return ast_expression_common_params_add(&self->expression, p);
348 }
349
350 bool ast_value_set_name(ast_value *self, const char *name)
351 {
352     if (self->name)
353         mem_d((void*)self->name);
354     self->name = util_strdup(name);
355     return !!self->name;
356 }
357
358 ast_binary* ast_binary_new(lex_ctx ctx, int op,
359                            ast_expression* left, ast_expression* right)
360 {
361     ast_instantiate(ast_binary, ctx, ast_binary_delete);
362     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
363
364     self->op = op;
365     self->left = left;
366     self->right = right;
367
368     if (op >= INSTR_EQ_F && op <= INSTR_GT)
369         self->expression.vtype = TYPE_FLOAT;
370     else if (op == INSTR_AND || op == INSTR_OR ||
371              op == INSTR_BITAND || op == INSTR_BITOR)
372         self->expression.vtype = TYPE_FLOAT;
373     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
374         self->expression.vtype = TYPE_VECTOR;
375     else if (op == INSTR_MUL_V)
376         self->expression.vtype = TYPE_FLOAT;
377     else
378         self->expression.vtype = left->expression.vtype;
379
380     return self;
381 }
382
383 void ast_binary_delete(ast_binary *self)
384 {
385     ast_unref(self->left);
386     ast_unref(self->right);
387     ast_expression_delete((ast_expression*)self);
388     mem_d(self);
389 }
390
391 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
392                                ast_expression* left, ast_expression* right)
393 {
394     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
395     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
396
397     self->opstore = storop;
398     self->opbin   = op;
399     self->dest    = left;
400     self->source  = right;
401
402     self->expression.vtype = left->expression.vtype;
403     if (left->expression.next) {
404         self->expression.next = ast_type_copy(ctx, left);
405         if (!self->expression.next) {
406             ast_delete(self);
407             return NULL;
408         }
409     }
410     else
411         self->expression.next = NULL;
412
413     return self;
414 }
415
416 void ast_binstore_delete(ast_binstore *self)
417 {
418     ast_unref(self->dest);
419     ast_unref(self->source);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_unary* ast_unary_new(lex_ctx ctx, int op,
425                          ast_expression *expr)
426 {
427     ast_instantiate(ast_unary, ctx, ast_unary_delete);
428     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
429
430     self->op = op;
431     self->operand = expr;
432
433     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
434         self->expression.vtype = TYPE_FLOAT;
435     } else
436         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
437
438     return self;
439 }
440
441 void ast_unary_delete(ast_unary *self)
442 {
443     ast_unref(self->operand);
444     ast_expression_delete((ast_expression*)self);
445     mem_d(self);
446 }
447
448 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
449 {
450     ast_instantiate(ast_return, ctx, ast_return_delete);
451     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
452
453     self->operand = expr;
454
455     return self;
456 }
457
458 void ast_return_delete(ast_return *self)
459 {
460     if (self->operand)
461         ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
467 {
468     const ast_expression *outtype;
469
470     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
471
472     if (field->expression.vtype != TYPE_FIELD) {
473         mem_d(self);
474         return NULL;
475     }
476
477     outtype = field->expression.next;
478     if (!outtype) {
479         mem_d(self);
480         /* Error: field has no type... */
481         return NULL;
482     }
483
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
485
486     self->entity = entity;
487     self->field  = field;
488
489     if (!ast_type_adopt(self, outtype)) {
490         ast_entfield_delete(self);
491         return NULL;
492     }
493
494     return self;
495 }
496
497 void ast_entfield_delete(ast_entfield *self)
498 {
499     ast_unref(self->entity);
500     ast_unref(self->field);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
506 {
507     ast_instantiate(ast_member, ctx, ast_member_delete);
508     if (field >= 3) {
509         mem_d(self);
510         return NULL;
511     }
512
513     if (owner->expression.vtype != TYPE_VECTOR &&
514         owner->expression.vtype != TYPE_FIELD) {
515         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
516         mem_d(self);
517         return NULL;
518     }
519
520     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
521     self->expression.node.keep = true; /* keep */
522
523     if (owner->expression.vtype == TYPE_VECTOR) {
524         self->expression.vtype = TYPE_FLOAT;
525         self->expression.next  = NULL;
526     } else {
527         self->expression.vtype = TYPE_FIELD;
528         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
529     }
530
531     self->owner = owner;
532     self->field = field;
533
534     return self;
535 }
536
537 void ast_member_delete(ast_member *self)
538 {
539     /* The owner is always an ast_value, which has .keep=true,
540      * also: ast_members are usually deleted after the owner, thus
541      * this will cause invalid access
542     ast_unref(self->owner);
543      * once we allow (expression).x to access a vector-member, we need
544      * to change this: preferably by creating an alternate ast node for this
545      * purpose that is not garbage-collected.
546     */
547     ast_expression_delete((ast_expression*)self);
548     mem_d(self);
549 }
550
551 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
552 {
553     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
554     if (!ontrue && !onfalse) {
555         /* because it is invalid */
556         mem_d(self);
557         return NULL;
558     }
559     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
560
561     self->cond     = cond;
562     self->on_true  = ontrue;
563     self->on_false = onfalse;
564
565     return self;
566 }
567
568 void ast_ifthen_delete(ast_ifthen *self)
569 {
570     ast_unref(self->cond);
571     if (self->on_true)
572         ast_unref(self->on_true);
573     if (self->on_false)
574         ast_unref(self->on_false);
575     ast_expression_delete((ast_expression*)self);
576     mem_d(self);
577 }
578
579 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
580 {
581     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
582     /* This time NEITHER must be NULL */
583     if (!ontrue || !onfalse) {
584         mem_d(self);
585         return NULL;
586     }
587     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
588
589     self->cond     = cond;
590     self->on_true  = ontrue;
591     self->on_false = onfalse;
592     self->phi_out  = NULL;
593
594     return self;
595 }
596
597 void ast_ternary_delete(ast_ternary *self)
598 {
599     ast_unref(self->cond);
600     ast_unref(self->on_true);
601     ast_unref(self->on_false);
602     ast_expression_delete((ast_expression*)self);
603     mem_d(self);
604 }
605
606 ast_loop* ast_loop_new(lex_ctx ctx,
607                        ast_expression *initexpr,
608                        ast_expression *precond,
609                        ast_expression *postcond,
610                        ast_expression *increment,
611                        ast_expression *body)
612 {
613     ast_instantiate(ast_loop, ctx, ast_loop_delete);
614     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
615
616     self->initexpr  = initexpr;
617     self->precond   = precond;
618     self->postcond  = postcond;
619     self->increment = increment;
620     self->body      = body;
621
622     return self;
623 }
624
625 void ast_loop_delete(ast_loop *self)
626 {
627     if (self->initexpr)
628         ast_unref(self->initexpr);
629     if (self->precond)
630         ast_unref(self->precond);
631     if (self->postcond)
632         ast_unref(self->postcond);
633     if (self->increment)
634         ast_unref(self->increment);
635     if (self->body)
636         ast_unref(self->body);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_call* ast_call_new(lex_ctx ctx,
642                        ast_expression *funcexpr)
643 {
644     ast_instantiate(ast_call, ctx, ast_call_delete);
645     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
646
647     MEM_VECTOR_INIT(self, params);
648
649     self->func = funcexpr;
650
651     self->expression.vtype = funcexpr->expression.next->expression.vtype;
652     if (funcexpr->expression.next->expression.next)
653         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
654
655     return self;
656 }
657 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
658
659 void ast_call_delete(ast_call *self)
660 {
661     size_t i;
662     for (i = 0; i < self->params_count; ++i)
663         ast_unref(self->params[i]);
664     MEM_VECTOR_CLEAR(self, params);
665
666     if (self->func)
667         ast_unref(self->func);
668
669     ast_expression_delete((ast_expression*)self);
670     mem_d(self);
671 }
672
673 bool ast_call_check_types(ast_call *self)
674 {
675     size_t i;
676     bool   retval = true;
677     const  ast_expression *func = self->func;
678     size_t count = self->params_count;
679     if (count > func->expression.params_count)
680         count = func->expression.params_count;
681
682     for (i = 0; i < count; ++i) {
683         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
684             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
685                      (unsigned int)(i+1));
686             /* we don't immediately return */
687             retval = false;
688         }
689     }
690     return retval;
691 }
692
693 ast_store* ast_store_new(lex_ctx ctx, int op,
694                          ast_expression *dest, ast_expression *source)
695 {
696     ast_instantiate(ast_store, ctx, ast_store_delete);
697     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
698
699     self->op = op;
700     self->dest = dest;
701     self->source = source;
702
703     self->expression.vtype = dest->expression.vtype;
704     if (dest->expression.next) {
705         self->expression.next = ast_type_copy(ctx, dest);
706         if (!self->expression.next) {
707             ast_delete(self);
708             return NULL;
709         }
710     }
711     else
712         self->expression.next = NULL;
713
714     return self;
715 }
716
717 void ast_store_delete(ast_store *self)
718 {
719     ast_unref(self->dest);
720     ast_unref(self->source);
721     ast_expression_delete((ast_expression*)self);
722     mem_d(self);
723 }
724
725 ast_block* ast_block_new(lex_ctx ctx)
726 {
727     ast_instantiate(ast_block, ctx, ast_block_delete);
728     ast_expression_init((ast_expression*)self,
729                         (ast_expression_codegen*)&ast_block_codegen);
730
731     MEM_VECTOR_INIT(self, locals);
732     MEM_VECTOR_INIT(self, exprs);
733     MEM_VECTOR_INIT(self, collect);
734
735     return self;
736 }
737 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
738 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
739 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
740
741 bool ast_block_collect(ast_block *self, ast_expression *expr)
742 {
743     if (!ast_block_collect_add(self, expr))
744         return false;
745     expr->expression.node.keep = true;
746     return true;
747 }
748
749 void ast_block_delete(ast_block *self)
750 {
751     size_t i;
752     for (i = 0; i < self->exprs_count; ++i)
753         ast_unref(self->exprs[i]);
754     MEM_VECTOR_CLEAR(self, exprs);
755     for (i = 0; i < self->locals_count; ++i)
756         ast_delete(self->locals[i]);
757     MEM_VECTOR_CLEAR(self, locals);
758     for (i = 0; i < self->collect_count; ++i)
759         ast_delete(self->collect[i]);
760     MEM_VECTOR_CLEAR(self, collect);
761     ast_expression_delete((ast_expression*)self);
762     mem_d(self);
763 }
764
765 bool ast_block_set_type(ast_block *self, ast_expression *from)
766 {
767     if (self->expression.next)
768         ast_delete(self->expression.next);
769     self->expression.vtype = from->expression.vtype;
770     if (from->expression.next) {
771         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
772         if (!self->expression.next)
773             return false;
774     }
775     else
776         self->expression.next = NULL;
777     return true;
778 }
779
780 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
781 {
782     ast_instantiate(ast_function, ctx, ast_function_delete);
783
784     if (!vtype ||
785         vtype->isconst ||
786         vtype->expression.vtype != TYPE_FUNCTION)
787     {
788         mem_d(self);
789         return NULL;
790     }
791
792     self->vtype = vtype;
793     self->name = name ? util_strdup(name) : NULL;
794     MEM_VECTOR_INIT(self, blocks);
795
796     self->labelcount = 0;
797     self->builtin = 0;
798
799     self->ir_func = NULL;
800     self->curblock = NULL;
801
802     self->breakblock    = NULL;
803     self->continueblock = NULL;
804
805     vtype->isconst = true;
806     vtype->constval.vfunc = self;
807
808     return self;
809 }
810
811 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
812
813 void ast_function_delete(ast_function *self)
814 {
815     size_t i;
816     if (self->name)
817         mem_d((void*)self->name);
818     if (self->vtype) {
819         /* ast_value_delete(self->vtype); */
820         self->vtype->isconst = false;
821         self->vtype->constval.vfunc = NULL;
822         /* We use unref - if it was stored in a global table it is supposed
823          * to be deleted from *there*
824          */
825         ast_unref(self->vtype);
826     }
827     for (i = 0; i < self->blocks_count; ++i)
828         ast_delete(self->blocks[i]);
829     MEM_VECTOR_CLEAR(self, blocks);
830     mem_d(self);
831 }
832
833 const char* ast_function_label(ast_function *self, const char *prefix)
834 {
835     size_t id;
836     size_t len;
837     char  *from;
838
839     if (!opts_dump)
840         return NULL;
841
842     id  = (self->labelcount++);
843     len = strlen(prefix);
844
845     from = self->labelbuf + sizeof(self->labelbuf)-1;
846     *from-- = 0;
847     do {
848         unsigned int digit = id % 10;
849         *from = digit + '0';
850         id /= 10;
851     } while (id);
852     memcpy(from - len, prefix, len);
853     return from - len;
854 }
855
856 /*********************************************************************/
857 /* AST codegen part
858  * by convention you must never pass NULL to the 'ir_value **out'
859  * parameter. If you really don't care about the output, pass a dummy.
860  * But I can't imagine a pituation where the output is truly unnecessary.
861  */
862
863 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
864 {
865     /* NOTE: This is the codegen for a variable used in an expression.
866      * It is not the codegen to generate the value. For this purpose,
867      * ast_local_codegen and ast_global_codegen are to be used before this
868      * is executed. ast_function_codegen should take care of its locals,
869      * and the ast-user should take care of ast_global_codegen to be used
870      * on all the globals.
871      */
872     if (!self->ir_v) {
873         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
874         return false;
875     }
876     *out = self->ir_v;
877     return true;
878 }
879
880 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
881 {
882     ir_value *v = NULL;
883     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
884     {
885         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
886         if (!func)
887             return false;
888         func->context = ast_ctx(self);
889         func->value->context = ast_ctx(self);
890
891         self->constval.vfunc->ir_func = func;
892         self->ir_v = func->value;
893         /* The function is filled later on ast_function_codegen... */
894         return true;
895     }
896
897     if (isfield && self->expression.vtype == TYPE_FIELD) {
898         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
899         if (!v)
900             return false;
901         v->context = ast_ctx(self);
902         if (self->isconst) {
903             asterror(ast_ctx(self), "TODO: constant field pointers with value");
904             goto error;
905         }
906         self->ir_v = v;
907         return true;
908     }
909
910     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
911     if (!v) {
912         asterror(ast_ctx(self), "ir_builder_create_global failed");
913         return false;
914     }
915     if (self->expression.vtype == TYPE_FIELD)
916         v->fieldtype = self->expression.next->expression.vtype;
917     v->context = ast_ctx(self);
918
919     if (self->isconst) {
920         switch (self->expression.vtype)
921         {
922             case TYPE_FLOAT:
923                 if (!ir_value_set_float(v, self->constval.vfloat))
924                     goto error;
925                 break;
926             case TYPE_VECTOR:
927                 if (!ir_value_set_vector(v, self->constval.vvec))
928                     goto error;
929                 break;
930             case TYPE_STRING:
931                 if (!ir_value_set_string(v, self->constval.vstring))
932                     goto error;
933                 break;
934             case TYPE_FUNCTION:
935                 asterror(ast_ctx(self), "global of type function not properly generated");
936                 goto error;
937                 /* Cannot generate an IR value for a function,
938                  * need a pointer pointing to a function rather.
939                  */
940             default:
941                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
942                 break;
943         }
944     }
945
946     /* link us to the ir_value */
947     self->ir_v = v;
948     return true;
949
950 error: /* clean up */
951     ir_value_delete(v);
952     return false;
953 }
954
955 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
956 {
957     ir_value *v = NULL;
958     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
959     {
960         /* Do we allow local functions? I think not...
961          * this is NOT a function pointer atm.
962          */
963         return false;
964     }
965
966     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
967     if (!v)
968         return false;
969     if (self->expression.vtype == TYPE_FIELD)
970         v->fieldtype = self->expression.next->expression.vtype;
971     v->context = ast_ctx(self);
972
973     /* A constant local... hmmm...
974      * I suppose the IR will have to deal with this
975      */
976     if (self->isconst) {
977         switch (self->expression.vtype)
978         {
979             case TYPE_FLOAT:
980                 if (!ir_value_set_float(v, self->constval.vfloat))
981                     goto error;
982                 break;
983             case TYPE_VECTOR:
984                 if (!ir_value_set_vector(v, self->constval.vvec))
985                     goto error;
986                 break;
987             case TYPE_STRING:
988                 if (!ir_value_set_string(v, self->constval.vstring))
989                     goto error;
990                 break;
991             default:
992                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
993                 break;
994         }
995     }
996
997     /* link us to the ir_value */
998     self->ir_v = v;
999     return true;
1000
1001 error: /* clean up */
1002     ir_value_delete(v);
1003     return false;
1004 }
1005
1006 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1007 {
1008     ir_function *irf;
1009     ir_value    *dummy;
1010     ast_expression_common *ec;
1011     size_t    i;
1012
1013     irf = self->ir_func;
1014     if (!irf) {
1015         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1016         return false;
1017     }
1018
1019     /* fill the parameter list */
1020     ec = &self->vtype->expression;
1021     for (i = 0; i < ec->params_count; ++i)
1022     {
1023         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1024             return false;
1025         if (!self->builtin) {
1026             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1027                 return false;
1028         }
1029     }
1030
1031     if (self->builtin) {
1032         irf->builtin = self->builtin;
1033         return true;
1034     }
1035
1036     if (!self->blocks_count) {
1037         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1038         return false;
1039     }
1040
1041     self->curblock = ir_function_create_block(irf, "entry");
1042     if (!self->curblock) {
1043         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1044         return false;
1045     }
1046
1047     for (i = 0; i < self->blocks_count; ++i) {
1048         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1049         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1050             return false;
1051     }
1052
1053     /* TODO: check return types */
1054     if (!self->curblock->is_return)
1055     {
1056         return ir_block_create_return(self->curblock, NULL);
1057         /* From now on the parser has to handle this situation */
1058 #if 0
1059         if (!self->vtype->expression.next ||
1060             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1061         {
1062             return ir_block_create_return(self->curblock, NULL);
1063         }
1064         else
1065         {
1066             /* error("missing return"); */
1067             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1068             return false;
1069         }
1070 #endif
1071     }
1072     return true;
1073 }
1074
1075 /* Note, you will not see ast_block_codegen generate ir_blocks.
1076  * To the AST and the IR, blocks are 2 different things.
1077  * In the AST it represents a block of code, usually enclosed in
1078  * curly braces {...}.
1079  * While in the IR it represents a block in terms of control-flow.
1080  */
1081 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1082 {
1083     size_t i;
1084
1085     /* We don't use this
1086      * Note: an ast-representation using the comma-operator
1087      * of the form: (a, b, c) = x should not assign to c...
1088      */
1089     if (lvalue) {
1090         asterror(ast_ctx(self), "not an l-value (code-block)");
1091         return false;
1092     }
1093
1094     if (self->expression.outr) {
1095         *out = self->expression.outr;
1096         return true;
1097     }
1098
1099     /* output is NULL at first, we'll have each expression
1100      * assign to out output, thus, a comma-operator represention
1101      * using an ast_block will return the last generated value,
1102      * so: (b, c) + a  executed both b and c, and returns c,
1103      * which is then added to a.
1104      */
1105     *out = NULL;
1106
1107     /* generate locals */
1108     for (i = 0; i < self->locals_count; ++i)
1109     {
1110         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1111             if (opts_debug)
1112                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1113             return false;
1114         }
1115     }
1116
1117     for (i = 0; i < self->exprs_count; ++i)
1118     {
1119         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1120         if (!(*gen)(self->exprs[i], func, false, out))
1121             return false;
1122     }
1123
1124     self->expression.outr = *out;
1125
1126     return true;
1127 }
1128
1129 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1130 {
1131     ast_expression_codegen *cgen;
1132     ir_value *left, *right;
1133
1134     if (lvalue && self->expression.outl) {
1135         *out = self->expression.outl;
1136         return true;
1137     }
1138
1139     if (!lvalue && self->expression.outr) {
1140         *out = self->expression.outr;
1141         return true;
1142     }
1143
1144     cgen = self->dest->expression.codegen;
1145     /* lvalue! */
1146     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1147         return false;
1148     self->expression.outl = left;
1149
1150     cgen = self->source->expression.codegen;
1151     /* rvalue! */
1152     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1153         return false;
1154
1155     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1156         return false;
1157     self->expression.outr = right;
1158
1159     /* Theoretically, an assinment returns its left side as an
1160      * lvalue, if we don't need an lvalue though, we return
1161      * the right side as an rvalue, otherwise we have to
1162      * somehow know whether or not we need to dereference the pointer
1163      * on the left side - that is: OP_LOAD if it was an address.
1164      * Also: in original QC we cannot OP_LOADP *anyway*.
1165      */
1166     *out = (lvalue ? left : right);
1167
1168     return true;
1169 }
1170
1171 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1172 {
1173     ast_expression_codegen *cgen;
1174     ir_value *left, *right;
1175
1176     /* A binary operation cannot yield an l-value */
1177     if (lvalue) {
1178         asterror(ast_ctx(self), "not an l-value (binop)");
1179         return false;
1180     }
1181
1182     if (self->expression.outr) {
1183         *out = self->expression.outr;
1184         return true;
1185     }
1186
1187     cgen = self->left->expression.codegen;
1188     /* lvalue! */
1189     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1190         return false;
1191
1192     cgen = self->right->expression.codegen;
1193     /* rvalue! */
1194     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1195         return false;
1196
1197     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1198                                  self->op, left, right);
1199     if (!*out)
1200         return false;
1201     self->expression.outr = *out;
1202
1203     return true;
1204 }
1205
1206 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1207 {
1208     ast_expression_codegen *cgen;
1209     ir_value *leftl, *leftr, *right, *bin;
1210
1211     if (lvalue && self->expression.outl) {
1212         *out = self->expression.outl;
1213         return true;
1214     }
1215
1216     if (!lvalue && self->expression.outr) {
1217         *out = self->expression.outr;
1218         return true;
1219     }
1220
1221     /* for a binstore we need both an lvalue and an rvalue for the left side */
1222     /* rvalue of destination! */
1223     cgen = self->dest->expression.codegen;
1224     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1225         return false;
1226
1227     /* source as rvalue only */
1228     cgen = self->source->expression.codegen;
1229     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1230         return false;
1231
1232     /* now the binary */
1233     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1234                                 self->opbin, leftr, right);
1235     self->expression.outr = bin;
1236
1237     /* now store them */
1238     cgen = self->dest->expression.codegen;
1239     /* lvalue of destination */
1240     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1241         return false;
1242     self->expression.outl = leftl;
1243
1244     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1245         return false;
1246     self->expression.outr = bin;
1247
1248     /* Theoretically, an assinment returns its left side as an
1249      * lvalue, if we don't need an lvalue though, we return
1250      * the right side as an rvalue, otherwise we have to
1251      * somehow know whether or not we need to dereference the pointer
1252      * on the left side - that is: OP_LOAD if it was an address.
1253      * Also: in original QC we cannot OP_LOADP *anyway*.
1254      */
1255     *out = (lvalue ? leftl : bin);
1256
1257     return true;
1258 }
1259
1260 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1261 {
1262     ast_expression_codegen *cgen;
1263     ir_value *operand;
1264
1265     /* An unary operation cannot yield an l-value */
1266     if (lvalue) {
1267         asterror(ast_ctx(self), "not an l-value (binop)");
1268         return false;
1269     }
1270
1271     if (self->expression.outr) {
1272         *out = self->expression.outr;
1273         return true;
1274     }
1275
1276     cgen = self->operand->expression.codegen;
1277     /* lvalue! */
1278     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1279         return false;
1280
1281     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1282                                  self->op, operand);
1283     if (!*out)
1284         return false;
1285     self->expression.outr = *out;
1286
1287     return true;
1288 }
1289
1290 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1291 {
1292     ast_expression_codegen *cgen;
1293     ir_value *operand;
1294
1295     /* In the context of a return operation, we don't actually return
1296      * anything...
1297      */
1298     if (lvalue) {
1299         asterror(ast_ctx(self), "return-expression is not an l-value");
1300         return false;
1301     }
1302
1303     if (self->expression.outr) {
1304         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1305         return false;
1306     }
1307     self->expression.outr = (ir_value*)1;
1308
1309     if (self->operand) {
1310         cgen = self->operand->expression.codegen;
1311         /* lvalue! */
1312         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1313             return false;
1314
1315         if (!ir_block_create_return(func->curblock, operand))
1316             return false;
1317     } else {
1318         if (!ir_block_create_return(func->curblock, NULL))
1319             return false;
1320     }
1321
1322     return true;
1323 }
1324
1325 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1326 {
1327     ast_expression_codegen *cgen;
1328     ir_value *ent, *field;
1329
1330     /* This function needs to take the 'lvalue' flag into account!
1331      * As lvalue we provide a field-pointer, as rvalue we provide the
1332      * value in a temp.
1333      */
1334
1335     if (lvalue && self->expression.outl) {
1336         *out = self->expression.outl;
1337         return true;
1338     }
1339
1340     if (!lvalue && self->expression.outr) {
1341         *out = self->expression.outr;
1342         return true;
1343     }
1344
1345     cgen = self->entity->expression.codegen;
1346     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1347         return false;
1348
1349     cgen = self->field->expression.codegen;
1350     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1351         return false;
1352
1353     if (lvalue) {
1354         /* address! */
1355         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1356                                             ent, field);
1357     } else {
1358         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1359                                              ent, field, self->expression.vtype);
1360     }
1361     if (!*out) {
1362         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1363                  (lvalue ? "ADDRESS" : "FIELD"),
1364                  type_name[self->expression.vtype]);
1365         return false;
1366     }
1367
1368     if (lvalue)
1369         self->expression.outl = *out;
1370     else
1371         self->expression.outr = *out;
1372
1373     /* Hm that should be it... */
1374     return true;
1375 }
1376
1377 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1378 {
1379     ast_expression_codegen *cgen;
1380     ir_value *vec;
1381
1382     /* in QC this is always an lvalue */
1383     (void)lvalue;
1384     if (self->expression.outl) {
1385         *out = self->expression.outl;
1386         return true;
1387     }
1388
1389     cgen = self->owner->expression.codegen;
1390     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1391         return false;
1392
1393     if (vec->vtype != TYPE_VECTOR &&
1394         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1395     {
1396         return false;
1397     }
1398
1399     *out = ir_value_vector_member(vec, self->field);
1400     self->expression.outl = *out;
1401
1402     return (*out != NULL);
1403 }
1404
1405 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1406 {
1407     ast_expression_codegen *cgen;
1408
1409     ir_value *condval;
1410     ir_value *dummy;
1411
1412     ir_block *cond = func->curblock;
1413     ir_block *ontrue;
1414     ir_block *onfalse;
1415     ir_block *ontrue_endblock = NULL;
1416     ir_block *onfalse_endblock = NULL;
1417     ir_block *merge;
1418
1419     /* We don't output any value, thus also don't care about r/lvalue */
1420     (void)out;
1421     (void)lvalue;
1422
1423     if (self->expression.outr) {
1424         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1425         return false;
1426     }
1427     self->expression.outr = (ir_value*)1;
1428
1429     /* generate the condition */
1430     func->curblock = cond;
1431     cgen = self->cond->expression.codegen;
1432     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1433         return false;
1434
1435     /* on-true path */
1436
1437     if (self->on_true) {
1438         /* create on-true block */
1439         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1440         if (!ontrue)
1441             return false;
1442
1443         /* enter the block */
1444         func->curblock = ontrue;
1445
1446         /* generate */
1447         cgen = self->on_true->expression.codegen;
1448         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1449             return false;
1450
1451         /* we now need to work from the current endpoint */
1452         ontrue_endblock = func->curblock;
1453     } else
1454         ontrue = NULL;
1455
1456     /* on-false path */
1457     if (self->on_false) {
1458         /* create on-false block */
1459         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1460         if (!onfalse)
1461             return false;
1462
1463         /* enter the block */
1464         func->curblock = onfalse;
1465
1466         /* generate */
1467         cgen = self->on_false->expression.codegen;
1468         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1469             return false;
1470
1471         /* we now need to work from the current endpoint */
1472         onfalse_endblock = func->curblock;
1473     } else
1474         onfalse = NULL;
1475
1476     /* Merge block were they all merge in to */
1477     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1478     if (!merge)
1479         return false;
1480
1481     /* add jumps ot the merge block */
1482     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1483         return false;
1484     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1485         return false;
1486
1487     /* we create the if here, that way all blocks are ordered :)
1488      */
1489     if (!ir_block_create_if(cond, condval,
1490                             (ontrue  ? ontrue  : merge),
1491                             (onfalse ? onfalse : merge)))
1492     {
1493         return false;
1494     }
1495
1496     /* Now enter the merge block */
1497     func->curblock = merge;
1498
1499     return true;
1500 }
1501
1502 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1503 {
1504     ast_expression_codegen *cgen;
1505
1506     ir_value *condval;
1507     ir_value *trueval, *falseval;
1508     ir_instr *phi;
1509
1510     ir_block *cond = func->curblock;
1511     ir_block *ontrue;
1512     ir_block *onfalse;
1513     ir_block *merge;
1514
1515     /* Ternary can never create an lvalue... */
1516     if (lvalue)
1517         return false;
1518
1519     /* In theory it shouldn't be possible to pass through a node twice, but
1520      * in case we add any kind of optimization pass for the AST itself, it
1521      * may still happen, thus we remember a created ir_value and simply return one
1522      * if it already exists.
1523      */
1524     if (self->phi_out) {
1525         *out = self->phi_out;
1526         return true;
1527     }
1528
1529     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1530
1531     /* generate the condition */
1532     func->curblock = cond;
1533     cgen = self->cond->expression.codegen;
1534     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1535         return false;
1536
1537     /* create on-true block */
1538     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1539     if (!ontrue)
1540         return false;
1541     else
1542     {
1543         /* enter the block */
1544         func->curblock = ontrue;
1545
1546         /* generate */
1547         cgen = self->on_true->expression.codegen;
1548         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1549             return false;
1550     }
1551
1552     /* create on-false block */
1553     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1554     if (!onfalse)
1555         return false;
1556     else
1557     {
1558         /* enter the block */
1559         func->curblock = onfalse;
1560
1561         /* generate */
1562         cgen = self->on_false->expression.codegen;
1563         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1564             return false;
1565     }
1566
1567     /* create merge block */
1568     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1569     if (!merge)
1570         return false;
1571     /* jump to merge block */
1572     if (!ir_block_create_jump(ontrue, merge))
1573         return false;
1574     if (!ir_block_create_jump(onfalse, merge))
1575         return false;
1576
1577     /* create if instruction */
1578     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1579         return false;
1580
1581     /* Now enter the merge block */
1582     func->curblock = merge;
1583
1584     /* Here, now, we need a PHI node
1585      * but first some sanity checking...
1586      */
1587     if (trueval->vtype != falseval->vtype) {
1588         /* error("ternary with different types on the two sides"); */
1589         return false;
1590     }
1591
1592     /* create PHI */
1593     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1594     if (!phi ||
1595         !ir_phi_add(phi, ontrue,  trueval) ||
1596         !ir_phi_add(phi, onfalse, falseval))
1597     {
1598         return false;
1599     }
1600
1601     self->phi_out = ir_phi_value(phi);
1602     *out = self->phi_out;
1603
1604     return true;
1605 }
1606
1607 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1608 {
1609     ast_expression_codegen *cgen;
1610
1611     ir_value *dummy      = NULL;
1612     ir_value *precond    = NULL;
1613     ir_value *postcond   = NULL;
1614
1615     /* Since we insert some jumps "late" so we have blocks
1616      * ordered "nicely", we need to keep track of the actual end-blocks
1617      * of expressions to add the jumps to.
1618      */
1619     ir_block *bbody      = NULL, *end_bbody      = NULL;
1620     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1621     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1622     ir_block *bincrement = NULL, *end_bincrement = NULL;
1623     ir_block *bout       = NULL, *bin            = NULL;
1624
1625     /* let's at least move the outgoing block to the end */
1626     size_t    bout_id;
1627
1628     /* 'break' and 'continue' need to be able to find the right blocks */
1629     ir_block *bcontinue     = NULL;
1630     ir_block *bbreak        = NULL;
1631
1632     ir_block *old_bcontinue = NULL;
1633     ir_block *old_bbreak    = NULL;
1634
1635     ir_block *tmpblock      = NULL;
1636
1637     (void)lvalue;
1638     (void)out;
1639
1640     if (self->expression.outr) {
1641         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1642         return false;
1643     }
1644     self->expression.outr = (ir_value*)1;
1645
1646     /* NOTE:
1647      * Should we ever need some kind of block ordering, better make this function
1648      * move blocks around than write a block ordering algorithm later... after all
1649      * the ast and ir should work together, not against each other.
1650      */
1651
1652     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1653      * anyway if for example it contains a ternary.
1654      */
1655     if (self->initexpr)
1656     {
1657         cgen = self->initexpr->expression.codegen;
1658         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1659             return false;
1660     }
1661
1662     /* Store the block from which we enter this chaos */
1663     bin = func->curblock;
1664
1665     /* The pre-loop condition needs its own block since we
1666      * need to be able to jump to the start of that expression.
1667      */
1668     if (self->precond)
1669     {
1670         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1671         if (!bprecond)
1672             return false;
1673
1674         /* the pre-loop-condition the least important place to 'continue' at */
1675         bcontinue = bprecond;
1676
1677         /* enter */
1678         func->curblock = bprecond;
1679
1680         /* generate */
1681         cgen = self->precond->expression.codegen;
1682         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1683             return false;
1684
1685         end_bprecond = func->curblock;
1686     } else {
1687         bprecond = end_bprecond = NULL;
1688     }
1689
1690     /* Now the next blocks won't be ordered nicely, but we need to
1691      * generate them this early for 'break' and 'continue'.
1692      */
1693     if (self->increment) {
1694         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1695         if (!bincrement)
1696             return false;
1697         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1698     } else {
1699         bincrement = end_bincrement = NULL;
1700     }
1701
1702     if (self->postcond) {
1703         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1704         if (!bpostcond)
1705             return false;
1706         bcontinue = bpostcond; /* postcond comes before the increment */
1707     } else {
1708         bpostcond = end_bpostcond = NULL;
1709     }
1710
1711     bout_id = func->ir_func->blocks_count;
1712     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1713     if (!bout)
1714         return false;
1715     bbreak = bout;
1716
1717     /* The loop body... */
1718     if (self->body)
1719     {
1720         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1721         if (!bbody)
1722             return false;
1723
1724         /* enter */
1725         func->curblock = bbody;
1726
1727         old_bbreak          = func->breakblock;
1728         old_bcontinue       = func->continueblock;
1729         func->breakblock    = bbreak;
1730         func->continueblock = bcontinue;
1731
1732         /* generate */
1733         cgen = self->body->expression.codegen;
1734         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1735             return false;
1736
1737         end_bbody = func->curblock;
1738         func->breakblock    = old_bbreak;
1739         func->continueblock = old_bcontinue;
1740     }
1741
1742     /* post-loop-condition */
1743     if (self->postcond)
1744     {
1745         /* enter */
1746         func->curblock = bpostcond;
1747
1748         /* generate */
1749         cgen = self->postcond->expression.codegen;
1750         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1751             return false;
1752
1753         end_bpostcond = func->curblock;
1754     }
1755
1756     /* The incrementor */
1757     if (self->increment)
1758     {
1759         /* enter */
1760         func->curblock = bincrement;
1761
1762         /* generate */
1763         cgen = self->increment->expression.codegen;
1764         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1765             return false;
1766
1767         end_bincrement = func->curblock;
1768     }
1769
1770     /* In any case now, we continue from the outgoing block */
1771     func->curblock = bout;
1772
1773     /* Now all blocks are in place */
1774     /* From 'bin' we jump to whatever comes first */
1775     if      (bprecond)   tmpblock = bprecond;
1776     else if (bbody)      tmpblock = bbody;
1777     else if (bpostcond)  tmpblock = bpostcond;
1778     else                 tmpblock = bout;
1779     if (!ir_block_create_jump(bin, tmpblock))
1780         return false;
1781
1782     /* From precond */
1783     if (bprecond)
1784     {
1785         ir_block *ontrue, *onfalse;
1786         if      (bbody)      ontrue = bbody;
1787         else if (bincrement) ontrue = bincrement;
1788         else if (bpostcond)  ontrue = bpostcond;
1789         else                 ontrue = bprecond;
1790         onfalse = bout;
1791         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1792             return false;
1793     }
1794
1795     /* from body */
1796     if (bbody)
1797     {
1798         if      (bincrement) tmpblock = bincrement;
1799         else if (bpostcond)  tmpblock = bpostcond;
1800         else if (bprecond)   tmpblock = bprecond;
1801         else                 tmpblock = bout;
1802         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1803             return false;
1804     }
1805
1806     /* from increment */
1807     if (bincrement)
1808     {
1809         if      (bpostcond)  tmpblock = bpostcond;
1810         else if (bprecond)   tmpblock = bprecond;
1811         else if (bbody)      tmpblock = bbody;
1812         else                 tmpblock = bout;
1813         if (!ir_block_create_jump(end_bincrement, tmpblock))
1814             return false;
1815     }
1816
1817     /* from postcond */
1818     if (bpostcond)
1819     {
1820         ir_block *ontrue, *onfalse;
1821         if      (bprecond)   ontrue = bprecond;
1822         else if (bbody)      ontrue = bbody;
1823         else if (bincrement) ontrue = bincrement;
1824         else                 ontrue = bpostcond;
1825         onfalse = bout;
1826         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1827             return false;
1828     }
1829
1830     /* Move 'bout' to the end */
1831     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1832         !ir_function_blocks_add(func->ir_func, bout))
1833     {
1834         ir_block_delete(bout);
1835         return false;
1836     }
1837
1838     return true;
1839 }
1840
1841 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1842 {
1843     ast_expression_codegen *cgen;
1844     ir_value_vector         params;
1845     ir_instr               *callinstr;
1846     size_t i;
1847
1848     ir_value *funval = NULL;
1849
1850     /* return values are never lvalues */
1851     if (lvalue) {
1852         asterror(ast_ctx(self), "not an l-value (function call)");
1853         return false;
1854     }
1855
1856     if (self->expression.outr) {
1857         *out = self->expression.outr;
1858         return true;
1859     }
1860
1861     cgen = self->func->expression.codegen;
1862     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1863         return false;
1864     if (!funval)
1865         return false;
1866
1867     MEM_VECTOR_INIT(&params, v);
1868
1869     /* parameters */
1870     for (i = 0; i < self->params_count; ++i)
1871     {
1872         ir_value *param;
1873         ast_expression *expr = self->params[i];
1874
1875         cgen = expr->expression.codegen;
1876         if (!(*cgen)(expr, func, false, &param))
1877             goto error;
1878         if (!param)
1879             goto error;
1880         if (!ir_value_vector_v_add(&params, param))
1881             goto error;
1882     }
1883
1884     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1885     if (!callinstr)
1886         goto error;
1887
1888     for (i = 0; i < params.v_count; ++i) {
1889         if (!ir_call_param(callinstr, params.v[i]))
1890             goto error;
1891     }
1892
1893     *out = ir_call_value(callinstr);
1894     self->expression.outr = *out;
1895
1896     MEM_VECTOR_CLEAR(&params, v);
1897     return true;
1898 error:
1899     MEM_VECTOR_CLEAR(&params, v);
1900     return false;
1901 }