]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
removing some extra newlines in ast error messages
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     memset(&self->constval, 0, sizeof(self->constval));
232
233     self->ir_v    = NULL;
234
235     return self;
236 }
237
238 void ast_value_delete(ast_value* self)
239 {
240     if (self->name)
241         mem_d((void*)self->name);
242     if (self->isconst) {
243         switch (self->expression.vtype)
244         {
245         case TYPE_STRING:
246             mem_d((void*)self->constval.vstring);
247             break;
248         case TYPE_FUNCTION:
249             /* unlink us from the function node */
250             self->constval.vfunc->vtype = NULL;
251             break;
252         /* NOTE: delete function? currently collected in
253          * the parser structure
254          */
255         default:
256             break;
257         }
258     }
259     ast_expression_delete((ast_expression*)self);
260     mem_d(self);
261 }
262
263 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
264 {
265     return ast_expression_common_params_add(&self->expression, p);
266 }
267
268 bool ast_value_set_name(ast_value *self, const char *name)
269 {
270     if (self->name)
271         mem_d((void*)self->name);
272     self->name = util_strdup(name);
273     return !!self->name;
274 }
275
276 ast_binary* ast_binary_new(lex_ctx ctx, int op,
277                            ast_expression* left, ast_expression* right)
278 {
279     ast_instantiate(ast_binary, ctx, ast_binary_delete);
280     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
281
282     self->op = op;
283     self->left = left;
284     self->right = right;
285
286     if (op >= INSTR_EQ_F && op <= INSTR_GT)
287         self->expression.vtype = TYPE_FLOAT;
288     else if (op == INSTR_AND || op == INSTR_OR ||
289              op == INSTR_BITAND || op == INSTR_BITOR)
290         self->expression.vtype = TYPE_FLOAT;
291     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
292         self->expression.vtype = TYPE_VECTOR;
293     else if (op == INSTR_MUL_V)
294         self->expression.vtype = TYPE_FLOAT;
295     else
296         self->expression.vtype = left->expression.vtype;
297
298     return self;
299 }
300
301 void ast_binary_delete(ast_binary *self)
302 {
303     ast_unref(self->left);
304     ast_unref(self->right);
305     ast_expression_delete((ast_expression*)self);
306     mem_d(self);
307 }
308
309 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
310                                ast_expression* left, ast_expression* right)
311 {
312     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
313     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
314
315     self->opstore = storop;
316     self->opbin   = op;
317     self->dest    = left;
318     self->source  = right;
319
320     self->expression.vtype = left->expression.vtype;
321     if (left->expression.next) {
322         self->expression.next = ast_type_copy(ctx, left);
323         if (!self->expression.next) {
324             ast_delete(self);
325             return NULL;
326         }
327     }
328     else
329         self->expression.next = NULL;
330
331     return self;
332 }
333
334 void ast_binstore_delete(ast_binstore *self)
335 {
336     ast_unref(self->dest);
337     ast_unref(self->source);
338     ast_expression_delete((ast_expression*)self);
339     mem_d(self);
340 }
341
342 ast_unary* ast_unary_new(lex_ctx ctx, int op,
343                          ast_expression *expr)
344 {
345     ast_instantiate(ast_unary, ctx, ast_unary_delete);
346     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
347
348     self->op = op;
349     self->operand = expr;
350
351     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
352         self->expression.vtype = TYPE_FLOAT;
353     } else
354         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
355
356     return self;
357 }
358
359 void ast_unary_delete(ast_unary *self)
360 {
361     ast_unref(self->operand);
362     ast_expression_delete((ast_expression*)self);
363     mem_d(self);
364 }
365
366 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
367 {
368     ast_instantiate(ast_return, ctx, ast_return_delete);
369     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
370
371     self->operand = expr;
372
373     return self;
374 }
375
376 void ast_return_delete(ast_return *self)
377 {
378     if (self->operand)
379         ast_unref(self->operand);
380     ast_expression_delete((ast_expression*)self);
381     mem_d(self);
382 }
383
384 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
385 {
386     const ast_expression *outtype;
387
388     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
389
390     if (field->expression.vtype != TYPE_FIELD) {
391         mem_d(self);
392         return NULL;
393     }
394
395     outtype = field->expression.next;
396     if (!outtype) {
397         mem_d(self);
398         /* Error: field has no type... */
399         return NULL;
400     }
401
402     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
403
404     self->entity = entity;
405     self->field  = field;
406
407     if (!ast_type_adopt(self, outtype)) {
408         ast_entfield_delete(self);
409         return NULL;
410     }
411
412     return self;
413 }
414
415 void ast_entfield_delete(ast_entfield *self)
416 {
417     ast_unref(self->entity);
418     ast_unref(self->field);
419     ast_expression_delete((ast_expression*)self);
420     mem_d(self);
421 }
422
423 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
424 {
425     ast_instantiate(ast_member, ctx, ast_member_delete);
426     if (field >= 3) {
427         mem_d(self);
428         return NULL;
429     }
430
431     if (owner->expression.vtype != TYPE_VECTOR &&
432         owner->expression.vtype != TYPE_FIELD) {
433         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
434         mem_d(self);
435         return NULL;
436     }
437
438     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
439     self->expression.node.keep = true; /* keep */
440
441     if (owner->expression.vtype == TYPE_VECTOR) {
442         self->expression.vtype = TYPE_FLOAT;
443         self->expression.next  = NULL;
444     } else {
445         self->expression.vtype = TYPE_FIELD;
446         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
447     }
448
449     self->owner = owner;
450     self->field = field;
451
452     return self;
453 }
454
455 void ast_member_delete(ast_member *self)
456 {
457     /* The owner is always an ast_value, which has .keep=true,
458      * also: ast_members are usually deleted after the owner, thus
459      * this will cause invalid access
460     ast_unref(self->owner);
461      * once we allow (expression).x to access a vector-member, we need
462      * to change this: preferably by creating an alternate ast node for this
463      * purpose that is not garbage-collected.
464     */
465     ast_expression_delete((ast_expression*)self);
466     mem_d(self);
467 }
468
469 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
470 {
471     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
472     if (!ontrue && !onfalse) {
473         /* because it is invalid */
474         mem_d(self);
475         return NULL;
476     }
477     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
478
479     self->cond     = cond;
480     self->on_true  = ontrue;
481     self->on_false = onfalse;
482
483     return self;
484 }
485
486 void ast_ifthen_delete(ast_ifthen *self)
487 {
488     ast_unref(self->cond);
489     if (self->on_true)
490         ast_unref(self->on_true);
491     if (self->on_false)
492         ast_unref(self->on_false);
493     ast_expression_delete((ast_expression*)self);
494     mem_d(self);
495 }
496
497 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
498 {
499     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
500     /* This time NEITHER must be NULL */
501     if (!ontrue || !onfalse) {
502         mem_d(self);
503         return NULL;
504     }
505     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
506
507     self->cond     = cond;
508     self->on_true  = ontrue;
509     self->on_false = onfalse;
510     self->phi_out  = NULL;
511
512     return self;
513 }
514
515 void ast_ternary_delete(ast_ternary *self)
516 {
517     ast_unref(self->cond);
518     ast_unref(self->on_true);
519     ast_unref(self->on_false);
520     ast_expression_delete((ast_expression*)self);
521     mem_d(self);
522 }
523
524 ast_loop* ast_loop_new(lex_ctx ctx,
525                        ast_expression *initexpr,
526                        ast_expression *precond,
527                        ast_expression *postcond,
528                        ast_expression *increment,
529                        ast_expression *body)
530 {
531     ast_instantiate(ast_loop, ctx, ast_loop_delete);
532     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
533
534     self->initexpr  = initexpr;
535     self->precond   = precond;
536     self->postcond  = postcond;
537     self->increment = increment;
538     self->body      = body;
539
540     return self;
541 }
542
543 void ast_loop_delete(ast_loop *self)
544 {
545     if (self->initexpr)
546         ast_unref(self->initexpr);
547     if (self->precond)
548         ast_unref(self->precond);
549     if (self->postcond)
550         ast_unref(self->postcond);
551     if (self->increment)
552         ast_unref(self->increment);
553     if (self->body)
554         ast_unref(self->body);
555     ast_expression_delete((ast_expression*)self);
556     mem_d(self);
557 }
558
559 ast_call* ast_call_new(lex_ctx ctx,
560                        ast_expression *funcexpr)
561 {
562     ast_instantiate(ast_call, ctx, ast_call_delete);
563     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
564
565     MEM_VECTOR_INIT(self, params);
566
567     self->func = funcexpr;
568
569     self->expression.vtype = funcexpr->expression.next->expression.vtype;
570     if (funcexpr->expression.next->expression.next)
571         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
572
573     return self;
574 }
575 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
576
577 void ast_call_delete(ast_call *self)
578 {
579     size_t i;
580     for (i = 0; i < self->params_count; ++i)
581         ast_unref(self->params[i]);
582     MEM_VECTOR_CLEAR(self, params);
583
584     if (self->func)
585         ast_unref(self->func);
586
587     ast_expression_delete((ast_expression*)self);
588     mem_d(self);
589 }
590
591 ast_store* ast_store_new(lex_ctx ctx, int op,
592                          ast_expression *dest, ast_expression *source)
593 {
594     ast_instantiate(ast_store, ctx, ast_store_delete);
595     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
596
597     self->op = op;
598     self->dest = dest;
599     self->source = source;
600
601     return self;
602 }
603
604 void ast_store_delete(ast_store *self)
605 {
606     ast_unref(self->dest);
607     ast_unref(self->source);
608     ast_expression_delete((ast_expression*)self);
609     mem_d(self);
610 }
611
612 ast_block* ast_block_new(lex_ctx ctx)
613 {
614     ast_instantiate(ast_block, ctx, ast_block_delete);
615     ast_expression_init((ast_expression*)self,
616                         (ast_expression_codegen*)&ast_block_codegen);
617
618     MEM_VECTOR_INIT(self, locals);
619     MEM_VECTOR_INIT(self, exprs);
620     MEM_VECTOR_INIT(self, collect);
621
622     return self;
623 }
624 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
625 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
627
628 bool ast_block_collect(ast_block *self, ast_expression *expr)
629 {
630     if (!ast_block_collect_add(self, expr))
631         return false;
632     expr->expression.node.keep = true;
633     return true;
634 }
635
636 void ast_block_delete(ast_block *self)
637 {
638     size_t i;
639     for (i = 0; i < self->exprs_count; ++i)
640         ast_unref(self->exprs[i]);
641     MEM_VECTOR_CLEAR(self, exprs);
642     for (i = 0; i < self->locals_count; ++i)
643         ast_delete(self->locals[i]);
644     MEM_VECTOR_CLEAR(self, locals);
645     for (i = 0; i < self->collect_count; ++i)
646         ast_delete(self->collect[i]);
647     MEM_VECTOR_CLEAR(self, collect);
648     ast_expression_delete((ast_expression*)self);
649     mem_d(self);
650 }
651
652 bool ast_block_set_type(ast_block *self, ast_expression *from)
653 {
654     if (self->expression.next)
655         ast_delete(self->expression.next);
656     self->expression.vtype = from->expression.vtype;
657     if (from->expression.next) {
658         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
659         if (!self->expression.next)
660             return false;
661     }
662     else
663         self->expression.next = NULL;
664     return true;
665 }
666
667 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
668 {
669     ast_instantiate(ast_function, ctx, ast_function_delete);
670
671     if (!vtype ||
672         vtype->isconst ||
673         vtype->expression.vtype != TYPE_FUNCTION)
674     {
675         mem_d(self);
676         return NULL;
677     }
678
679     self->vtype = vtype;
680     self->name = name ? util_strdup(name) : NULL;
681     MEM_VECTOR_INIT(self, blocks);
682
683     self->labelcount = 0;
684     self->builtin = 0;
685
686     self->ir_func = NULL;
687     self->curblock = NULL;
688
689     self->breakblock    = NULL;
690     self->continueblock = NULL;
691
692     vtype->isconst = true;
693     vtype->constval.vfunc = self;
694
695     return self;
696 }
697
698 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
699
700 void ast_function_delete(ast_function *self)
701 {
702     size_t i;
703     if (self->name)
704         mem_d((void*)self->name);
705     if (self->vtype) {
706         /* ast_value_delete(self->vtype); */
707         self->vtype->isconst = false;
708         self->vtype->constval.vfunc = NULL;
709         /* We use unref - if it was stored in a global table it is supposed
710          * to be deleted from *there*
711          */
712         ast_unref(self->vtype);
713     }
714     for (i = 0; i < self->blocks_count; ++i)
715         ast_delete(self->blocks[i]);
716     MEM_VECTOR_CLEAR(self, blocks);
717     mem_d(self);
718 }
719
720 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
721 {
722     unsigned int base = 10;
723 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
724 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
725     if (size < 1)
726         return;
727     checknul();
728     if (!num)
729         addch('0');
730     else {
731         while (num)
732         {
733             int digit = num % base;
734             num /= base;
735             addch('0' + digit);
736         }
737     }
738
739     *buf = 0;
740 #undef addch
741 #undef checknul
742 }
743
744 const char* ast_function_label(ast_function *self, const char *prefix)
745 {
746     size_t id = (self->labelcount++);
747     size_t len = strlen(prefix);
748     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
749     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
750     return self->labelbuf;
751 }
752
753 /*********************************************************************/
754 /* AST codegen part
755  * by convention you must never pass NULL to the 'ir_value **out'
756  * parameter. If you really don't care about the output, pass a dummy.
757  * But I can't imagine a pituation where the output is truly unnecessary.
758  */
759
760 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
761 {
762     /* NOTE: This is the codegen for a variable used in an expression.
763      * It is not the codegen to generate the value. For this purpose,
764      * ast_local_codegen and ast_global_codegen are to be used before this
765      * is executed. ast_function_codegen should take care of its locals,
766      * and the ast-user should take care of ast_global_codegen to be used
767      * on all the globals.
768      */
769     if (!self->ir_v) {
770         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
771         return false;
772     }
773     *out = self->ir_v;
774     return true;
775 }
776
777 bool ast_global_codegen(ast_value *self, ir_builder *ir)
778 {
779     ir_value *v = NULL;
780     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
781     {
782         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
783         if (!func)
784             return false;
785         func->context = ast_ctx(self);
786
787         self->constval.vfunc->ir_func = func;
788         self->ir_v = func->value;
789         /* The function is filled later on ast_function_codegen... */
790         return true;
791     }
792
793     if (self->expression.vtype == TYPE_FIELD) {
794         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
795         if (!v)
796             return false;
797         v->context = ast_ctx(self);
798         if (self->isconst) {
799             asterror(ast_ctx(self), "TODO: constant field pointers with value");
800             goto error;
801         }
802         self->ir_v = v;
803         return true;
804     }
805
806     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
807     if (!v) {
808         asterror(ast_ctx(self), "ir_builder_create_global failed");
809         return false;
810     }
811     v->context = ast_ctx(self);
812
813     if (self->isconst) {
814         switch (self->expression.vtype)
815         {
816             case TYPE_FLOAT:
817                 if (!ir_value_set_float(v, self->constval.vfloat))
818                     goto error;
819                 break;
820             case TYPE_VECTOR:
821                 if (!ir_value_set_vector(v, self->constval.vvec))
822                     goto error;
823                 break;
824             case TYPE_STRING:
825                 if (!ir_value_set_string(v, self->constval.vstring))
826                     goto error;
827                 break;
828             case TYPE_FUNCTION:
829                 asterror(ast_ctx(self), "global of type function not properly generated");
830                 goto error;
831                 /* Cannot generate an IR value for a function,
832                  * need a pointer pointing to a function rather.
833                  */
834             default:
835                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
836                 break;
837         }
838     }
839
840     /* link us to the ir_value */
841     self->ir_v = v;
842     return true;
843
844 error: /* clean up */
845     ir_value_delete(v);
846     return false;
847 }
848
849 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
850 {
851     ir_value *v = NULL;
852     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
853     {
854         /* Do we allow local functions? I think not...
855          * this is NOT a function pointer atm.
856          */
857         return false;
858     }
859
860     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
861     if (!v)
862         return false;
863     v->context = ast_ctx(self);
864
865     /* A constant local... hmmm...
866      * I suppose the IR will have to deal with this
867      */
868     if (self->isconst) {
869         switch (self->expression.vtype)
870         {
871             case TYPE_FLOAT:
872                 if (!ir_value_set_float(v, self->constval.vfloat))
873                     goto error;
874                 break;
875             case TYPE_VECTOR:
876                 if (!ir_value_set_vector(v, self->constval.vvec))
877                     goto error;
878                 break;
879             case TYPE_STRING:
880                 if (!ir_value_set_string(v, self->constval.vstring))
881                     goto error;
882                 break;
883             default:
884                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
885                 break;
886         }
887     }
888
889     /* link us to the ir_value */
890     self->ir_v = v;
891     return true;
892
893 error: /* clean up */
894     ir_value_delete(v);
895     return false;
896 }
897
898 bool ast_function_codegen(ast_function *self, ir_builder *ir)
899 {
900     ir_function *irf;
901     ir_value    *dummy;
902     ast_expression_common *ec;
903     size_t    i;
904
905     irf = self->ir_func;
906     if (!irf) {
907         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
908         return false;
909     }
910
911     /* fill the parameter list */
912     ec = &self->vtype->expression;
913     for (i = 0; i < ec->params_count; ++i)
914     {
915         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
916             return false;
917         if (!self->builtin) {
918             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
919                 return false;
920         }
921     }
922
923     if (self->builtin) {
924         irf->builtin = self->builtin;
925         return true;
926     }
927
928     if (!self->blocks_count) {
929         asterror(ast_ctx(self), "function `%s` has no body", self->name);
930         return false;
931     }
932
933     self->curblock = ir_function_create_block(irf, "entry");
934     if (!self->curblock) {
935         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
936         return false;
937     }
938
939     for (i = 0; i < self->blocks_count; ++i) {
940         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
941         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
942             return false;
943     }
944
945     /* TODO: check return types */
946     if (!self->curblock->is_return)
947     {
948         return ir_block_create_return(self->curblock, NULL);
949         /* From now on the parser has to handle this situation */
950 #if 0
951         if (!self->vtype->expression.next ||
952             self->vtype->expression.next->expression.vtype == TYPE_VOID)
953         {
954             return ir_block_create_return(self->curblock, NULL);
955         }
956         else
957         {
958             /* error("missing return"); */
959             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
960             return false;
961         }
962 #endif
963     }
964     return true;
965 }
966
967 /* Note, you will not see ast_block_codegen generate ir_blocks.
968  * To the AST and the IR, blocks are 2 different things.
969  * In the AST it represents a block of code, usually enclosed in
970  * curly braces {...}.
971  * While in the IR it represents a block in terms of control-flow.
972  */
973 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
974 {
975     size_t i;
976
977     /* We don't use this
978      * Note: an ast-representation using the comma-operator
979      * of the form: (a, b, c) = x should not assign to c...
980      */
981     (void)lvalue;
982     if (self->expression.outr) {
983         *out = self->expression.outr;
984         return true;
985     }
986
987     /* output is NULL at first, we'll have each expression
988      * assign to out output, thus, a comma-operator represention
989      * using an ast_block will return the last generated value,
990      * so: (b, c) + a  executed both b and c, and returns c,
991      * which is then added to a.
992      */
993     *out = NULL;
994
995     /* generate locals */
996     for (i = 0; i < self->locals_count; ++i)
997     {
998         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
999             return false;
1000     }
1001
1002     for (i = 0; i < self->exprs_count; ++i)
1003     {
1004         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1005         if (!(*gen)(self->exprs[i], func, false, out))
1006             return false;
1007     }
1008
1009     self->expression.outr = *out;
1010
1011     return true;
1012 }
1013
1014 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1015 {
1016     ast_expression_codegen *cgen;
1017     ir_value *left, *right;
1018
1019     if (lvalue && self->expression.outl) {
1020         *out = self->expression.outl;
1021         return true;
1022     }
1023
1024     if (!lvalue && self->expression.outr) {
1025         *out = self->expression.outr;
1026         return true;
1027     }
1028
1029     cgen = self->dest->expression.codegen;
1030     /* lvalue! */
1031     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1032         return false;
1033     self->expression.outl = left;
1034
1035     cgen = self->source->expression.codegen;
1036     /* rvalue! */
1037     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1038         return false;
1039
1040     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1041         return false;
1042     self->expression.outr = right;
1043
1044     /* Theoretically, an assinment returns its left side as an
1045      * lvalue, if we don't need an lvalue though, we return
1046      * the right side as an rvalue, otherwise we have to
1047      * somehow know whether or not we need to dereference the pointer
1048      * on the left side - that is: OP_LOAD if it was an address.
1049      * Also: in original QC we cannot OP_LOADP *anyway*.
1050      */
1051     *out = (lvalue ? left : right);
1052
1053     return true;
1054 }
1055
1056 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1057 {
1058     ast_expression_codegen *cgen;
1059     ir_value *left, *right;
1060
1061     /* In the context of a binary operation, we can disregard
1062      * the lvalue flag.
1063      */
1064     (void)lvalue;
1065     if (self->expression.outr) {
1066         *out = self->expression.outr;
1067         return true;
1068     }
1069
1070     cgen = self->left->expression.codegen;
1071     /* lvalue! */
1072     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1073         return false;
1074
1075     cgen = self->right->expression.codegen;
1076     /* rvalue! */
1077     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1078         return false;
1079
1080     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1081                                  self->op, left, right);
1082     if (!*out)
1083         return false;
1084     self->expression.outr = *out;
1085
1086     return true;
1087 }
1088
1089 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1090 {
1091     ast_expression_codegen *cgen;
1092     ir_value *leftl, *leftr, *right, *bin;
1093
1094     if (lvalue && self->expression.outl) {
1095         *out = self->expression.outl;
1096         return true;
1097     }
1098
1099     if (!lvalue && self->expression.outr) {
1100         *out = self->expression.outr;
1101         return true;
1102     }
1103
1104     /* for a binstore we need both an lvalue and an rvalue for the left side */
1105     /* rvalue of destination! */
1106     cgen = self->dest->expression.codegen;
1107     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1108         return false;
1109
1110     /* source as rvalue only */
1111     cgen = self->source->expression.codegen;
1112     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1113         return false;
1114
1115     /* now the binary */
1116     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1117                                 self->opbin, leftr, right);
1118     self->expression.outr = bin;
1119
1120     /* now store them */
1121     cgen = self->dest->expression.codegen;
1122     /* lvalue of destination */
1123     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1124         return false;
1125     self->expression.outl = leftl;
1126
1127     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1128         return false;
1129     self->expression.outr = bin;
1130
1131     /* Theoretically, an assinment returns its left side as an
1132      * lvalue, if we don't need an lvalue though, we return
1133      * the right side as an rvalue, otherwise we have to
1134      * somehow know whether or not we need to dereference the pointer
1135      * on the left side - that is: OP_LOAD if it was an address.
1136      * Also: in original QC we cannot OP_LOADP *anyway*.
1137      */
1138     *out = (lvalue ? leftl : bin);
1139
1140     return true;
1141 }
1142
1143 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1144 {
1145     ast_expression_codegen *cgen;
1146     ir_value *operand;
1147
1148     /* In the context of a unary operation, we can disregard
1149      * the lvalue flag.
1150      */
1151     (void)lvalue;
1152     if (self->expression.outr) {
1153         *out = self->expression.outr;
1154         return true;
1155     }
1156
1157     cgen = self->operand->expression.codegen;
1158     /* lvalue! */
1159     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1160         return false;
1161
1162     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1163                                  self->op, operand);
1164     if (!*out)
1165         return false;
1166     self->expression.outr = *out;
1167
1168     return true;
1169 }
1170
1171 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1172 {
1173     ast_expression_codegen *cgen;
1174     ir_value *operand;
1175
1176     /* In the context of a return operation, we can disregard
1177      * the lvalue flag.
1178      */
1179     (void)lvalue;
1180     if (self->expression.outr) {
1181         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1182         return false;
1183     }
1184     self->expression.outr = (ir_value*)1;
1185
1186     if (self->operand) {
1187         cgen = self->operand->expression.codegen;
1188         /* lvalue! */
1189         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1190             return false;
1191
1192         if (!ir_block_create_return(func->curblock, operand))
1193             return false;
1194     } else {
1195         if (!ir_block_create_return(func->curblock, NULL))
1196             return false;
1197     }
1198
1199     return true;
1200 }
1201
1202 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1203 {
1204     ast_expression_codegen *cgen;
1205     ir_value *ent, *field;
1206
1207     /* This function needs to take the 'lvalue' flag into account!
1208      * As lvalue we provide a field-pointer, as rvalue we provide the
1209      * value in a temp.
1210      */
1211
1212     if (lvalue && self->expression.outl) {
1213         *out = self->expression.outl;
1214         return true;
1215     }
1216
1217     if (!lvalue && self->expression.outr) {
1218         *out = self->expression.outr;
1219         return true;
1220     }
1221
1222     cgen = self->entity->expression.codegen;
1223     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1224         return false;
1225
1226     cgen = self->field->expression.codegen;
1227     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1228         return false;
1229
1230     if (lvalue) {
1231         /* address! */
1232         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1233                                             ent, field);
1234     } else {
1235         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1236                                              ent, field, self->expression.vtype);
1237     }
1238     if (!*out) {
1239         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1240                  (lvalue ? "ADDRESS" : "FIELD"),
1241                  type_name[self->expression.vtype]);
1242         return false;
1243     }
1244
1245     if (lvalue)
1246         self->expression.outl = *out;
1247     else
1248         self->expression.outr = *out;
1249
1250     /* Hm that should be it... */
1251     return true;
1252 }
1253
1254 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1255 {
1256     ast_expression_codegen *cgen;
1257     ir_value *vec;
1258
1259     /* in QC this is always an lvalue */
1260     (void)lvalue;
1261     if (self->expression.outl) {
1262         *out = self->expression.outl;
1263         return true;
1264     }
1265
1266     cgen = self->owner->expression.codegen;
1267     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1268         return false;
1269
1270     if (vec->vtype != TYPE_VECTOR &&
1271         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1272     {
1273         return false;
1274     }
1275
1276     *out = ir_value_vector_member(vec, self->field);
1277     self->expression.outl = *out;
1278
1279     return (*out != NULL);
1280 }
1281
1282 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1283 {
1284     ast_expression_codegen *cgen;
1285
1286     ir_value *condval;
1287     ir_value *dummy;
1288
1289     ir_block *cond = func->curblock;
1290     ir_block *ontrue;
1291     ir_block *onfalse;
1292     ir_block *ontrue_endblock;
1293     ir_block *onfalse_endblock;
1294     ir_block *merge;
1295
1296     /* We don't output any value, thus also don't care about r/lvalue */
1297     (void)out;
1298     (void)lvalue;
1299
1300     if (self->expression.outr) {
1301         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1302         return false;
1303     }
1304     self->expression.outr = (ir_value*)1;
1305
1306     /* generate the condition */
1307     func->curblock = cond;
1308     cgen = self->cond->expression.codegen;
1309     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1310         return false;
1311
1312     /* on-true path */
1313
1314     if (self->on_true) {
1315         /* create on-true block */
1316         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1317         if (!ontrue)
1318             return false;
1319
1320         /* enter the block */
1321         func->curblock = ontrue;
1322
1323         /* generate */
1324         cgen = self->on_true->expression.codegen;
1325         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1326             return false;
1327
1328         /* we now need to work from the current endpoint */
1329         ontrue_endblock = func->curblock;
1330     } else
1331         ontrue = NULL;
1332
1333     /* on-false path */
1334     if (self->on_false) {
1335         /* create on-false block */
1336         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1337         if (!onfalse)
1338             return false;
1339
1340         /* enter the block */
1341         func->curblock = onfalse;
1342
1343         /* generate */
1344         cgen = self->on_false->expression.codegen;
1345         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1346             return false;
1347
1348         /* we now need to work from the current endpoint */
1349         onfalse_endblock = func->curblock;
1350     } else
1351         onfalse = NULL;
1352
1353     /* Merge block were they all merge in to */
1354     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1355     if (!merge)
1356         return false;
1357
1358     /* add jumps ot the merge block */
1359     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1360         return false;
1361     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1362         return false;
1363
1364     /* we create the if here, that way all blocks are ordered :)
1365      */
1366     if (!ir_block_create_if(cond, condval,
1367                             (ontrue  ? ontrue  : merge),
1368                             (onfalse ? onfalse : merge)))
1369     {
1370         return false;
1371     }
1372
1373     /* Now enter the merge block */
1374     func->curblock = merge;
1375
1376     return true;
1377 }
1378
1379 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1380 {
1381     ast_expression_codegen *cgen;
1382
1383     ir_value *condval;
1384     ir_value *trueval, *falseval;
1385     ir_instr *phi;
1386
1387     ir_block *cond = func->curblock;
1388     ir_block *ontrue;
1389     ir_block *onfalse;
1390     ir_block *merge;
1391
1392     /* Ternary can never create an lvalue... */
1393     if (lvalue)
1394         return false;
1395
1396     /* In theory it shouldn't be possible to pass through a node twice, but
1397      * in case we add any kind of optimization pass for the AST itself, it
1398      * may still happen, thus we remember a created ir_value and simply return one
1399      * if it already exists.
1400      */
1401     if (self->phi_out) {
1402         *out = self->phi_out;
1403         return true;
1404     }
1405
1406     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1407
1408     /* generate the condition */
1409     func->curblock = cond;
1410     cgen = self->cond->expression.codegen;
1411     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1412         return false;
1413
1414     /* create on-true block */
1415     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1416     if (!ontrue)
1417         return false;
1418     else
1419     {
1420         /* enter the block */
1421         func->curblock = ontrue;
1422
1423         /* generate */
1424         cgen = self->on_true->expression.codegen;
1425         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1426             return false;
1427     }
1428
1429     /* create on-false block */
1430     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1431     if (!onfalse)
1432         return false;
1433     else
1434     {
1435         /* enter the block */
1436         func->curblock = onfalse;
1437
1438         /* generate */
1439         cgen = self->on_false->expression.codegen;
1440         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1441             return false;
1442     }
1443
1444     /* create merge block */
1445     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1446     if (!merge)
1447         return false;
1448     /* jump to merge block */
1449     if (!ir_block_create_jump(ontrue, merge))
1450         return false;
1451     if (!ir_block_create_jump(onfalse, merge))
1452         return false;
1453
1454     /* create if instruction */
1455     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1456         return false;
1457
1458     /* Now enter the merge block */
1459     func->curblock = merge;
1460
1461     /* Here, now, we need a PHI node
1462      * but first some sanity checking...
1463      */
1464     if (trueval->vtype != falseval->vtype) {
1465         /* error("ternary with different types on the two sides"); */
1466         return false;
1467     }
1468
1469     /* create PHI */
1470     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1471     if (!phi ||
1472         !ir_phi_add(phi, ontrue,  trueval) ||
1473         !ir_phi_add(phi, onfalse, falseval))
1474     {
1475         return false;
1476     }
1477
1478     self->phi_out = ir_phi_value(phi);
1479     *out = self->phi_out;
1480
1481     return true;
1482 }
1483
1484 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1485 {
1486     ast_expression_codegen *cgen;
1487
1488     ir_value *dummy      = NULL;
1489     ir_value *precond    = NULL;
1490     ir_value *postcond   = NULL;
1491
1492     /* Since we insert some jumps "late" so we have blocks
1493      * ordered "nicely", we need to keep track of the actual end-blocks
1494      * of expressions to add the jumps to.
1495      */
1496     ir_block *bbody      = NULL, *end_bbody      = NULL;
1497     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1498     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1499     ir_block *bincrement = NULL, *end_bincrement = NULL;
1500     ir_block *bout       = NULL, *bin            = NULL;
1501
1502     /* let's at least move the outgoing block to the end */
1503     size_t    bout_id;
1504
1505     /* 'break' and 'continue' need to be able to find the right blocks */
1506     ir_block *bcontinue     = NULL;
1507     ir_block *bbreak        = NULL;
1508
1509     ir_block *old_bcontinue = NULL;
1510     ir_block *old_bbreak    = NULL;
1511
1512     ir_block *tmpblock      = NULL;
1513
1514     (void)lvalue;
1515     (void)out;
1516
1517     if (self->expression.outr) {
1518         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1519         return false;
1520     }
1521     self->expression.outr = (ir_value*)1;
1522
1523     /* NOTE:
1524      * Should we ever need some kind of block ordering, better make this function
1525      * move blocks around than write a block ordering algorithm later... after all
1526      * the ast and ir should work together, not against each other.
1527      */
1528
1529     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1530      * anyway if for example it contains a ternary.
1531      */
1532     if (self->initexpr)
1533     {
1534         cgen = self->initexpr->expression.codegen;
1535         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1536             return false;
1537     }
1538
1539     /* Store the block from which we enter this chaos */
1540     bin = func->curblock;
1541
1542     /* The pre-loop condition needs its own block since we
1543      * need to be able to jump to the start of that expression.
1544      */
1545     if (self->precond)
1546     {
1547         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1548         if (!bprecond)
1549             return false;
1550
1551         /* the pre-loop-condition the least important place to 'continue' at */
1552         bcontinue = bprecond;
1553
1554         /* enter */
1555         func->curblock = bprecond;
1556
1557         /* generate */
1558         cgen = self->precond->expression.codegen;
1559         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1560             return false;
1561
1562         end_bprecond = func->curblock;
1563     } else {
1564         bprecond = end_bprecond = NULL;
1565     }
1566
1567     /* Now the next blocks won't be ordered nicely, but we need to
1568      * generate them this early for 'break' and 'continue'.
1569      */
1570     if (self->increment) {
1571         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1572         if (!bincrement)
1573             return false;
1574         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1575     } else {
1576         bincrement = end_bincrement = NULL;
1577     }
1578
1579     if (self->postcond) {
1580         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1581         if (!bpostcond)
1582             return false;
1583         bcontinue = bpostcond; /* postcond comes before the increment */
1584     } else {
1585         bpostcond = end_bpostcond = NULL;
1586     }
1587
1588     bout_id = func->ir_func->blocks_count;
1589     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1590     if (!bout)
1591         return false;
1592     bbreak = bout;
1593
1594     /* The loop body... */
1595     if (self->body)
1596     {
1597         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1598         if (!bbody)
1599             return false;
1600
1601         /* enter */
1602         func->curblock = bbody;
1603
1604         old_bbreak          = func->breakblock;
1605         old_bcontinue       = func->continueblock;
1606         func->breakblock    = bbreak;
1607         func->continueblock = bcontinue;
1608
1609         /* generate */
1610         cgen = self->body->expression.codegen;
1611         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1612             return false;
1613
1614         end_bbody = func->curblock;
1615         func->breakblock    = old_bbreak;
1616         func->continueblock = old_bcontinue;
1617     }
1618
1619     /* post-loop-condition */
1620     if (self->postcond)
1621     {
1622         /* enter */
1623         func->curblock = bpostcond;
1624
1625         /* generate */
1626         cgen = self->postcond->expression.codegen;
1627         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1628             return false;
1629
1630         end_bpostcond = func->curblock;
1631     }
1632
1633     /* The incrementor */
1634     if (self->increment)
1635     {
1636         /* enter */
1637         func->curblock = bincrement;
1638
1639         /* generate */
1640         cgen = self->increment->expression.codegen;
1641         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1642             return false;
1643
1644         end_bincrement = func->curblock;
1645     }
1646
1647     /* In any case now, we continue from the outgoing block */
1648     func->curblock = bout;
1649
1650     /* Now all blocks are in place */
1651     /* From 'bin' we jump to whatever comes first */
1652     if      (bprecond)   tmpblock = bprecond;
1653     else if (bbody)      tmpblock = bbody;
1654     else if (bpostcond)  tmpblock = bpostcond;
1655     else                 tmpblock = bout;
1656     if (!ir_block_create_jump(bin, tmpblock))
1657         return false;
1658
1659     /* From precond */
1660     if (bprecond)
1661     {
1662         ir_block *ontrue, *onfalse;
1663         if      (bbody)      ontrue = bbody;
1664         else if (bincrement) ontrue = bincrement;
1665         else if (bpostcond)  ontrue = bpostcond;
1666         else                 ontrue = bprecond;
1667         onfalse = bout;
1668         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1669             return false;
1670     }
1671
1672     /* from body */
1673     if (bbody)
1674     {
1675         if      (bincrement) tmpblock = bincrement;
1676         else if (bpostcond)  tmpblock = bpostcond;
1677         else if (bprecond)   tmpblock = bprecond;
1678         else                 tmpblock = bout;
1679         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1680             return false;
1681     }
1682
1683     /* from increment */
1684     if (bincrement)
1685     {
1686         if      (bpostcond)  tmpblock = bpostcond;
1687         else if (bprecond)   tmpblock = bprecond;
1688         else if (bbody)      tmpblock = bbody;
1689         else                 tmpblock = bout;
1690         if (!ir_block_create_jump(end_bincrement, tmpblock))
1691             return false;
1692     }
1693
1694     /* from postcond */
1695     if (bpostcond)
1696     {
1697         ir_block *ontrue, *onfalse;
1698         if      (bprecond)   ontrue = bprecond;
1699         else if (bbody)      ontrue = bbody;
1700         else if (bincrement) ontrue = bincrement;
1701         else                 ontrue = bpostcond;
1702         onfalse = bout;
1703         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1704             return false;
1705     }
1706
1707     /* Move 'bout' to the end */
1708     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1709         !ir_function_blocks_add(func->ir_func, bout))
1710     {
1711         ir_block_delete(bout);
1712         return false;
1713     }
1714
1715     return true;
1716 }
1717
1718 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1719 {
1720     ast_expression_codegen *cgen;
1721     ir_value_vector         params;
1722     ir_instr               *callinstr;
1723     size_t i;
1724
1725     ir_value *funval = NULL;
1726
1727     /* return values are never lvalues */
1728     (void)lvalue;
1729
1730     if (self->expression.outr) {
1731         *out = self->expression.outr;
1732         return true;
1733     }
1734
1735     cgen = self->func->expression.codegen;
1736     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1737         return false;
1738     if (!funval)
1739         return false;
1740
1741     MEM_VECTOR_INIT(&params, v);
1742
1743     /* parameters */
1744     for (i = 0; i < self->params_count; ++i)
1745     {
1746         ir_value *param;
1747         ast_expression *expr = self->params[i];
1748
1749         cgen = expr->expression.codegen;
1750         if (!(*cgen)(expr, func, false, &param))
1751             goto error;
1752         if (!param)
1753             goto error;
1754         if (!ir_value_vector_v_add(&params, param))
1755             goto error;
1756     }
1757
1758     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1759     if (!callinstr)
1760         goto error;
1761
1762     for (i = 0; i < params.v_count; ++i) {
1763         if (!ir_call_param(callinstr, params.v[i]))
1764             goto error;
1765     }
1766
1767     *out = ir_call_value(callinstr);
1768     self->expression.outr = *out;
1769
1770     MEM_VECTOR_CLEAR(&params, v);
1771     return true;
1772 error:
1773     MEM_VECTOR_CLEAR(&params, v);
1774     return false;
1775 }