]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_call: adopt the funciton's return type
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     for (i = 0; i < fromex->params_count; ++i) {
111         ast_value *v = ast_value_copy(fromex->params[i]);
112         if (!v || !ast_expression_common_params_add(selfex, v)) {
113             ast_value_delete(cp);
114             return NULL;
115         }
116     }
117     return cp;
118 }
119
120 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
121 {
122     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
123     ast_expression_init(self, NULL);
124     self->expression.codegen = NULL;
125     self->expression.next    = NULL;
126     self->expression.vtype   = vtype;
127     return self;
128 }
129
130 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
131 {
132     size_t i;
133     const ast_expression_common *fromex;
134     ast_expression_common *selfex;
135
136     if (!ex)
137         return NULL;
138     else
139     {
140         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
141         ast_expression_init(self, NULL);
142
143         fromex   = &ex->expression;
144         selfex = &self->expression;
145
146         /* This may never be codegen()d */
147         selfex->codegen = NULL;
148
149         selfex->vtype = fromex->vtype;
150         if (fromex->next)
151         {
152             selfex->next = ast_type_copy(ctx, fromex->next);
153             if (!selfex->next) {
154                 ast_expression_delete_full(self);
155                 return NULL;
156             }
157         }
158         else
159             selfex->next = NULL;
160
161         for (i = 0; i < fromex->params_count; ++i) {
162             ast_value *v = ast_value_copy(fromex->params[i]);
163             if (!v || !ast_expression_common_params_add(selfex, v)) {
164                 ast_expression_delete_full(self);
165                 return NULL;
166             }
167         }
168
169         return self;
170     }
171 }
172
173 bool ast_compare_type(ast_expression *a, ast_expression *b)
174 {
175     if (a->expression.vtype != b->expression.vtype)
176         return false;
177     if (!a->expression.next != !b->expression.next)
178         return false;
179     if (a->expression.params_count != b->expression.params_count)
180         return false;
181     if (a->expression.params_count) {
182         size_t i;
183         for (i = 0; i < a->expression.params_count; ++i) {
184             if (!ast_compare_type((ast_expression*)a->expression.params[i],
185                                   (ast_expression*)b->expression.params[i]))
186                 return false;
187         }
188     }
189     if (a->expression.next)
190         return ast_compare_type(a->expression.next, b->expression.next);
191     return true;
192 }
193
194 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
195 {
196     ast_instantiate(ast_value, ctx, ast_value_delete);
197     ast_expression_init((ast_expression*)self,
198                         (ast_expression_codegen*)&ast_value_codegen);
199     self->expression.node.keep = true; /* keep */
200
201     self->name = name ? util_strdup(name) : NULL;
202     self->expression.vtype = t;
203     self->expression.next  = NULL;
204     self->isconst = false;
205     memset(&self->constval, 0, sizeof(self->constval));
206
207     self->ir_v    = NULL;
208
209     return self;
210 }
211
212 void ast_value_delete(ast_value* self)
213 {
214     if (self->name)
215         mem_d((void*)self->name);
216     if (self->isconst) {
217         switch (self->expression.vtype)
218         {
219         case TYPE_STRING:
220             mem_d((void*)self->constval.vstring);
221             break;
222         case TYPE_FUNCTION:
223             /* unlink us from the function node */
224             self->constval.vfunc->vtype = NULL;
225             break;
226         /* NOTE: delete function? currently collected in
227          * the parser structure
228          */
229         default:
230             break;
231         }
232     }
233     ast_expression_delete((ast_expression*)self);
234     mem_d(self);
235 }
236
237 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
238 {
239     return ast_expression_common_params_add(&self->expression, p);
240 }
241
242 bool ast_value_set_name(ast_value *self, const char *name)
243 {
244     if (self->name)
245         mem_d((void*)self->name);
246     self->name = util_strdup(name);
247     return !!self->name;
248 }
249
250 ast_binary* ast_binary_new(lex_ctx ctx, int op,
251                            ast_expression* left, ast_expression* right)
252 {
253     ast_instantiate(ast_binary, ctx, ast_binary_delete);
254     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
255
256     self->op = op;
257     self->left = left;
258     self->right = right;
259
260     if (op >= INSTR_EQ_F && op <= INSTR_GT)
261         self->expression.vtype = TYPE_FLOAT;
262     else if (op == INSTR_AND || op == INSTR_OR ||
263              op == INSTR_BITAND || op == INSTR_BITOR)
264         self->expression.vtype = TYPE_FLOAT;
265     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
266         self->expression.vtype = TYPE_VECTOR;
267     else if (op == INSTR_MUL_V)
268         self->expression.vtype = TYPE_FLOAT;
269     else
270         self->expression.vtype = left->expression.vtype;
271
272     return self;
273 }
274
275 void ast_binary_delete(ast_binary *self)
276 {
277     ast_unref(self->left);
278     ast_unref(self->right);
279     ast_expression_delete((ast_expression*)self);
280     mem_d(self);
281 }
282
283 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
284                                ast_expression* left, ast_expression* right)
285 {
286     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
287     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
288
289     self->opstore = storop;
290     self->opbin   = op;
291     self->dest    = left;
292     self->source  = right;
293
294     self->expression.vtype = left->expression.vtype;
295     if (left->expression.next) {
296         self->expression.next = ast_type_copy(ctx, left);
297         if (!self->expression.next) {
298             ast_delete(self);
299             return NULL;
300         }
301     }
302     else
303         self->expression.next = NULL;
304
305     return self;
306 }
307
308 void ast_binstore_delete(ast_binstore *self)
309 {
310     ast_unref(self->dest);
311     ast_unref(self->source);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_unary* ast_unary_new(lex_ctx ctx, int op,
317                          ast_expression *expr)
318 {
319     ast_instantiate(ast_unary, ctx, ast_unary_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
321
322     self->op = op;
323     self->operand = expr;
324
325     return self;
326 }
327
328 void ast_unary_delete(ast_unary *self)
329 {
330     ast_unref(self->operand);
331     ast_expression_delete((ast_expression*)self);
332     mem_d(self);
333 }
334
335 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
336 {
337     ast_instantiate(ast_return, ctx, ast_return_delete);
338     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
339
340     self->operand = expr;
341
342     return self;
343 }
344
345 void ast_return_delete(ast_return *self)
346 {
347     if (self->operand)
348         ast_unref(self->operand);
349     ast_expression_delete((ast_expression*)self);
350     mem_d(self);
351 }
352
353 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
354 {
355     const ast_expression *outtype;
356
357     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
358
359     if (field->expression.vtype != TYPE_FIELD) {
360         mem_d(self);
361         return NULL;
362     }
363
364     outtype = field->expression.next;
365     if (!outtype) {
366         mem_d(self);
367         /* Error: field has no type... */
368         return NULL;
369     }
370
371     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
372
373     self->expression.vtype = outtype->expression.vtype;
374     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
375
376     self->entity = entity;
377     self->field  = field;
378
379     return self;
380 }
381
382 void ast_entfield_delete(ast_entfield *self)
383 {
384     ast_unref(self->entity);
385     ast_unref(self->field);
386     ast_expression_delete((ast_expression*)self);
387     mem_d(self);
388 }
389
390 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
391 {
392     ast_instantiate(ast_member, ctx, ast_member_delete);
393     if (field >= 3) {
394         mem_d(self);
395         return NULL;
396     }
397
398     if (owner->expression.vtype != TYPE_VECTOR &&
399         owner->expression.vtype != TYPE_FIELD) {
400         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
401         mem_d(self);
402         return NULL;
403     }
404
405     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
406     self->expression.node.keep = true; /* keep */
407
408     if (owner->expression.vtype == TYPE_VECTOR) {
409         self->expression.vtype = TYPE_FLOAT;
410         self->expression.next  = NULL;
411     } else {
412         self->expression.vtype = TYPE_FIELD;
413         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
414     }
415
416     self->owner = owner;
417     self->field = field;
418
419     return self;
420 }
421
422 void ast_member_delete(ast_member *self)
423 {
424     /* The owner is always an ast_value, which has .keep=true,
425      * also: ast_members are usually deleted after the owner, thus
426      * this will cause invalid access
427     ast_unref(self->owner);
428      * once we allow (expression).x to access a vector-member, we need
429      * to change this: preferably by creating an alternate ast node for this
430      * purpose that is not garbage-collected.
431     */
432     ast_expression_delete((ast_expression*)self);
433     mem_d(self);
434 }
435
436 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
437 {
438     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
439     if (!ontrue && !onfalse) {
440         /* because it is invalid */
441         mem_d(self);
442         return NULL;
443     }
444     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
445
446     self->cond     = cond;
447     self->on_true  = ontrue;
448     self->on_false = onfalse;
449
450     return self;
451 }
452
453 void ast_ifthen_delete(ast_ifthen *self)
454 {
455     ast_unref(self->cond);
456     if (self->on_true)
457         ast_unref(self->on_true);
458     if (self->on_false)
459         ast_unref(self->on_false);
460     ast_expression_delete((ast_expression*)self);
461     mem_d(self);
462 }
463
464 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
465 {
466     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
467     /* This time NEITHER must be NULL */
468     if (!ontrue || !onfalse) {
469         mem_d(self);
470         return NULL;
471     }
472     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
473
474     self->cond     = cond;
475     self->on_true  = ontrue;
476     self->on_false = onfalse;
477     self->phi_out  = NULL;
478
479     return self;
480 }
481
482 void ast_ternary_delete(ast_ternary *self)
483 {
484     ast_unref(self->cond);
485     ast_unref(self->on_true);
486     ast_unref(self->on_false);
487     ast_expression_delete((ast_expression*)self);
488     mem_d(self);
489 }
490
491 ast_loop* ast_loop_new(lex_ctx ctx,
492                        ast_expression *initexpr,
493                        ast_expression *precond,
494                        ast_expression *postcond,
495                        ast_expression *increment,
496                        ast_expression *body)
497 {
498     ast_instantiate(ast_loop, ctx, ast_loop_delete);
499     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
500
501     self->initexpr  = initexpr;
502     self->precond   = precond;
503     self->postcond  = postcond;
504     self->increment = increment;
505     self->body      = body;
506
507     return self;
508 }
509
510 void ast_loop_delete(ast_loop *self)
511 {
512     if (self->initexpr)
513         ast_unref(self->initexpr);
514     if (self->precond)
515         ast_unref(self->precond);
516     if (self->postcond)
517         ast_unref(self->postcond);
518     if (self->increment)
519         ast_unref(self->increment);
520     if (self->body)
521         ast_unref(self->body);
522     ast_expression_delete((ast_expression*)self);
523     mem_d(self);
524 }
525
526 ast_call* ast_call_new(lex_ctx ctx,
527                        ast_expression *funcexpr)
528 {
529     ast_instantiate(ast_call, ctx, ast_call_delete);
530     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
531
532     MEM_VECTOR_INIT(self, params);
533
534     self->func = funcexpr;
535
536     self->expression.vtype = funcexpr->expression.next->expression.vtype;
537     if (funcexpr->expression.next->expression.next)
538         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
539
540     return self;
541 }
542 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
543
544 void ast_call_delete(ast_call *self)
545 {
546     size_t i;
547     for (i = 0; i < self->params_count; ++i)
548         ast_unref(self->params[i]);
549     MEM_VECTOR_CLEAR(self, params);
550
551     if (self->func)
552         ast_unref(self->func);
553
554     ast_expression_delete((ast_expression*)self);
555     mem_d(self);
556 }
557
558 ast_store* ast_store_new(lex_ctx ctx, int op,
559                          ast_expression *dest, ast_expression *source)
560 {
561     ast_instantiate(ast_store, ctx, ast_store_delete);
562     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
563
564     self->op = op;
565     self->dest = dest;
566     self->source = source;
567
568     return self;
569 }
570
571 void ast_store_delete(ast_store *self)
572 {
573     ast_unref(self->dest);
574     ast_unref(self->source);
575     ast_expression_delete((ast_expression*)self);
576     mem_d(self);
577 }
578
579 ast_block* ast_block_new(lex_ctx ctx)
580 {
581     ast_instantiate(ast_block, ctx, ast_block_delete);
582     ast_expression_init((ast_expression*)self,
583                         (ast_expression_codegen*)&ast_block_codegen);
584
585     MEM_VECTOR_INIT(self, locals);
586     MEM_VECTOR_INIT(self, exprs);
587     MEM_VECTOR_INIT(self, collect);
588
589     return self;
590 }
591 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
592 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
593 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
594
595 bool ast_block_collect(ast_block *self, ast_expression *expr)
596 {
597     if (!ast_block_collect_add(self, expr))
598         return false;
599     expr->expression.node.keep = true;
600     return true;
601 }
602
603 void ast_block_delete(ast_block *self)
604 {
605     size_t i;
606     for (i = 0; i < self->exprs_count; ++i)
607         ast_unref(self->exprs[i]);
608     MEM_VECTOR_CLEAR(self, exprs);
609     for (i = 0; i < self->locals_count; ++i)
610         ast_delete(self->locals[i]);
611     MEM_VECTOR_CLEAR(self, locals);
612     for (i = 0; i < self->collect_count; ++i)
613         ast_delete(self->collect[i]);
614     MEM_VECTOR_CLEAR(self, collect);
615     ast_expression_delete((ast_expression*)self);
616     mem_d(self);
617 }
618
619 bool ast_block_set_type(ast_block *self, ast_expression *from)
620 {
621     if (self->expression.next)
622         ast_delete(self->expression.next);
623     self->expression.vtype = from->expression.vtype;
624     if (from->expression.next) {
625         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
626         if (!self->expression.next)
627             return false;
628     }
629     else
630         self->expression.next = NULL;
631     return true;
632 }
633
634 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
635 {
636     ast_instantiate(ast_function, ctx, ast_function_delete);
637
638     if (!vtype ||
639         vtype->isconst ||
640         vtype->expression.vtype != TYPE_FUNCTION)
641     {
642         mem_d(self);
643         return NULL;
644     }
645
646     self->vtype = vtype;
647     self->name = name ? util_strdup(name) : NULL;
648     MEM_VECTOR_INIT(self, blocks);
649
650     self->labelcount = 0;
651     self->builtin = 0;
652
653     self->ir_func = NULL;
654     self->curblock = NULL;
655
656     self->breakblock    = NULL;
657     self->continueblock = NULL;
658
659     vtype->isconst = true;
660     vtype->constval.vfunc = self;
661
662     return self;
663 }
664
665 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
666
667 void ast_function_delete(ast_function *self)
668 {
669     size_t i;
670     if (self->name)
671         mem_d((void*)self->name);
672     if (self->vtype) {
673         /* ast_value_delete(self->vtype); */
674         self->vtype->isconst = false;
675         self->vtype->constval.vfunc = NULL;
676         /* We use unref - if it was stored in a global table it is supposed
677          * to be deleted from *there*
678          */
679         ast_unref(self->vtype);
680     }
681     for (i = 0; i < self->blocks_count; ++i)
682         ast_delete(self->blocks[i]);
683     MEM_VECTOR_CLEAR(self, blocks);
684     mem_d(self);
685 }
686
687 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
688 {
689     unsigned int base = 10;
690 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
691 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
692     if (size < 1)
693         return;
694     checknul();
695     if (!num)
696         addch('0');
697     else {
698         while (num)
699         {
700             int digit = num % base;
701             num /= base;
702             addch('0' + digit);
703         }
704     }
705
706     *buf = 0;
707 #undef addch
708 #undef checknul
709 }
710
711 const char* ast_function_label(ast_function *self, const char *prefix)
712 {
713     size_t id = (self->labelcount++);
714     size_t len = strlen(prefix);
715     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
716     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
717     return self->labelbuf;
718 }
719
720 /*********************************************************************/
721 /* AST codegen part
722  * by convention you must never pass NULL to the 'ir_value **out'
723  * parameter. If you really don't care about the output, pass a dummy.
724  * But I can't imagine a pituation where the output is truly unnecessary.
725  */
726
727 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
728 {
729     /* NOTE: This is the codegen for a variable used in an expression.
730      * It is not the codegen to generate the value. For this purpose,
731      * ast_local_codegen and ast_global_codegen are to be used before this
732      * is executed. ast_function_codegen should take care of its locals,
733      * and the ast-user should take care of ast_global_codegen to be used
734      * on all the globals.
735      */
736     if (!self->ir_v) {
737         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
738         return false;
739     }
740     *out = self->ir_v;
741     return true;
742 }
743
744 bool ast_global_codegen(ast_value *self, ir_builder *ir)
745 {
746     ir_value *v = NULL;
747     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
748     {
749         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
750         if (!func)
751             return false;
752
753         self->constval.vfunc->ir_func = func;
754         self->ir_v = func->value;
755         /* The function is filled later on ast_function_codegen... */
756         return true;
757     }
758
759     if (self->expression.vtype == TYPE_FIELD) {
760         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
761         if (!v)
762             return false;
763         if (self->isconst) {
764             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
765             goto error;
766         }
767         self->ir_v = v;
768         return true;
769     }
770
771     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
772     if (!v) {
773         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
774         return false;
775     }
776
777     if (self->isconst) {
778         switch (self->expression.vtype)
779         {
780             case TYPE_FLOAT:
781                 if (!ir_value_set_float(v, self->constval.vfloat))
782                     goto error;
783                 break;
784             case TYPE_VECTOR:
785                 if (!ir_value_set_vector(v, self->constval.vvec))
786                     goto error;
787                 break;
788             case TYPE_STRING:
789                 if (!ir_value_set_string(v, self->constval.vstring))
790                     goto error;
791                 break;
792             case TYPE_FUNCTION:
793                 asterror(ast_ctx(self), "global of type function not properly generated\n");
794                 goto error;
795                 /* Cannot generate an IR value for a function,
796                  * need a pointer pointing to a function rather.
797                  */
798             default:
799                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
800                 break;
801         }
802     }
803
804     /* link us to the ir_value */
805     self->ir_v = v;
806     return true;
807
808 error: /* clean up */
809     ir_value_delete(v);
810     return false;
811 }
812
813 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
814 {
815     ir_value *v = NULL;
816     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
817     {
818         /* Do we allow local functions? I think not...
819          * this is NOT a function pointer atm.
820          */
821         return false;
822     }
823
824     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
825     if (!v)
826         return false;
827
828     /* A constant local... hmmm...
829      * I suppose the IR will have to deal with this
830      */
831     if (self->isconst) {
832         switch (self->expression.vtype)
833         {
834             case TYPE_FLOAT:
835                 if (!ir_value_set_float(v, self->constval.vfloat))
836                     goto error;
837                 break;
838             case TYPE_VECTOR:
839                 if (!ir_value_set_vector(v, self->constval.vvec))
840                     goto error;
841                 break;
842             case TYPE_STRING:
843                 if (!ir_value_set_string(v, self->constval.vstring))
844                     goto error;
845                 break;
846             default:
847                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
848                 break;
849         }
850     }
851
852     /* link us to the ir_value */
853     self->ir_v = v;
854     return true;
855
856 error: /* clean up */
857     ir_value_delete(v);
858     return false;
859 }
860
861 bool ast_function_codegen(ast_function *self, ir_builder *ir)
862 {
863     ir_function *irf;
864     ir_value    *dummy;
865     ast_expression_common *ec;
866     size_t    i;
867
868     irf = self->ir_func;
869     if (!irf) {
870         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
871         return false;
872     }
873
874     /* fill the parameter list */
875     ec = &self->vtype->expression;
876     for (i = 0; i < ec->params_count; ++i)
877     {
878         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
879             return false;
880         if (!self->builtin) {
881             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
882                 return false;
883         }
884     }
885
886     if (self->builtin) {
887         irf->builtin = self->builtin;
888         return true;
889     }
890
891     if (!self->blocks_count) {
892         asterror(ast_ctx(self), "function `%s` has no body", self->name);
893         return false;
894     }
895
896     self->curblock = ir_function_create_block(irf, "entry");
897     if (!self->curblock)
898         return false;
899
900     for (i = 0; i < self->blocks_count; ++i) {
901         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
902         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
903             return false;
904     }
905
906     /* TODO: check return types */
907     if (!self->curblock->is_return)
908     {
909         if (!self->vtype->expression.next ||
910             self->vtype->expression.next->expression.vtype == TYPE_VOID)
911         {
912             return ir_block_create_return(self->curblock, NULL);
913         }
914         else
915         {
916             /* error("missing return"); */
917             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
918             return false;
919         }
920     }
921     return true;
922 }
923
924 /* Note, you will not see ast_block_codegen generate ir_blocks.
925  * To the AST and the IR, blocks are 2 different things.
926  * In the AST it represents a block of code, usually enclosed in
927  * curly braces {...}.
928  * While in the IR it represents a block in terms of control-flow.
929  */
930 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
931 {
932     size_t i;
933
934     /* We don't use this
935      * Note: an ast-representation using the comma-operator
936      * of the form: (a, b, c) = x should not assign to c...
937      */
938     (void)lvalue;
939     if (self->expression.outr) {
940         *out = self->expression.outr;
941         return true;
942     }
943
944     /* output is NULL at first, we'll have each expression
945      * assign to out output, thus, a comma-operator represention
946      * using an ast_block will return the last generated value,
947      * so: (b, c) + a  executed both b and c, and returns c,
948      * which is then added to a.
949      */
950     *out = NULL;
951
952     /* generate locals */
953     for (i = 0; i < self->locals_count; ++i)
954     {
955         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
956             return false;
957     }
958
959     for (i = 0; i < self->exprs_count; ++i)
960     {
961         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
962         if (!(*gen)(self->exprs[i], func, false, out))
963             return false;
964     }
965
966     self->expression.outr = *out;
967
968     return true;
969 }
970
971 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
972 {
973     ast_expression_codegen *cgen;
974     ir_value *left, *right;
975
976     if (lvalue && self->expression.outl) {
977         *out = self->expression.outl;
978         return true;
979     }
980
981     if (!lvalue && self->expression.outr) {
982         *out = self->expression.outr;
983         return true;
984     }
985
986     cgen = self->dest->expression.codegen;
987     /* lvalue! */
988     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
989         return false;
990     self->expression.outl = left;
991
992     cgen = self->source->expression.codegen;
993     /* rvalue! */
994     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
995         return false;
996
997     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
998         return false;
999     self->expression.outr = right;
1000
1001     /* Theoretically, an assinment returns its left side as an
1002      * lvalue, if we don't need an lvalue though, we return
1003      * the right side as an rvalue, otherwise we have to
1004      * somehow know whether or not we need to dereference the pointer
1005      * on the left side - that is: OP_LOAD if it was an address.
1006      * Also: in original QC we cannot OP_LOADP *anyway*.
1007      */
1008     *out = (lvalue ? left : right);
1009
1010     return true;
1011 }
1012
1013 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1014 {
1015     ast_expression_codegen *cgen;
1016     ir_value *left, *right;
1017
1018     /* In the context of a binary operation, we can disregard
1019      * the lvalue flag.
1020      */
1021     (void)lvalue;
1022     if (self->expression.outr) {
1023         *out = self->expression.outr;
1024         return true;
1025     }
1026
1027     cgen = self->left->expression.codegen;
1028     /* lvalue! */
1029     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1030         return false;
1031
1032     cgen = self->right->expression.codegen;
1033     /* rvalue! */
1034     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1035         return false;
1036
1037     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1038                                  self->op, left, right);
1039     if (!*out)
1040         return false;
1041     self->expression.outr = *out;
1042
1043     return true;
1044 }
1045
1046 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1047 {
1048     ast_expression_codegen *cgen;
1049     ir_value *leftl, *leftr, *right, *bin;
1050
1051     if (lvalue && self->expression.outl) {
1052         *out = self->expression.outl;
1053         return true;
1054     }
1055
1056     if (!lvalue && self->expression.outr) {
1057         *out = self->expression.outr;
1058         return true;
1059     }
1060
1061     /* for a binstore we need both an lvalue and an rvalue for the left side */
1062     /* rvalue of destination! */
1063     cgen = self->dest->expression.codegen;
1064     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1065         return false;
1066
1067     /* source as rvalue only */
1068     cgen = self->source->expression.codegen;
1069     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1070         return false;
1071
1072     /* now the binary */
1073     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1074                                 self->opbin, leftr, right);
1075     self->expression.outr = bin;
1076
1077     /* now store them */
1078     cgen = self->dest->expression.codegen;
1079     /* lvalue of destination */
1080     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1081         return false;
1082     self->expression.outl = leftl;
1083
1084     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1085         return false;
1086     self->expression.outr = bin;
1087
1088     /* Theoretically, an assinment returns its left side as an
1089      * lvalue, if we don't need an lvalue though, we return
1090      * the right side as an rvalue, otherwise we have to
1091      * somehow know whether or not we need to dereference the pointer
1092      * on the left side - that is: OP_LOAD if it was an address.
1093      * Also: in original QC we cannot OP_LOADP *anyway*.
1094      */
1095     *out = (lvalue ? leftl : bin);
1096
1097     return true;
1098 }
1099
1100 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1101 {
1102     ast_expression_codegen *cgen;
1103     ir_value *operand;
1104
1105     /* In the context of a unary operation, we can disregard
1106      * the lvalue flag.
1107      */
1108     (void)lvalue;
1109     if (self->expression.outr) {
1110         *out = self->expression.outr;
1111         return true;
1112     }
1113
1114     cgen = self->operand->expression.codegen;
1115     /* lvalue! */
1116     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1117         return false;
1118
1119     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1120                                  self->op, operand);
1121     if (!*out)
1122         return false;
1123     self->expression.outr = *out;
1124
1125     return true;
1126 }
1127
1128 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1129 {
1130     ast_expression_codegen *cgen;
1131     ir_value *operand;
1132
1133     /* In the context of a return operation, we can disregard
1134      * the lvalue flag.
1135      */
1136     (void)lvalue;
1137     if (self->expression.outr) {
1138         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1139         return false;
1140     }
1141     self->expression.outr = (ir_value*)1;
1142
1143     if (self->operand) {
1144         cgen = self->operand->expression.codegen;
1145         /* lvalue! */
1146         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1147             return false;
1148
1149         if (!ir_block_create_return(func->curblock, operand))
1150             return false;
1151     } else {
1152         if (!ir_block_create_return(func->curblock, NULL))
1153             return false;
1154     }
1155
1156     return true;
1157 }
1158
1159 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1160 {
1161     ast_expression_codegen *cgen;
1162     ir_value *ent, *field;
1163
1164     /* This function needs to take the 'lvalue' flag into account!
1165      * As lvalue we provide a field-pointer, as rvalue we provide the
1166      * value in a temp.
1167      */
1168
1169     if (lvalue && self->expression.outl) {
1170         *out = self->expression.outl;
1171         return true;
1172     }
1173
1174     if (!lvalue && self->expression.outr) {
1175         *out = self->expression.outr;
1176         return true;
1177     }
1178
1179     cgen = self->entity->expression.codegen;
1180     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1181         return false;
1182
1183     cgen = self->field->expression.codegen;
1184     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1185         return false;
1186
1187     if (lvalue) {
1188         /* address! */
1189         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1190                                             ent, field);
1191     } else {
1192         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1193                                              ent, field, self->expression.vtype);
1194     }
1195     if (!*out) {
1196         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1197                  (lvalue ? "ADDRESS" : "FIELD"),
1198                  type_name[self->expression.vtype]);
1199         return false;
1200     }
1201
1202     if (lvalue)
1203         self->expression.outl = *out;
1204     else
1205         self->expression.outr = *out;
1206
1207     /* Hm that should be it... */
1208     return true;
1209 }
1210
1211 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1212 {
1213     ast_expression_codegen *cgen;
1214     ir_value *vec;
1215
1216     /* in QC this is always an lvalue */
1217     (void)lvalue;
1218     if (self->expression.outl) {
1219         *out = self->expression.outl;
1220         return true;
1221     }
1222
1223     cgen = self->owner->expression.codegen;
1224     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1225         return false;
1226
1227     if (vec->vtype != TYPE_VECTOR &&
1228         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1229     {
1230         return false;
1231     }
1232
1233     *out = ir_value_vector_member(vec, self->field);
1234     self->expression.outl = *out;
1235
1236     return (*out != NULL);
1237 }
1238
1239 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1240 {
1241     ast_expression_codegen *cgen;
1242
1243     ir_value *condval;
1244     ir_value *dummy;
1245
1246     ir_block *cond = func->curblock;
1247     ir_block *ontrue;
1248     ir_block *onfalse;
1249     ir_block *merge;
1250
1251     /* We don't output any value, thus also don't care about r/lvalue */
1252     (void)out;
1253     (void)lvalue;
1254
1255     if (self->expression.outr) {
1256         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1257         return false;
1258     }
1259     self->expression.outr = (ir_value*)1;
1260
1261     /* generate the condition */
1262     func->curblock = cond;
1263     cgen = self->cond->expression.codegen;
1264     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1265         return false;
1266
1267     /* on-true path */
1268
1269     if (self->on_true) {
1270         /* create on-true block */
1271         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1272         if (!ontrue)
1273             return false;
1274
1275         /* enter the block */
1276         func->curblock = ontrue;
1277
1278         /* generate */
1279         cgen = self->on_true->expression.codegen;
1280         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1281             return false;
1282     } else
1283         ontrue = NULL;
1284
1285     /* on-false path */
1286     if (self->on_false) {
1287         /* create on-false block */
1288         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1289         if (!onfalse)
1290             return false;
1291
1292         /* enter the block */
1293         func->curblock = onfalse;
1294
1295         /* generate */
1296         cgen = self->on_false->expression.codegen;
1297         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1298             return false;
1299     } else
1300         onfalse = NULL;
1301
1302     /* Merge block were they all merge in to */
1303     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1304     if (!merge)
1305         return false;
1306
1307     /* add jumps ot the merge block */
1308     if (ontrue && !ir_block_create_jump(ontrue, merge))
1309         return false;
1310     if (onfalse && !ir_block_create_jump(onfalse, merge))
1311         return false;
1312
1313     /* we create the if here, that way all blocks are ordered :)
1314      */
1315     if (!ir_block_create_if(cond, condval,
1316                             (ontrue  ? ontrue  : merge),
1317                             (onfalse ? onfalse : merge)))
1318     {
1319         return false;
1320     }
1321
1322     /* Now enter the merge block */
1323     func->curblock = merge;
1324
1325     return true;
1326 }
1327
1328 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1329 {
1330     ast_expression_codegen *cgen;
1331
1332     ir_value *condval;
1333     ir_value *trueval, *falseval;
1334     ir_instr *phi;
1335
1336     ir_block *cond = func->curblock;
1337     ir_block *ontrue;
1338     ir_block *onfalse;
1339     ir_block *merge;
1340
1341     /* Ternary can never create an lvalue... */
1342     if (lvalue)
1343         return false;
1344
1345     /* In theory it shouldn't be possible to pass through a node twice, but
1346      * in case we add any kind of optimization pass for the AST itself, it
1347      * may still happen, thus we remember a created ir_value and simply return one
1348      * if it already exists.
1349      */
1350     if (self->phi_out) {
1351         *out = self->phi_out;
1352         return true;
1353     }
1354
1355     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1356
1357     /* generate the condition */
1358     func->curblock = cond;
1359     cgen = self->cond->expression.codegen;
1360     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1361         return false;
1362
1363     /* create on-true block */
1364     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1365     if (!ontrue)
1366         return false;
1367     else
1368     {
1369         /* enter the block */
1370         func->curblock = ontrue;
1371
1372         /* generate */
1373         cgen = self->on_true->expression.codegen;
1374         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1375             return false;
1376     }
1377
1378     /* create on-false block */
1379     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1380     if (!onfalse)
1381         return false;
1382     else
1383     {
1384         /* enter the block */
1385         func->curblock = onfalse;
1386
1387         /* generate */
1388         cgen = self->on_false->expression.codegen;
1389         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1390             return false;
1391     }
1392
1393     /* create merge block */
1394     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1395     if (!merge)
1396         return false;
1397     /* jump to merge block */
1398     if (!ir_block_create_jump(ontrue, merge))
1399         return false;
1400     if (!ir_block_create_jump(onfalse, merge))
1401         return false;
1402
1403     /* create if instruction */
1404     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1405         return false;
1406
1407     /* Now enter the merge block */
1408     func->curblock = merge;
1409
1410     /* Here, now, we need a PHI node
1411      * but first some sanity checking...
1412      */
1413     if (trueval->vtype != falseval->vtype) {
1414         /* error("ternary with different types on the two sides"); */
1415         return false;
1416     }
1417
1418     /* create PHI */
1419     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1420     if (!phi ||
1421         !ir_phi_add(phi, ontrue,  trueval) ||
1422         !ir_phi_add(phi, onfalse, falseval))
1423     {
1424         return false;
1425     }
1426
1427     self->phi_out = ir_phi_value(phi);
1428     *out = self->phi_out;
1429
1430     return true;
1431 }
1432
1433 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1434 {
1435     ast_expression_codegen *cgen;
1436
1437     ir_value *dummy      = NULL;
1438     ir_value *precond    = NULL;
1439     ir_value *postcond   = NULL;
1440
1441     /* Since we insert some jumps "late" so we have blocks
1442      * ordered "nicely", we need to keep track of the actual end-blocks
1443      * of expressions to add the jumps to.
1444      */
1445     ir_block *bbody      = NULL, *end_bbody      = NULL;
1446     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1447     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1448     ir_block *bincrement = NULL, *end_bincrement = NULL;
1449     ir_block *bout       = NULL, *bin            = NULL;
1450
1451     /* let's at least move the outgoing block to the end */
1452     size_t    bout_id;
1453
1454     /* 'break' and 'continue' need to be able to find the right blocks */
1455     ir_block *bcontinue     = NULL;
1456     ir_block *bbreak        = NULL;
1457
1458     ir_block *old_bcontinue = NULL;
1459     ir_block *old_bbreak    = NULL;
1460
1461     ir_block *tmpblock      = NULL;
1462
1463     (void)lvalue;
1464     (void)out;
1465
1466     if (self->expression.outr) {
1467         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1468         return false;
1469     }
1470     self->expression.outr = (ir_value*)1;
1471
1472     /* NOTE:
1473      * Should we ever need some kind of block ordering, better make this function
1474      * move blocks around than write a block ordering algorithm later... after all
1475      * the ast and ir should work together, not against each other.
1476      */
1477
1478     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1479      * anyway if for example it contains a ternary.
1480      */
1481     if (self->initexpr)
1482     {
1483         cgen = self->initexpr->expression.codegen;
1484         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1485             return false;
1486     }
1487
1488     /* Store the block from which we enter this chaos */
1489     bin = func->curblock;
1490
1491     /* The pre-loop condition needs its own block since we
1492      * need to be able to jump to the start of that expression.
1493      */
1494     if (self->precond)
1495     {
1496         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1497         if (!bprecond)
1498             return false;
1499
1500         /* the pre-loop-condition the least important place to 'continue' at */
1501         bcontinue = bprecond;
1502
1503         /* enter */
1504         func->curblock = bprecond;
1505
1506         /* generate */
1507         cgen = self->precond->expression.codegen;
1508         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1509             return false;
1510
1511         end_bprecond = func->curblock;
1512     } else {
1513         bprecond = end_bprecond = NULL;
1514     }
1515
1516     /* Now the next blocks won't be ordered nicely, but we need to
1517      * generate them this early for 'break' and 'continue'.
1518      */
1519     if (self->increment) {
1520         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1521         if (!bincrement)
1522             return false;
1523         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1524     } else {
1525         bincrement = end_bincrement = NULL;
1526     }
1527
1528     if (self->postcond) {
1529         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1530         if (!bpostcond)
1531             return false;
1532         bcontinue = bpostcond; /* postcond comes before the increment */
1533     } else {
1534         bpostcond = end_bpostcond = NULL;
1535     }
1536
1537     bout_id = func->ir_func->blocks_count;
1538     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1539     if (!bout)
1540         return false;
1541     bbreak = bout;
1542
1543     /* The loop body... */
1544     if (self->body)
1545     {
1546         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1547         if (!bbody)
1548             return false;
1549
1550         /* enter */
1551         func->curblock = bbody;
1552
1553         old_bbreak          = func->breakblock;
1554         old_bcontinue       = func->continueblock;
1555         func->breakblock    = bbreak;
1556         func->continueblock = bcontinue;
1557
1558         /* generate */
1559         cgen = self->body->expression.codegen;
1560         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1561             return false;
1562
1563         end_bbody = func->curblock;
1564         func->breakblock    = old_bbreak;
1565         func->continueblock = old_bcontinue;
1566     }
1567
1568     /* post-loop-condition */
1569     if (self->postcond)
1570     {
1571         /* enter */
1572         func->curblock = bpostcond;
1573
1574         /* generate */
1575         cgen = self->postcond->expression.codegen;
1576         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1577             return false;
1578
1579         end_bpostcond = func->curblock;
1580     }
1581
1582     /* The incrementor */
1583     if (self->increment)
1584     {
1585         /* enter */
1586         func->curblock = bincrement;
1587
1588         /* generate */
1589         cgen = self->increment->expression.codegen;
1590         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1591             return false;
1592
1593         end_bincrement = func->curblock;
1594     }
1595
1596     /* In any case now, we continue from the outgoing block */
1597     func->curblock = bout;
1598
1599     /* Now all blocks are in place */
1600     /* From 'bin' we jump to whatever comes first */
1601     if      (bprecond)   tmpblock = bprecond;
1602     else if (bbody)      tmpblock = bbody;
1603     else if (bpostcond)  tmpblock = bpostcond;
1604     else                 tmpblock = bout;
1605     if (!ir_block_create_jump(bin, tmpblock))
1606         return false;
1607
1608     /* From precond */
1609     if (bprecond)
1610     {
1611         ir_block *ontrue, *onfalse;
1612         if      (bbody)      ontrue = bbody;
1613         else if (bincrement) ontrue = bincrement;
1614         else if (bpostcond)  ontrue = bpostcond;
1615         else                 ontrue = bprecond;
1616         onfalse = bout;
1617         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1618             return false;
1619     }
1620
1621     /* from body */
1622     if (bbody)
1623     {
1624         if      (bincrement) tmpblock = bincrement;
1625         else if (bpostcond)  tmpblock = bpostcond;
1626         else if (bprecond)   tmpblock = bprecond;
1627         else                 tmpblock = bout;
1628         if (!ir_block_create_jump(end_bbody, tmpblock))
1629             return false;
1630     }
1631
1632     /* from increment */
1633     if (bincrement)
1634     {
1635         if      (bpostcond)  tmpblock = bpostcond;
1636         else if (bprecond)   tmpblock = bprecond;
1637         else if (bbody)      tmpblock = bbody;
1638         else                 tmpblock = bout;
1639         if (!ir_block_create_jump(end_bincrement, tmpblock))
1640             return false;
1641     }
1642
1643     /* from postcond */
1644     if (bpostcond)
1645     {
1646         ir_block *ontrue, *onfalse;
1647         if      (bprecond)   ontrue = bprecond;
1648         else if (bbody)      ontrue = bbody;
1649         else if (bincrement) ontrue = bincrement;
1650         else                 ontrue = bpostcond;
1651         onfalse = bout;
1652         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1653             return false;
1654     }
1655
1656     /* Move 'bout' to the end */
1657     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1658         !ir_function_blocks_add(func->ir_func, bout))
1659     {
1660         ir_block_delete(bout);
1661         return false;
1662     }
1663
1664     return true;
1665 }
1666
1667 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1668 {
1669     ast_expression_codegen *cgen;
1670     ir_value_vector         params;
1671     ir_instr               *callinstr;
1672     size_t i;
1673
1674     ir_value *funval = NULL;
1675
1676     /* return values are never lvalues */
1677     (void)lvalue;
1678
1679     if (self->expression.outr) {
1680         *out = self->expression.outr;
1681         return true;
1682     }
1683
1684     cgen = self->func->expression.codegen;
1685     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1686         return false;
1687     if (!funval)
1688         return false;
1689
1690     MEM_VECTOR_INIT(&params, v);
1691
1692     /* parameters */
1693     for (i = 0; i < self->params_count; ++i)
1694     {
1695         ir_value *param;
1696         ast_expression *expr = self->params[i];
1697
1698         cgen = expr->expression.codegen;
1699         if (!(*cgen)(expr, func, false, &param))
1700             goto error;
1701         if (!param)
1702             goto error;
1703         if (!ir_value_vector_v_add(&params, param))
1704             goto error;
1705     }
1706
1707     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1708     if (!callinstr)
1709         goto error;
1710
1711     for (i = 0; i < params.v_count; ++i) {
1712         if (!ir_call_param(callinstr, params.v[i]))
1713             goto error;
1714     }
1715
1716     *out = ir_call_value(callinstr);
1717     self->expression.outr = *out;
1718
1719     MEM_VECTOR_CLEAR(&params, v);
1720     return true;
1721 error:
1722     MEM_VECTOR_CLEAR(&params, v);
1723     return false;
1724 }