]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
remember if an ast_value is a field-declaration, build fields before globals
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->isfield  = false;
326     self->cvq      = CV_NONE;
327     self->hasvalue = false;
328     self->uses    = 0;
329     memset(&self->constval, 0, sizeof(self->constval));
330
331     self->ir_v           = NULL;
332     self->ir_values      = NULL;
333     self->ir_value_count = 0;
334
335     self->setter = NULL;
336     self->getter = NULL;
337
338     return self;
339 }
340
341 void ast_value_delete(ast_value* self)
342 {
343     if (self->name)
344         mem_d((void*)self->name);
345     if (self->hasvalue) {
346         switch (self->expression.vtype)
347         {
348         case TYPE_STRING:
349             mem_d((void*)self->constval.vstring);
350             break;
351         case TYPE_FUNCTION:
352             /* unlink us from the function node */
353             self->constval.vfunc->vtype = NULL;
354             break;
355         /* NOTE: delete function? currently collected in
356          * the parser structure
357          */
358         default:
359             break;
360         }
361     }
362     if (self->ir_values)
363         mem_d(self->ir_values);
364     ast_expression_delete((ast_expression*)self);
365     mem_d(self);
366 }
367
368 void ast_value_params_add(ast_value *self, ast_value *p)
369 {
370     vec_push(self->expression.params, p);
371 }
372
373 bool ast_value_set_name(ast_value *self, const char *name)
374 {
375     if (self->name)
376         mem_d((void*)self->name);
377     self->name = util_strdup(name);
378     return !!self->name;
379 }
380
381 ast_binary* ast_binary_new(lex_ctx ctx, int op,
382                            ast_expression* left, ast_expression* right)
383 {
384     ast_instantiate(ast_binary, ctx, ast_binary_delete);
385     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
386
387     self->op = op;
388     self->left = left;
389     self->right = right;
390
391     ast_propagate_effects(self, left);
392     ast_propagate_effects(self, right);
393
394     if (op >= INSTR_EQ_F && op <= INSTR_GT)
395         self->expression.vtype = TYPE_FLOAT;
396     else if (op == INSTR_AND || op == INSTR_OR ||
397              op == INSTR_BITAND || op == INSTR_BITOR)
398         self->expression.vtype = TYPE_FLOAT;
399     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
400         self->expression.vtype = TYPE_VECTOR;
401     else if (op == INSTR_MUL_V)
402         self->expression.vtype = TYPE_FLOAT;
403     else
404         self->expression.vtype = left->expression.vtype;
405
406     return self;
407 }
408
409 void ast_binary_delete(ast_binary *self)
410 {
411     ast_unref(self->left);
412     ast_unref(self->right);
413     ast_expression_delete((ast_expression*)self);
414     mem_d(self);
415 }
416
417 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
418                                ast_expression* left, ast_expression* right)
419 {
420     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
422
423     ast_side_effects(self) = true;
424
425     self->opstore = storop;
426     self->opbin   = op;
427     self->dest    = left;
428     self->source  = right;
429
430     self->keep_dest = false;
431
432     self->expression.vtype = left->expression.vtype;
433     if (left->expression.next) {
434         self->expression.next = ast_type_copy(ctx, left);
435         if (!self->expression.next) {
436             ast_delete(self);
437             return NULL;
438         }
439     }
440     else
441         self->expression.next = NULL;
442
443     return self;
444 }
445
446 void ast_binstore_delete(ast_binstore *self)
447 {
448     if (!self->keep_dest)
449         ast_unref(self->dest);
450     ast_unref(self->source);
451     ast_expression_delete((ast_expression*)self);
452     mem_d(self);
453 }
454
455 ast_unary* ast_unary_new(lex_ctx ctx, int op,
456                          ast_expression *expr)
457 {
458     ast_instantiate(ast_unary, ctx, ast_unary_delete);
459     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
460
461     self->op = op;
462     self->operand = expr;
463
464     ast_propagate_effects(self, expr);
465
466     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
467         self->expression.vtype = TYPE_FLOAT;
468     } else
469         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
470
471     return self;
472 }
473
474 void ast_unary_delete(ast_unary *self)
475 {
476     ast_unref(self->operand);
477     ast_expression_delete((ast_expression*)self);
478     mem_d(self);
479 }
480
481 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
482 {
483     ast_instantiate(ast_return, ctx, ast_return_delete);
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
485
486     self->operand = expr;
487
488     if (expr)
489         ast_propagate_effects(self, expr);
490
491     return self;
492 }
493
494 void ast_return_delete(ast_return *self)
495 {
496     if (self->operand)
497         ast_unref(self->operand);
498     ast_expression_delete((ast_expression*)self);
499     mem_d(self);
500 }
501
502 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
503 {
504     if (field->expression.vtype != TYPE_FIELD) {
505         compile_error(ctx, "ast_entfield_new with expression not of type field");
506         return NULL;
507     }
508     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
509 }
510
511 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
512 {
513     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
514
515     if (!outtype) {
516         mem_d(self);
517         /* Error: field has no type... */
518         return NULL;
519     }
520
521     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
522
523     self->entity = entity;
524     self->field  = field;
525     ast_propagate_effects(self, entity);
526     ast_propagate_effects(self, field);
527
528     if (!ast_type_adopt(self, outtype)) {
529         ast_entfield_delete(self);
530         return NULL;
531     }
532
533     return self;
534 }
535
536 void ast_entfield_delete(ast_entfield *self)
537 {
538     ast_unref(self->entity);
539     ast_unref(self->field);
540     ast_expression_delete((ast_expression*)self);
541     mem_d(self);
542 }
543
544 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
545 {
546     ast_instantiate(ast_member, ctx, ast_member_delete);
547     if (field >= 3) {
548         mem_d(self);
549         return NULL;
550     }
551
552     if (owner->expression.vtype != TYPE_VECTOR &&
553         owner->expression.vtype != TYPE_FIELD) {
554         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
555         mem_d(self);
556         return NULL;
557     }
558
559     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
560     self->expression.node.keep = true; /* keep */
561
562     if (owner->expression.vtype == TYPE_VECTOR) {
563         self->expression.vtype = TYPE_FLOAT;
564         self->expression.next  = NULL;
565     } else {
566         self->expression.vtype = TYPE_FIELD;
567         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
568     }
569
570     self->owner = owner;
571     ast_propagate_effects(self, owner);
572
573     self->field = field;
574     if (name)
575         self->name = util_strdup(name);
576     else
577         self->name = NULL;
578
579     return self;
580 }
581
582 void ast_member_delete(ast_member *self)
583 {
584     /* The owner is always an ast_value, which has .keep=true,
585      * also: ast_members are usually deleted after the owner, thus
586      * this will cause invalid access
587     ast_unref(self->owner);
588      * once we allow (expression).x to access a vector-member, we need
589      * to change this: preferably by creating an alternate ast node for this
590      * purpose that is not garbage-collected.
591     */
592     ast_expression_delete((ast_expression*)self);
593     mem_d(self);
594 }
595
596 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
597 {
598     ast_expression *outtype;
599     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
600
601     outtype = array->expression.next;
602     if (!outtype) {
603         mem_d(self);
604         /* Error: field has no type... */
605         return NULL;
606     }
607
608     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
609
610     self->array = array;
611     self->index = index;
612     ast_propagate_effects(self, array);
613     ast_propagate_effects(self, index);
614
615     if (!ast_type_adopt(self, outtype)) {
616         ast_array_index_delete(self);
617         return NULL;
618     }
619     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
620         if (self->expression.vtype != TYPE_ARRAY) {
621             compile_error(ast_ctx(self), "array_index node on type");
622             ast_array_index_delete(self);
623             return NULL;
624         }
625         self->array = outtype;
626         self->expression.vtype = TYPE_FIELD;
627     }
628
629     return self;
630 }
631
632 void ast_array_index_delete(ast_array_index *self)
633 {
634     ast_unref(self->array);
635     ast_unref(self->index);
636     ast_expression_delete((ast_expression*)self);
637     mem_d(self);
638 }
639
640 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
641 {
642     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
643     if (!ontrue && !onfalse) {
644         /* because it is invalid */
645         mem_d(self);
646         return NULL;
647     }
648     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
649
650     self->cond     = cond;
651     self->on_true  = ontrue;
652     self->on_false = onfalse;
653     ast_propagate_effects(self, cond);
654     if (ontrue)
655         ast_propagate_effects(self, ontrue);
656     if (onfalse)
657         ast_propagate_effects(self, onfalse);
658
659     return self;
660 }
661
662 void ast_ifthen_delete(ast_ifthen *self)
663 {
664     ast_unref(self->cond);
665     if (self->on_true)
666         ast_unref(self->on_true);
667     if (self->on_false)
668         ast_unref(self->on_false);
669     ast_expression_delete((ast_expression*)self);
670     mem_d(self);
671 }
672
673 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
674 {
675     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
676     /* This time NEITHER must be NULL */
677     if (!ontrue || !onfalse) {
678         mem_d(self);
679         return NULL;
680     }
681     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
682
683     self->cond     = cond;
684     self->on_true  = ontrue;
685     self->on_false = onfalse;
686     ast_propagate_effects(self, cond);
687     ast_propagate_effects(self, ontrue);
688     ast_propagate_effects(self, onfalse);
689
690     if (!ast_type_adopt(self, ontrue)) {
691         ast_ternary_delete(self);
692         return NULL;
693     }
694
695     return self;
696 }
697
698 void ast_ternary_delete(ast_ternary *self)
699 {
700     ast_unref(self->cond);
701     ast_unref(self->on_true);
702     ast_unref(self->on_false);
703     ast_expression_delete((ast_expression*)self);
704     mem_d(self);
705 }
706
707 ast_loop* ast_loop_new(lex_ctx ctx,
708                        ast_expression *initexpr,
709                        ast_expression *precond,
710                        ast_expression *postcond,
711                        ast_expression *increment,
712                        ast_expression *body)
713 {
714     ast_instantiate(ast_loop, ctx, ast_loop_delete);
715     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
716
717     self->initexpr  = initexpr;
718     self->precond   = precond;
719     self->postcond  = postcond;
720     self->increment = increment;
721     self->body      = body;
722
723     if (initexpr)
724         ast_propagate_effects(self, initexpr);
725     if (precond)
726         ast_propagate_effects(self, precond);
727     if (postcond)
728         ast_propagate_effects(self, postcond);
729     if (increment)
730         ast_propagate_effects(self, increment);
731     if (body)
732         ast_propagate_effects(self, body);
733
734     return self;
735 }
736
737 void ast_loop_delete(ast_loop *self)
738 {
739     if (self->initexpr)
740         ast_unref(self->initexpr);
741     if (self->precond)
742         ast_unref(self->precond);
743     if (self->postcond)
744         ast_unref(self->postcond);
745     if (self->increment)
746         ast_unref(self->increment);
747     if (self->body)
748         ast_unref(self->body);
749     ast_expression_delete((ast_expression*)self);
750     mem_d(self);
751 }
752
753 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
754 {
755     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
756     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
757
758     self->is_continue = iscont;
759
760     return self;
761 }
762
763 void ast_breakcont_delete(ast_breakcont *self)
764 {
765     ast_expression_delete((ast_expression*)self);
766     mem_d(self);
767 }
768
769 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
770 {
771     ast_instantiate(ast_switch, ctx, ast_switch_delete);
772     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
773
774     self->operand = op;
775     self->cases   = NULL;
776
777     ast_propagate_effects(self, op);
778
779     return self;
780 }
781
782 void ast_switch_delete(ast_switch *self)
783 {
784     size_t i;
785     ast_unref(self->operand);
786
787     for (i = 0; i < vec_size(self->cases); ++i) {
788         if (self->cases[i].value)
789             ast_unref(self->cases[i].value);
790         ast_unref(self->cases[i].code);
791     }
792     vec_free(self->cases);
793
794     ast_expression_delete((ast_expression*)self);
795     mem_d(self);
796 }
797
798 ast_label* ast_label_new(lex_ctx ctx, const char *name)
799 {
800     ast_instantiate(ast_label, ctx, ast_label_delete);
801     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
802
803     self->name    = util_strdup(name);
804     self->irblock = NULL;
805     self->gotos   = NULL;
806
807     return self;
808 }
809
810 void ast_label_delete(ast_label *self)
811 {
812     mem_d((void*)self->name);
813     vec_free(self->gotos);
814     ast_expression_delete((ast_expression*)self);
815     mem_d(self);
816 }
817
818 void ast_label_register_goto(ast_label *self, ast_goto *g)
819 {
820     vec_push(self->gotos, g);
821 }
822
823 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
824 {
825     ast_instantiate(ast_goto, ctx, ast_goto_delete);
826     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
827
828     self->name    = util_strdup(name);
829     self->target  = NULL;
830     self->irblock_from = NULL;
831
832     return self;
833 }
834
835 void ast_goto_delete(ast_goto *self)
836 {
837     mem_d((void*)self->name);
838     ast_expression_delete((ast_expression*)self);
839     mem_d(self);
840 }
841
842 void ast_goto_set_label(ast_goto *self, ast_label *label)
843 {
844     self->target = label;
845 }
846
847 ast_call* ast_call_new(lex_ctx ctx,
848                        ast_expression *funcexpr)
849 {
850     ast_instantiate(ast_call, ctx, ast_call_delete);
851     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
852
853     ast_side_effects(self) = true;
854
855     self->params = NULL;
856     self->func   = funcexpr;
857
858     self->expression.vtype = funcexpr->expression.next->expression.vtype;
859     if (funcexpr->expression.next->expression.next)
860         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
861
862     return self;
863 }
864
865 void ast_call_delete(ast_call *self)
866 {
867     size_t i;
868     for (i = 0; i < vec_size(self->params); ++i)
869         ast_unref(self->params[i]);
870     vec_free(self->params);
871
872     if (self->func)
873         ast_unref(self->func);
874
875     ast_expression_delete((ast_expression*)self);
876     mem_d(self);
877 }
878
879 bool ast_call_check_types(ast_call *self)
880 {
881     size_t i;
882     bool   retval = true;
883     const  ast_expression *func = self->func;
884     size_t count = vec_size(self->params);
885     if (count > vec_size(func->expression.params))
886         count = vec_size(func->expression.params);
887
888     for (i = 0; i < count; ++i) {
889         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
890             char texp[1024];
891             char tgot[1024];
892             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
893             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
894             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
895                      (unsigned int)(i+1), texp, tgot);
896             /* we don't immediately return */
897             retval = false;
898         }
899     }
900     return retval;
901 }
902
903 ast_store* ast_store_new(lex_ctx ctx, int op,
904                          ast_expression *dest, ast_expression *source)
905 {
906     ast_instantiate(ast_store, ctx, ast_store_delete);
907     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
908
909     ast_side_effects(self) = true;
910
911     self->op = op;
912     self->dest = dest;
913     self->source = source;
914
915     self->expression.vtype = dest->expression.vtype;
916     if (dest->expression.next) {
917         self->expression.next = ast_type_copy(ctx, dest);
918         if (!self->expression.next) {
919             ast_delete(self);
920             return NULL;
921         }
922     }
923     else
924         self->expression.next = NULL;
925
926     return self;
927 }
928
929 void ast_store_delete(ast_store *self)
930 {
931     ast_unref(self->dest);
932     ast_unref(self->source);
933     ast_expression_delete((ast_expression*)self);
934     mem_d(self);
935 }
936
937 ast_block* ast_block_new(lex_ctx ctx)
938 {
939     ast_instantiate(ast_block, ctx, ast_block_delete);
940     ast_expression_init((ast_expression*)self,
941                         (ast_expression_codegen*)&ast_block_codegen);
942
943     self->locals  = NULL;
944     self->exprs   = NULL;
945     self->collect = NULL;
946
947     return self;
948 }
949
950 void ast_block_add_expr(ast_block *self, ast_expression *e)
951 {
952     ast_propagate_effects(self, e);
953     vec_push(self->exprs, e);
954 }
955
956 void ast_block_collect(ast_block *self, ast_expression *expr)
957 {
958     vec_push(self->collect, expr);
959     expr->expression.node.keep = true;
960 }
961
962 void ast_block_delete(ast_block *self)
963 {
964     size_t i;
965     for (i = 0; i < vec_size(self->exprs); ++i)
966         ast_unref(self->exprs[i]);
967     vec_free(self->exprs);
968     for (i = 0; i < vec_size(self->locals); ++i)
969         ast_delete(self->locals[i]);
970     vec_free(self->locals);
971     for (i = 0; i < vec_size(self->collect); ++i)
972         ast_delete(self->collect[i]);
973     vec_free(self->collect);
974     ast_expression_delete((ast_expression*)self);
975     mem_d(self);
976 }
977
978 bool ast_block_set_type(ast_block *self, ast_expression *from)
979 {
980     if (self->expression.next)
981         ast_delete(self->expression.next);
982     self->expression.vtype = from->expression.vtype;
983     if (from->expression.next) {
984         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
985         if (!self->expression.next)
986             return false;
987     }
988     else
989         self->expression.next = NULL;
990     return true;
991 }
992
993 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
994 {
995     ast_instantiate(ast_function, ctx, ast_function_delete);
996
997     if (!vtype ||
998         vtype->hasvalue ||
999         vtype->expression.vtype != TYPE_FUNCTION)
1000     {
1001         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1002                  (int)!vtype,
1003                  (int)vtype->hasvalue,
1004                  vtype->expression.vtype);
1005         mem_d(self);
1006         return NULL;
1007     }
1008
1009     self->vtype  = vtype;
1010     self->name   = name ? util_strdup(name) : NULL;
1011     self->blocks = NULL;
1012
1013     self->labelcount = 0;
1014     self->builtin = 0;
1015
1016     self->ir_func = NULL;
1017     self->curblock = NULL;
1018
1019     self->breakblock    = NULL;
1020     self->continueblock = NULL;
1021
1022     vtype->hasvalue = true;
1023     vtype->constval.vfunc = self;
1024
1025     return self;
1026 }
1027
1028 void ast_function_delete(ast_function *self)
1029 {
1030     size_t i;
1031     if (self->name)
1032         mem_d((void*)self->name);
1033     if (self->vtype) {
1034         /* ast_value_delete(self->vtype); */
1035         self->vtype->hasvalue = false;
1036         self->vtype->constval.vfunc = NULL;
1037         /* We use unref - if it was stored in a global table it is supposed
1038          * to be deleted from *there*
1039          */
1040         ast_unref(self->vtype);
1041     }
1042     for (i = 0; i < vec_size(self->blocks); ++i)
1043         ast_delete(self->blocks[i]);
1044     vec_free(self->blocks);
1045     mem_d(self);
1046 }
1047
1048 const char* ast_function_label(ast_function *self, const char *prefix)
1049 {
1050     size_t id;
1051     size_t len;
1052     char  *from;
1053
1054     if (!opts_dump && !opts_dumpfin)
1055         return NULL;
1056
1057     id  = (self->labelcount++);
1058     len = strlen(prefix);
1059
1060     from = self->labelbuf + sizeof(self->labelbuf)-1;
1061     *from-- = 0;
1062     do {
1063         unsigned int digit = id % 10;
1064         *from = digit + '0';
1065         id /= 10;
1066     } while (id);
1067     memcpy(from - len, prefix, len);
1068     return from - len;
1069 }
1070
1071 /*********************************************************************/
1072 /* AST codegen part
1073  * by convention you must never pass NULL to the 'ir_value **out'
1074  * parameter. If you really don't care about the output, pass a dummy.
1075  * But I can't imagine a pituation where the output is truly unnecessary.
1076  */
1077
1078 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1079 {
1080     (void)func;
1081     (void)lvalue;
1082     /* NOTE: This is the codegen for a variable used in an expression.
1083      * It is not the codegen to generate the value. For this purpose,
1084      * ast_local_codegen and ast_global_codegen are to be used before this
1085      * is executed. ast_function_codegen should take care of its locals,
1086      * and the ast-user should take care of ast_global_codegen to be used
1087      * on all the globals.
1088      */
1089     if (!self->ir_v) {
1090         char typename[1024];
1091         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1092         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1093         return false;
1094     }
1095     *out = self->ir_v;
1096     return true;
1097 }
1098
1099 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1100 {
1101     ir_value *v = NULL;
1102
1103     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1104     {
1105         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1106         if (!func)
1107             return false;
1108         func->context = ast_ctx(self);
1109         func->value->context = ast_ctx(self);
1110
1111         self->constval.vfunc->ir_func = func;
1112         self->ir_v = func->value;
1113         /* The function is filled later on ast_function_codegen... */
1114         return true;
1115     }
1116
1117     if (isfield && self->expression.vtype == TYPE_FIELD) {
1118         ast_expression *fieldtype = self->expression.next;
1119
1120         if (self->hasvalue) {
1121             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1122             goto error;
1123         }
1124
1125         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1126             size_t ai;
1127             char   *name;
1128             size_t  namelen;
1129
1130             ast_expression_common *elemtype;
1131             int                    vtype;
1132             ast_value             *array = (ast_value*)fieldtype;
1133
1134             if (!ast_istype(fieldtype, ast_value)) {
1135                 compile_error(ast_ctx(self), "internal error: ast_value required");
1136                 return false;
1137             }
1138
1139             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1140             if (!array->expression.count || array->expression.count > opts_max_array_size)
1141                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1142
1143             elemtype = &array->expression.next->expression;
1144             vtype = elemtype->vtype;
1145
1146             v = ir_builder_create_field(ir, self->name, vtype);
1147             if (!v) {
1148                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1149                 return false;
1150             }
1151             if (vtype == TYPE_FIELD)
1152                 v->fieldtype = elemtype->next->expression.vtype;
1153             v->context = ast_ctx(self);
1154             array->ir_v = self->ir_v = v;
1155
1156             namelen = strlen(self->name);
1157             name    = (char*)mem_a(namelen + 16);
1158             strcpy(name, self->name);
1159
1160             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1161             array->ir_values[0] = v;
1162             for (ai = 1; ai < array->expression.count; ++ai) {
1163                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1164                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1165                 if (!array->ir_values[ai]) {
1166                     mem_d(name);
1167                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1168                     return false;
1169                 }
1170                 if (vtype == TYPE_FIELD)
1171                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1172                 array->ir_values[ai]->context = ast_ctx(self);
1173             }
1174             mem_d(name);
1175         }
1176         else
1177         {
1178             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1179             if (!v)
1180                 return false;
1181             v->context = ast_ctx(self);
1182             self->ir_v = v;
1183         }
1184         return true;
1185     }
1186
1187     if (self->expression.vtype == TYPE_ARRAY) {
1188         size_t ai;
1189         char   *name;
1190         size_t  namelen;
1191
1192         ast_expression_common *elemtype = &self->expression.next->expression;
1193         int vtype = elemtype->vtype;
1194
1195         /* same as with field arrays */
1196         if (!self->expression.count || self->expression.count > opts_max_array_size)
1197             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1198
1199         v = ir_builder_create_global(ir, self->name, vtype);
1200         if (!v) {
1201             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1202             return false;
1203         }
1204         if (vtype == TYPE_FIELD)
1205             v->fieldtype = elemtype->next->expression.vtype;
1206         v->context = ast_ctx(self);
1207
1208         namelen = strlen(self->name);
1209         name    = (char*)mem_a(namelen + 16);
1210         strcpy(name, self->name);
1211
1212         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1213         self->ir_values[0] = v;
1214         for (ai = 1; ai < self->expression.count; ++ai) {
1215             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1216             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1217             if (!self->ir_values[ai]) {
1218                 mem_d(name);
1219                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1220                 return false;
1221             }
1222             if (vtype == TYPE_FIELD)
1223                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1224             self->ir_values[ai]->context = ast_ctx(self);
1225         }
1226         mem_d(name);
1227     }
1228     else
1229     {
1230         /* Arrays don't do this since there's no "array" value which spans across the
1231          * whole thing.
1232          */
1233         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1234         if (!v) {
1235             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1236             return false;
1237         }
1238         if (self->expression.vtype == TYPE_FIELD)
1239             v->fieldtype = self->expression.next->expression.vtype;
1240         v->context = ast_ctx(self);
1241     }
1242
1243     if (self->hasvalue) {
1244         switch (self->expression.vtype)
1245         {
1246             case TYPE_FLOAT:
1247                 if (!ir_value_set_float(v, self->constval.vfloat))
1248                     goto error;
1249                 break;
1250             case TYPE_VECTOR:
1251                 if (!ir_value_set_vector(v, self->constval.vvec))
1252                     goto error;
1253                 break;
1254             case TYPE_STRING:
1255                 if (!ir_value_set_string(v, self->constval.vstring))
1256                     goto error;
1257                 break;
1258             case TYPE_ARRAY:
1259                 compile_error(ast_ctx(self), "TODO: global constant array");
1260                 break;
1261             case TYPE_FUNCTION:
1262                 compile_error(ast_ctx(self), "global of type function not properly generated");
1263                 goto error;
1264                 /* Cannot generate an IR value for a function,
1265                  * need a pointer pointing to a function rather.
1266                  */
1267             default:
1268                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1269                 break;
1270         }
1271     }
1272
1273     /* link us to the ir_value */
1274     v->cvq = self->cvq;
1275     self->ir_v = v;
1276     return true;
1277
1278 error: /* clean up */
1279     ir_value_delete(v);
1280     return false;
1281 }
1282
1283 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1284 {
1285     ir_value *v = NULL;
1286     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1287     {
1288         /* Do we allow local functions? I think not...
1289          * this is NOT a function pointer atm.
1290          */
1291         return false;
1292     }
1293
1294     if (self->expression.vtype == TYPE_ARRAY) {
1295         size_t ai;
1296         char   *name;
1297         size_t  namelen;
1298
1299         ast_expression_common *elemtype = &self->expression.next->expression;
1300         int vtype = elemtype->vtype;
1301
1302         if (param) {
1303             compile_error(ast_ctx(self), "array-parameters are not supported");
1304             return false;
1305         }
1306
1307         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1308         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1309             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1310         }
1311
1312         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1313         if (!self->ir_values) {
1314             compile_error(ast_ctx(self), "failed to allocate array values");
1315             return false;
1316         }
1317
1318         v = ir_function_create_local(func, self->name, vtype, param);
1319         if (!v) {
1320             compile_error(ast_ctx(self), "ir_function_create_local failed");
1321             return false;
1322         }
1323         if (vtype == TYPE_FIELD)
1324             v->fieldtype = elemtype->next->expression.vtype;
1325         v->context = ast_ctx(self);
1326
1327         namelen = strlen(self->name);
1328         name    = (char*)mem_a(namelen + 16);
1329         strcpy(name, self->name);
1330
1331         self->ir_values[0] = v;
1332         for (ai = 1; ai < self->expression.count; ++ai) {
1333             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1334             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1335             if (!self->ir_values[ai]) {
1336                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1337                 return false;
1338             }
1339             if (vtype == TYPE_FIELD)
1340                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1341             self->ir_values[ai]->context = ast_ctx(self);
1342         }
1343     }
1344     else
1345     {
1346         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1347         if (!v)
1348             return false;
1349         if (self->expression.vtype == TYPE_FIELD)
1350             v->fieldtype = self->expression.next->expression.vtype;
1351         v->context = ast_ctx(self);
1352     }
1353
1354     /* A constant local... hmmm...
1355      * I suppose the IR will have to deal with this
1356      */
1357     if (self->hasvalue) {
1358         switch (self->expression.vtype)
1359         {
1360             case TYPE_FLOAT:
1361                 if (!ir_value_set_float(v, self->constval.vfloat))
1362                     goto error;
1363                 break;
1364             case TYPE_VECTOR:
1365                 if (!ir_value_set_vector(v, self->constval.vvec))
1366                     goto error;
1367                 break;
1368             case TYPE_STRING:
1369                 if (!ir_value_set_string(v, self->constval.vstring))
1370                     goto error;
1371                 break;
1372             default:
1373                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1374                 break;
1375         }
1376     }
1377
1378     /* link us to the ir_value */
1379     v->cvq = self->cvq;
1380     self->ir_v = v;
1381
1382     if (self->setter) {
1383         if (!ast_global_codegen(self->setter, func->owner, false) ||
1384             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1385             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1386             return false;
1387     }
1388     if (self->getter) {
1389         if (!ast_global_codegen(self->getter, func->owner, false) ||
1390             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1391             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1392             return false;
1393     }
1394     return true;
1395
1396 error: /* clean up */
1397     ir_value_delete(v);
1398     return false;
1399 }
1400
1401 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1402 {
1403     ir_function *irf;
1404     ir_value    *dummy;
1405     ast_expression_common *ec;
1406     size_t    i;
1407
1408     (void)ir;
1409
1410     irf = self->ir_func;
1411     if (!irf) {
1412         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1413         return false;
1414     }
1415
1416     /* fill the parameter list */
1417     ec = &self->vtype->expression;
1418     for (i = 0; i < vec_size(ec->params); ++i)
1419     {
1420         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1421             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1422         else
1423             vec_push(irf->params, ec->params[i]->expression.vtype);
1424         if (!self->builtin) {
1425             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1426                 return false;
1427         }
1428     }
1429
1430     if (self->builtin) {
1431         irf->builtin = self->builtin;
1432         return true;
1433     }
1434
1435     if (!vec_size(self->blocks)) {
1436         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1437         return false;
1438     }
1439
1440     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1441     if (!self->curblock) {
1442         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1443         return false;
1444     }
1445
1446     for (i = 0; i < vec_size(self->blocks); ++i) {
1447         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1448         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1449             return false;
1450     }
1451
1452     /* TODO: check return types */
1453     if (!self->curblock->is_return)
1454     {
1455         if (!self->vtype->expression.next ||
1456             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1457         {
1458             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1459         }
1460         else if (vec_size(self->curblock->entries))
1461         {
1462             /* error("missing return"); */
1463             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1464                                 "control reaches end of non-void function (`%s`) via %s",
1465                                 self->name, self->curblock->label))
1466             {
1467                 return false;
1468             }
1469             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1470         }
1471     }
1472     return true;
1473 }
1474
1475 /* Note, you will not see ast_block_codegen generate ir_blocks.
1476  * To the AST and the IR, blocks are 2 different things.
1477  * In the AST it represents a block of code, usually enclosed in
1478  * curly braces {...}.
1479  * While in the IR it represents a block in terms of control-flow.
1480  */
1481 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1482 {
1483     size_t i;
1484
1485     /* We don't use this
1486      * Note: an ast-representation using the comma-operator
1487      * of the form: (a, b, c) = x should not assign to c...
1488      */
1489     if (lvalue) {
1490         compile_error(ast_ctx(self), "not an l-value (code-block)");
1491         return false;
1492     }
1493
1494     if (self->expression.outr) {
1495         *out = self->expression.outr;
1496         return true;
1497     }
1498
1499     /* output is NULL at first, we'll have each expression
1500      * assign to out output, thus, a comma-operator represention
1501      * using an ast_block will return the last generated value,
1502      * so: (b, c) + a  executed both b and c, and returns c,
1503      * which is then added to a.
1504      */
1505     *out = NULL;
1506
1507     /* generate locals */
1508     for (i = 0; i < vec_size(self->locals); ++i)
1509     {
1510         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1511             if (opts_debug)
1512                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1513             return false;
1514         }
1515     }
1516
1517     for (i = 0; i < vec_size(self->exprs); ++i)
1518     {
1519         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1520         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1521             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1522             return false;
1523         }
1524         if (!(*gen)(self->exprs[i], func, false, out))
1525             return false;
1526     }
1527
1528     self->expression.outr = *out;
1529
1530     return true;
1531 }
1532
1533 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1534 {
1535     ast_expression_codegen *cgen;
1536     ir_value *left  = NULL;
1537     ir_value *right = NULL;
1538
1539     ast_value       *arr;
1540     ast_value       *idx = 0;
1541     ast_array_index *ai = NULL;
1542
1543     if (lvalue && self->expression.outl) {
1544         *out = self->expression.outl;
1545         return true;
1546     }
1547
1548     if (!lvalue && self->expression.outr) {
1549         *out = self->expression.outr;
1550         return true;
1551     }
1552
1553     if (ast_istype(self->dest, ast_array_index))
1554     {
1555
1556         ai = (ast_array_index*)self->dest;
1557         idx = (ast_value*)ai->index;
1558
1559         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1560             ai = NULL;
1561     }
1562
1563     if (ai) {
1564         /* we need to call the setter */
1565         ir_value  *iridx, *funval;
1566         ir_instr  *call;
1567
1568         if (lvalue) {
1569             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1570             return false;
1571         }
1572
1573         arr = (ast_value*)ai->array;
1574         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1575             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1576             return false;
1577         }
1578
1579         cgen = idx->expression.codegen;
1580         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1581             return false;
1582
1583         cgen = arr->setter->expression.codegen;
1584         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1585             return false;
1586
1587         cgen = self->source->expression.codegen;
1588         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1589             return false;
1590
1591         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1592         if (!call)
1593             return false;
1594         ir_call_param(call, iridx);
1595         ir_call_param(call, right);
1596         self->expression.outr = right;
1597     }
1598     else
1599     {
1600         /* regular code */
1601
1602         cgen = self->dest->expression.codegen;
1603         /* lvalue! */
1604         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1605             return false;
1606         self->expression.outl = left;
1607
1608         cgen = self->source->expression.codegen;
1609         /* rvalue! */
1610         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1611             return false;
1612
1613         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1614             return false;
1615         self->expression.outr = right;
1616     }
1617
1618     /* Theoretically, an assinment returns its left side as an
1619      * lvalue, if we don't need an lvalue though, we return
1620      * the right side as an rvalue, otherwise we have to
1621      * somehow know whether or not we need to dereference the pointer
1622      * on the left side - that is: OP_LOAD if it was an address.
1623      * Also: in original QC we cannot OP_LOADP *anyway*.
1624      */
1625     *out = (lvalue ? left : right);
1626
1627     return true;
1628 }
1629
1630 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1631 {
1632     ast_expression_codegen *cgen;
1633     ir_value *left, *right;
1634
1635     /* A binary operation cannot yield an l-value */
1636     if (lvalue) {
1637         compile_error(ast_ctx(self), "not an l-value (binop)");
1638         return false;
1639     }
1640
1641     if (self->expression.outr) {
1642         *out = self->expression.outr;
1643         return true;
1644     }
1645
1646     if (OPTS_FLAG(SHORT_LOGIC) &&
1647         (self->op == INSTR_AND || self->op == INSTR_OR))
1648     {
1649         /* short circuit evaluation */
1650         ir_block *other, *merge;
1651         ir_block *from_left, *from_right;
1652         ir_instr *phi;
1653         size_t    merge_id;
1654         uint16_t  notop;
1655
1656         /* Note about casting to true boolean values:
1657          * We use a single NOT for sub expressions, and an
1658          * overall NOT at the end, and for that purpose swap
1659          * all the jump conditions in order for the NOT to get
1660          * doubled.
1661          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1662          * but we translate this to (!(!a ? !a : !b))
1663          */
1664
1665         merge_id = vec_size(func->ir_func->blocks);
1666         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1667
1668         cgen = self->left->expression.codegen;
1669         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1670             return false;
1671         if (!OPTS_FLAG(PERL_LOGIC)) {
1672             notop = type_not_instr[left->vtype];
1673             if (notop == AINSTR_END) {
1674                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1675                 return false;
1676             }
1677             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1678                                          ast_function_label(func, "sce_not"),
1679                                          notop,
1680                                          left);
1681         }
1682         from_left = func->curblock;
1683
1684         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1685         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1686             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1687                 return false;
1688         } else {
1689             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1690                 return false;
1691         }
1692         /* use the likely flag */
1693         vec_last(func->curblock->instr)->likely = true;
1694
1695         func->curblock = other;
1696         cgen = self->right->expression.codegen;
1697         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1698             return false;
1699         if (!OPTS_FLAG(PERL_LOGIC)) {
1700             notop = type_not_instr[right->vtype];
1701             if (notop == AINSTR_END) {
1702                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1703                 return false;
1704             }
1705             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1706                                           ast_function_label(func, "sce_not"),
1707                                           notop,
1708                                           right);
1709         }
1710         from_right = func->curblock;
1711
1712         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1713             return false;
1714
1715         vec_remove(func->ir_func->blocks, merge_id, 1);
1716         vec_push(func->ir_func->blocks, merge);
1717
1718         func->curblock = merge;
1719         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1720         ir_phi_add(phi, from_left, left);
1721         ir_phi_add(phi, from_right, right);
1722         *out = ir_phi_value(phi);
1723         if (!OPTS_FLAG(PERL_LOGIC)) {
1724             notop = type_not_instr[(*out)->vtype];
1725             if (notop == AINSTR_END) {
1726                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1727                 return false;
1728             }
1729             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1730                                          ast_function_label(func, "sce_final_not"),
1731                                          notop,
1732                                          *out);
1733         }
1734         if (!*out)
1735             return false;
1736         self->expression.outr = *out;
1737         return true;
1738     }
1739
1740     cgen = self->left->expression.codegen;
1741     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1742         return false;
1743
1744     cgen = self->right->expression.codegen;
1745     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1746         return false;
1747
1748     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1749                                  self->op, left, right);
1750     if (!*out)
1751         return false;
1752     self->expression.outr = *out;
1753
1754     return true;
1755 }
1756
1757 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1758 {
1759     ast_expression_codegen *cgen;
1760     ir_value *leftl = NULL, *leftr, *right, *bin;
1761
1762     ast_value       *arr;
1763     ast_value       *idx = 0;
1764     ast_array_index *ai = NULL;
1765     ir_value        *iridx = NULL;
1766
1767     if (lvalue && self->expression.outl) {
1768         *out = self->expression.outl;
1769         return true;
1770     }
1771
1772     if (!lvalue && self->expression.outr) {
1773         *out = self->expression.outr;
1774         return true;
1775     }
1776
1777     if (ast_istype(self->dest, ast_array_index))
1778     {
1779
1780         ai = (ast_array_index*)self->dest;
1781         idx = (ast_value*)ai->index;
1782
1783         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1784             ai = NULL;
1785     }
1786
1787     /* for a binstore we need both an lvalue and an rvalue for the left side */
1788     /* rvalue of destination! */
1789     if (ai) {
1790         cgen = idx->expression.codegen;
1791         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1792             return false;
1793     }
1794     cgen = self->dest->expression.codegen;
1795     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1796         return false;
1797
1798     /* source as rvalue only */
1799     cgen = self->source->expression.codegen;
1800     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1801         return false;
1802
1803     /* now the binary */
1804     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1805                                 self->opbin, leftr, right);
1806     self->expression.outr = bin;
1807
1808
1809     if (ai) {
1810         /* we need to call the setter */
1811         ir_value  *funval;
1812         ir_instr  *call;
1813
1814         if (lvalue) {
1815             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1816             return false;
1817         }
1818
1819         arr = (ast_value*)ai->array;
1820         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1821             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1822             return false;
1823         }
1824
1825         cgen = arr->setter->expression.codegen;
1826         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1827             return false;
1828
1829         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1830         if (!call)
1831             return false;
1832         ir_call_param(call, iridx);
1833         ir_call_param(call, bin);
1834         self->expression.outr = bin;
1835     } else {
1836         /* now store them */
1837         cgen = self->dest->expression.codegen;
1838         /* lvalue of destination */
1839         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1840             return false;
1841         self->expression.outl = leftl;
1842
1843         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1844             return false;
1845         self->expression.outr = bin;
1846     }
1847
1848     /* Theoretically, an assinment returns its left side as an
1849      * lvalue, if we don't need an lvalue though, we return
1850      * the right side as an rvalue, otherwise we have to
1851      * somehow know whether or not we need to dereference the pointer
1852      * on the left side - that is: OP_LOAD if it was an address.
1853      * Also: in original QC we cannot OP_LOADP *anyway*.
1854      */
1855     *out = (lvalue ? leftl : bin);
1856
1857     return true;
1858 }
1859
1860 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1861 {
1862     ast_expression_codegen *cgen;
1863     ir_value *operand;
1864
1865     /* An unary operation cannot yield an l-value */
1866     if (lvalue) {
1867         compile_error(ast_ctx(self), "not an l-value (binop)");
1868         return false;
1869     }
1870
1871     if (self->expression.outr) {
1872         *out = self->expression.outr;
1873         return true;
1874     }
1875
1876     cgen = self->operand->expression.codegen;
1877     /* lvalue! */
1878     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1879         return false;
1880
1881     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1882                                  self->op, operand);
1883     if (!*out)
1884         return false;
1885     self->expression.outr = *out;
1886
1887     return true;
1888 }
1889
1890 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1891 {
1892     ast_expression_codegen *cgen;
1893     ir_value *operand;
1894
1895     *out = NULL;
1896
1897     /* In the context of a return operation, we don't actually return
1898      * anything...
1899      */
1900     if (lvalue) {
1901         compile_error(ast_ctx(self), "return-expression is not an l-value");
1902         return false;
1903     }
1904
1905     if (self->expression.outr) {
1906         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1907         return false;
1908     }
1909     self->expression.outr = (ir_value*)1;
1910
1911     if (self->operand) {
1912         cgen = self->operand->expression.codegen;
1913         /* lvalue! */
1914         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1915             return false;
1916
1917         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1918             return false;
1919     } else {
1920         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1921             return false;
1922     }
1923
1924     return true;
1925 }
1926
1927 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1928 {
1929     ast_expression_codegen *cgen;
1930     ir_value *ent, *field;
1931
1932     /* This function needs to take the 'lvalue' flag into account!
1933      * As lvalue we provide a field-pointer, as rvalue we provide the
1934      * value in a temp.
1935      */
1936
1937     if (lvalue && self->expression.outl) {
1938         *out = self->expression.outl;
1939         return true;
1940     }
1941
1942     if (!lvalue && self->expression.outr) {
1943         *out = self->expression.outr;
1944         return true;
1945     }
1946
1947     cgen = self->entity->expression.codegen;
1948     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1949         return false;
1950
1951     cgen = self->field->expression.codegen;
1952     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1953         return false;
1954
1955     if (lvalue) {
1956         /* address! */
1957         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
1958                                             ent, field);
1959     } else {
1960         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
1961                                              ent, field, self->expression.vtype);
1962     }
1963     if (!*out) {
1964         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
1965                  (lvalue ? "ADDRESS" : "FIELD"),
1966                  type_name[self->expression.vtype]);
1967         return false;
1968     }
1969
1970     if (lvalue)
1971         self->expression.outl = *out;
1972     else
1973         self->expression.outr = *out;
1974
1975     /* Hm that should be it... */
1976     return true;
1977 }
1978
1979 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1980 {
1981     ast_expression_codegen *cgen;
1982     ir_value *vec;
1983
1984     /* in QC this is always an lvalue */
1985     (void)lvalue;
1986     if (self->expression.outl) {
1987         *out = self->expression.outl;
1988         return true;
1989     }
1990
1991     cgen = self->owner->expression.codegen;
1992     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1993         return false;
1994
1995     if (vec->vtype != TYPE_VECTOR &&
1996         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1997     {
1998         return false;
1999     }
2000
2001     *out = ir_value_vector_member(vec, self->field);
2002     self->expression.outl = *out;
2003
2004     return (*out != NULL);
2005 }
2006
2007 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2008 {
2009     ast_value *arr;
2010     ast_value *idx;
2011
2012     if (!lvalue && self->expression.outr) {
2013         *out = self->expression.outr;
2014     }
2015     if (lvalue && self->expression.outl) {
2016         *out = self->expression.outl;
2017     }
2018
2019     if (!ast_istype(self->array, ast_value)) {
2020         compile_error(ast_ctx(self), "array indexing this way is not supported");
2021         /* note this would actually be pointer indexing because the left side is
2022          * not an actual array but (hopefully) an indexable expression.
2023          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2024          * support this path will be filled.
2025          */
2026         return false;
2027     }
2028
2029     arr = (ast_value*)self->array;
2030     idx = (ast_value*)self->index;
2031
2032     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2033         /* Time to use accessor functions */
2034         ast_expression_codegen *cgen;
2035         ir_value               *iridx, *funval;
2036         ir_instr               *call;
2037
2038         if (lvalue) {
2039             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2040             return false;
2041         }
2042
2043         if (!arr->getter) {
2044             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2045             return false;
2046         }
2047
2048         cgen = self->index->expression.codegen;
2049         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2050             return false;
2051
2052         cgen = arr->getter->expression.codegen;
2053         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2054             return false;
2055
2056         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval);
2057         if (!call)
2058             return false;
2059         ir_call_param(call, iridx);
2060
2061         *out = ir_call_value(call);
2062         self->expression.outr = *out;
2063         return true;
2064     }
2065
2066     if (idx->expression.vtype == TYPE_FLOAT) {
2067         unsigned int arridx = idx->constval.vfloat;
2068         if (arridx >= self->array->expression.count)
2069         {
2070             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2071             return false;
2072         }
2073         *out = arr->ir_values[arridx];
2074     }
2075     else if (idx->expression.vtype == TYPE_INTEGER) {
2076         unsigned int arridx = idx->constval.vint;
2077         if (arridx >= self->array->expression.count)
2078         {
2079             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2080             return false;
2081         }
2082         *out = arr->ir_values[arridx];
2083     }
2084     else {
2085         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2086         return false;
2087     }
2088     return true;
2089 }
2090
2091 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2092 {
2093     ast_expression_codegen *cgen;
2094
2095     ir_value *condval;
2096     ir_value *dummy;
2097
2098     ir_block *cond = func->curblock;
2099     ir_block *ontrue;
2100     ir_block *onfalse;
2101     ir_block *ontrue_endblock = NULL;
2102     ir_block *onfalse_endblock = NULL;
2103     ir_block *merge = NULL;
2104
2105     /* We don't output any value, thus also don't care about r/lvalue */
2106     (void)out;
2107     (void)lvalue;
2108
2109     if (self->expression.outr) {
2110         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2111         return false;
2112     }
2113     self->expression.outr = (ir_value*)1;
2114
2115     /* generate the condition */
2116     cgen = self->cond->expression.codegen;
2117     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2118         return false;
2119     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2120     cond = func->curblock;
2121
2122     /* on-true path */
2123
2124     if (self->on_true) {
2125         /* create on-true block */
2126         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2127         if (!ontrue)
2128             return false;
2129
2130         /* enter the block */
2131         func->curblock = ontrue;
2132
2133         /* generate */
2134         cgen = self->on_true->expression.codegen;
2135         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2136             return false;
2137
2138         /* we now need to work from the current endpoint */
2139         ontrue_endblock = func->curblock;
2140     } else
2141         ontrue = NULL;
2142
2143     /* on-false path */
2144     if (self->on_false) {
2145         /* create on-false block */
2146         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2147         if (!onfalse)
2148             return false;
2149
2150         /* enter the block */
2151         func->curblock = onfalse;
2152
2153         /* generate */
2154         cgen = self->on_false->expression.codegen;
2155         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2156             return false;
2157
2158         /* we now need to work from the current endpoint */
2159         onfalse_endblock = func->curblock;
2160     } else
2161         onfalse = NULL;
2162
2163     /* Merge block were they all merge in to */
2164     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2165     {
2166         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2167         if (!merge)
2168             return false;
2169         /* add jumps ot the merge block */
2170         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2171             return false;
2172         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2173             return false;
2174
2175         /* Now enter the merge block */
2176         func->curblock = merge;
2177     }
2178
2179     /* we create the if here, that way all blocks are ordered :)
2180      */
2181     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2182                             (ontrue  ? ontrue  : merge),
2183                             (onfalse ? onfalse : merge)))
2184     {
2185         return false;
2186     }
2187
2188     return true;
2189 }
2190
2191 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2192 {
2193     ast_expression_codegen *cgen;
2194
2195     ir_value *condval;
2196     ir_value *trueval, *falseval;
2197     ir_instr *phi;
2198
2199     ir_block *cond = func->curblock;
2200     ir_block *cond_out = NULL;
2201     ir_block *ontrue, *ontrue_out = NULL;
2202     ir_block *onfalse, *onfalse_out = NULL;
2203     ir_block *merge;
2204
2205     /* Ternary can never create an lvalue... */
2206     if (lvalue)
2207         return false;
2208
2209     /* In theory it shouldn't be possible to pass through a node twice, but
2210      * in case we add any kind of optimization pass for the AST itself, it
2211      * may still happen, thus we remember a created ir_value and simply return one
2212      * if it already exists.
2213      */
2214     if (self->expression.outr) {
2215         *out = self->expression.outr;
2216         return true;
2217     }
2218
2219     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2220
2221     /* generate the condition */
2222     func->curblock = cond;
2223     cgen = self->cond->expression.codegen;
2224     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2225         return false;
2226     cond_out = func->curblock;
2227
2228     /* create on-true block */
2229     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2230     if (!ontrue)
2231         return false;
2232     else
2233     {
2234         /* enter the block */
2235         func->curblock = ontrue;
2236
2237         /* generate */
2238         cgen = self->on_true->expression.codegen;
2239         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2240             return false;
2241
2242         ontrue_out = func->curblock;
2243     }
2244
2245     /* create on-false block */
2246     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2247     if (!onfalse)
2248         return false;
2249     else
2250     {
2251         /* enter the block */
2252         func->curblock = onfalse;
2253
2254         /* generate */
2255         cgen = self->on_false->expression.codegen;
2256         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2257             return false;
2258
2259         onfalse_out = func->curblock;
2260     }
2261
2262     /* create merge block */
2263     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2264     if (!merge)
2265         return false;
2266     /* jump to merge block */
2267     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2268         return false;
2269     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2270         return false;
2271
2272     /* create if instruction */
2273     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2274         return false;
2275
2276     /* Now enter the merge block */
2277     func->curblock = merge;
2278
2279     /* Here, now, we need a PHI node
2280      * but first some sanity checking...
2281      */
2282     if (trueval->vtype != falseval->vtype) {
2283         /* error("ternary with different types on the two sides"); */
2284         return false;
2285     }
2286
2287     /* create PHI */
2288     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2289     if (!phi)
2290         return false;
2291     ir_phi_add(phi, ontrue_out,  trueval);
2292     ir_phi_add(phi, onfalse_out, falseval);
2293
2294     self->expression.outr = ir_phi_value(phi);
2295     *out = self->expression.outr;
2296
2297     return true;
2298 }
2299
2300 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2301 {
2302     ast_expression_codegen *cgen;
2303
2304     ir_value *dummy      = NULL;
2305     ir_value *precond    = NULL;
2306     ir_value *postcond   = NULL;
2307
2308     /* Since we insert some jumps "late" so we have blocks
2309      * ordered "nicely", we need to keep track of the actual end-blocks
2310      * of expressions to add the jumps to.
2311      */
2312     ir_block *bbody      = NULL, *end_bbody      = NULL;
2313     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2314     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2315     ir_block *bincrement = NULL, *end_bincrement = NULL;
2316     ir_block *bout       = NULL, *bin            = NULL;
2317
2318     /* let's at least move the outgoing block to the end */
2319     size_t    bout_id;
2320
2321     /* 'break' and 'continue' need to be able to find the right blocks */
2322     ir_block *bcontinue     = NULL;
2323     ir_block *bbreak        = NULL;
2324
2325     ir_block *old_bcontinue = NULL;
2326     ir_block *old_bbreak    = NULL;
2327
2328     ir_block *tmpblock      = NULL;
2329
2330     (void)lvalue;
2331     (void)out;
2332
2333     if (self->expression.outr) {
2334         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2335         return false;
2336     }
2337     self->expression.outr = (ir_value*)1;
2338
2339     /* NOTE:
2340      * Should we ever need some kind of block ordering, better make this function
2341      * move blocks around than write a block ordering algorithm later... after all
2342      * the ast and ir should work together, not against each other.
2343      */
2344
2345     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2346      * anyway if for example it contains a ternary.
2347      */
2348     if (self->initexpr)
2349     {
2350         cgen = self->initexpr->expression.codegen;
2351         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2352             return false;
2353     }
2354
2355     /* Store the block from which we enter this chaos */
2356     bin = func->curblock;
2357
2358     /* The pre-loop condition needs its own block since we
2359      * need to be able to jump to the start of that expression.
2360      */
2361     if (self->precond)
2362     {
2363         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2364         if (!bprecond)
2365             return false;
2366
2367         /* the pre-loop-condition the least important place to 'continue' at */
2368         bcontinue = bprecond;
2369
2370         /* enter */
2371         func->curblock = bprecond;
2372
2373         /* generate */
2374         cgen = self->precond->expression.codegen;
2375         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2376             return false;
2377
2378         end_bprecond = func->curblock;
2379     } else {
2380         bprecond = end_bprecond = NULL;
2381     }
2382
2383     /* Now the next blocks won't be ordered nicely, but we need to
2384      * generate them this early for 'break' and 'continue'.
2385      */
2386     if (self->increment) {
2387         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2388         if (!bincrement)
2389             return false;
2390         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2391     } else {
2392         bincrement = end_bincrement = NULL;
2393     }
2394
2395     if (self->postcond) {
2396         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2397         if (!bpostcond)
2398             return false;
2399         bcontinue = bpostcond; /* postcond comes before the increment */
2400     } else {
2401         bpostcond = end_bpostcond = NULL;
2402     }
2403
2404     bout_id = vec_size(func->ir_func->blocks);
2405     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2406     if (!bout)
2407         return false;
2408     bbreak = bout;
2409
2410     /* The loop body... */
2411     if (self->body)
2412     {
2413         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2414         if (!bbody)
2415             return false;
2416
2417         /* enter */
2418         func->curblock = bbody;
2419
2420         old_bbreak          = func->breakblock;
2421         old_bcontinue       = func->continueblock;
2422         func->breakblock    = bbreak;
2423         func->continueblock = bcontinue;
2424         if (!func->continueblock)
2425             func->continueblock = bbody;
2426
2427         /* generate */
2428         cgen = self->body->expression.codegen;
2429         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2430             return false;
2431
2432         end_bbody = func->curblock;
2433         func->breakblock    = old_bbreak;
2434         func->continueblock = old_bcontinue;
2435     }
2436
2437     /* post-loop-condition */
2438     if (self->postcond)
2439     {
2440         /* enter */
2441         func->curblock = bpostcond;
2442
2443         /* generate */
2444         cgen = self->postcond->expression.codegen;
2445         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2446             return false;
2447
2448         end_bpostcond = func->curblock;
2449     }
2450
2451     /* The incrementor */
2452     if (self->increment)
2453     {
2454         /* enter */
2455         func->curblock = bincrement;
2456
2457         /* generate */
2458         cgen = self->increment->expression.codegen;
2459         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2460             return false;
2461
2462         end_bincrement = func->curblock;
2463     }
2464
2465     /* In any case now, we continue from the outgoing block */
2466     func->curblock = bout;
2467
2468     /* Now all blocks are in place */
2469     /* From 'bin' we jump to whatever comes first */
2470     if      (bprecond)   tmpblock = bprecond;
2471     else if (bbody)      tmpblock = bbody;
2472     else if (bpostcond)  tmpblock = bpostcond;
2473     else                 tmpblock = bout;
2474     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2475         return false;
2476
2477     /* From precond */
2478     if (bprecond)
2479     {
2480         ir_block *ontrue, *onfalse;
2481         if      (bbody)      ontrue = bbody;
2482         else if (bincrement) ontrue = bincrement;
2483         else if (bpostcond)  ontrue = bpostcond;
2484         else                 ontrue = bprecond;
2485         onfalse = bout;
2486         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2487             return false;
2488     }
2489
2490     /* from body */
2491     if (bbody)
2492     {
2493         if      (bincrement) tmpblock = bincrement;
2494         else if (bpostcond)  tmpblock = bpostcond;
2495         else if (bprecond)   tmpblock = bprecond;
2496         else                 tmpblock = bbody;
2497         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2498             return false;
2499     }
2500
2501     /* from increment */
2502     if (bincrement)
2503     {
2504         if      (bpostcond)  tmpblock = bpostcond;
2505         else if (bprecond)   tmpblock = bprecond;
2506         else if (bbody)      tmpblock = bbody;
2507         else                 tmpblock = bout;
2508         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2509             return false;
2510     }
2511
2512     /* from postcond */
2513     if (bpostcond)
2514     {
2515         ir_block *ontrue, *onfalse;
2516         if      (bprecond)   ontrue = bprecond;
2517         else if (bbody)      ontrue = bbody;
2518         else if (bincrement) ontrue = bincrement;
2519         else                 ontrue = bpostcond;
2520         onfalse = bout;
2521         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2522             return false;
2523     }
2524
2525     /* Move 'bout' to the end */
2526     vec_remove(func->ir_func->blocks, bout_id, 1);
2527     vec_push(func->ir_func->blocks, bout);
2528
2529     return true;
2530 }
2531
2532 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2533 {
2534     ir_block *target;
2535
2536     *out = NULL;
2537
2538     if (lvalue) {
2539         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2540         return false;
2541     }
2542
2543     if (self->expression.outr) {
2544         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2545         return false;
2546     }
2547     self->expression.outr = (ir_value*)1;
2548
2549     if (self->is_continue)
2550         target = func->continueblock;
2551     else
2552         target = func->breakblock;
2553
2554     if (!target) {
2555         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2556         return false;
2557     }
2558
2559     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2560         return false;
2561     return true;
2562 }
2563
2564 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2565 {
2566     ast_expression_codegen *cgen;
2567
2568     ast_switch_case *def_case  = NULL;
2569     ir_block        *def_bfall = NULL;
2570
2571     ir_value *dummy     = NULL;
2572     ir_value *irop      = NULL;
2573     ir_block *old_break = NULL;
2574     ir_block *bout      = NULL;
2575     ir_block *bfall     = NULL;
2576     size_t    bout_id;
2577     size_t    c;
2578
2579     char      typestr[1024];
2580     uint16_t  cmpinstr;
2581
2582     if (lvalue) {
2583         compile_error(ast_ctx(self), "switch expression is not an l-value");
2584         return false;
2585     }
2586
2587     if (self->expression.outr) {
2588         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2589         return false;
2590     }
2591     self->expression.outr = (ir_value*)1;
2592
2593     (void)lvalue;
2594     (void)out;
2595
2596     cgen = self->operand->expression.codegen;
2597     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2598         return false;
2599
2600     if (!vec_size(self->cases))
2601         return true;
2602
2603     cmpinstr = type_eq_instr[irop->vtype];
2604     if (cmpinstr >= AINSTR_END) {
2605         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2606         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2607         return false;
2608     }
2609
2610     bout_id = vec_size(func->ir_func->blocks);
2611     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2612     if (!bout)
2613         return false;
2614
2615     /* setup the break block */
2616     old_break        = func->breakblock;
2617     func->breakblock = bout;
2618
2619     /* Now create all cases */
2620     for (c = 0; c < vec_size(self->cases); ++c) {
2621         ir_value *cond, *val;
2622         ir_block *bcase, *bnot;
2623         size_t bnot_id;
2624
2625         ast_switch_case *swcase = &self->cases[c];
2626
2627         if (swcase->value) {
2628             /* A regular case */
2629             /* generate the condition operand */
2630             cgen = swcase->value->expression.codegen;
2631             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2632                 return false;
2633             /* generate the condition */
2634             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2635             if (!cond)
2636                 return false;
2637
2638             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2639             bnot_id = vec_size(func->ir_func->blocks);
2640             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2641             if (!bcase || !bnot)
2642                 return false;
2643             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2644                 return false;
2645
2646             /* Make the previous case-end fall through */
2647             if (bfall && !bfall->final) {
2648                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2649                     return false;
2650             }
2651
2652             /* enter the case */
2653             func->curblock = bcase;
2654             cgen = swcase->code->expression.codegen;
2655             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2656                 return false;
2657
2658             /* remember this block to fall through from */
2659             bfall = func->curblock;
2660
2661             /* enter the else and move it down */
2662             func->curblock = bnot;
2663             vec_remove(func->ir_func->blocks, bnot_id, 1);
2664             vec_push(func->ir_func->blocks, bnot);
2665         } else {
2666             /* The default case */
2667             /* Remember where to fall through from: */
2668             def_bfall = bfall;
2669             bfall     = NULL;
2670             /* remember which case it was */
2671             def_case  = swcase;
2672         }
2673     }
2674
2675     /* Jump from the last bnot to bout */
2676     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2677         /*
2678         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2679         */
2680         return false;
2681     }
2682
2683     /* If there was a default case, put it down here */
2684     if (def_case) {
2685         ir_block *bcase;
2686
2687         /* No need to create an extra block */
2688         bcase = func->curblock;
2689
2690         /* Insert the fallthrough jump */
2691         if (def_bfall && !def_bfall->final) {
2692             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2693                 return false;
2694         }
2695
2696         /* Now generate the default code */
2697         cgen = def_case->code->expression.codegen;
2698         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2699             return false;
2700     }
2701
2702     /* Jump from the last bnot to bout */
2703     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2704         return false;
2705     /* enter the outgoing block */
2706     func->curblock = bout;
2707
2708     /* restore the break block */
2709     func->breakblock = old_break;
2710
2711     /* Move 'bout' to the end, it's nicer */
2712     vec_remove(func->ir_func->blocks, bout_id, 1);
2713     vec_push(func->ir_func->blocks, bout);
2714
2715     return true;
2716 }
2717
2718 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2719 {
2720     size_t i;
2721     ir_value *dummy;
2722
2723     *out = NULL;
2724     if (lvalue) {
2725         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2726         return false;
2727     }
2728
2729     /* simply create a new block and jump to it */
2730     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2731     if (!self->irblock) {
2732         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2733         return false;
2734     }
2735     if (!func->curblock->final) {
2736         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2737             return false;
2738     }
2739
2740     /* enter the new block */
2741     func->curblock = self->irblock;
2742
2743     /* Generate all the leftover gotos */
2744     for (i = 0; i < vec_size(self->gotos); ++i) {
2745         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2746             return false;
2747     }
2748
2749     return true;
2750 }
2751
2752 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2753 {
2754     *out = NULL;
2755     if (lvalue) {
2756         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2757         return false;
2758     }
2759
2760     if (self->target->irblock) {
2761         if (self->irblock_from) {
2762             /* we already tried once, this is the callback */
2763             self->irblock_from->final = false;
2764             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2765                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2766                 return false;
2767             }
2768         }
2769         else
2770         {
2771             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2772                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2773                 return false;
2774             }
2775         }
2776     }
2777     else
2778     {
2779         /* the target has not yet been created...
2780          * close this block in a sneaky way:
2781          */
2782         func->curblock->final = true;
2783         self->irblock_from = func->curblock;
2784         ast_label_register_goto(self->target, self);
2785     }
2786
2787     return true;
2788 }
2789
2790 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2791 {
2792     ast_expression_codegen *cgen;
2793     ir_value              **params;
2794     ir_instr               *callinstr;
2795     size_t i;
2796
2797     ir_value *funval = NULL;
2798
2799     /* return values are never lvalues */
2800     if (lvalue) {
2801         compile_error(ast_ctx(self), "not an l-value (function call)");
2802         return false;
2803     }
2804
2805     if (self->expression.outr) {
2806         *out = self->expression.outr;
2807         return true;
2808     }
2809
2810     cgen = self->func->expression.codegen;
2811     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2812         return false;
2813     if (!funval)
2814         return false;
2815
2816     params = NULL;
2817
2818     /* parameters */
2819     for (i = 0; i < vec_size(self->params); ++i)
2820     {
2821         ir_value *param;
2822         ast_expression *expr = self->params[i];
2823
2824         cgen = expr->expression.codegen;
2825         if (!(*cgen)(expr, func, false, &param))
2826             goto error;
2827         if (!param)
2828             goto error;
2829         vec_push(params, param);
2830     }
2831
2832     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval);
2833     if (!callinstr)
2834         goto error;
2835
2836     for (i = 0; i < vec_size(params); ++i) {
2837         ir_call_param(callinstr, params[i]);
2838     }
2839
2840     *out = ir_call_value(callinstr);
2841     self->expression.outr = *out;
2842
2843     vec_free(params);
2844     return true;
2845 error:
2846     vec_free(params);
2847     return false;
2848 }