]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
get-accessor calling in ast_array_index_codegen
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         mem_d(self);
492         return NULL;
493     }
494
495     outtype = field->expression.next;
496     if (!outtype) {
497         mem_d(self);
498         /* Error: field has no type... */
499         return NULL;
500     }
501
502     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
503
504     self->entity = entity;
505     self->field  = field;
506
507     if (!ast_type_adopt(self, outtype)) {
508         ast_entfield_delete(self);
509         return NULL;
510     }
511
512     return self;
513 }
514
515 void ast_entfield_delete(ast_entfield *self)
516 {
517     ast_unref(self->entity);
518     ast_unref(self->field);
519     ast_expression_delete((ast_expression*)self);
520     mem_d(self);
521 }
522
523 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
524 {
525     ast_instantiate(ast_member, ctx, ast_member_delete);
526     if (field >= 3) {
527         mem_d(self);
528         return NULL;
529     }
530
531     if (owner->expression.vtype != TYPE_VECTOR &&
532         owner->expression.vtype != TYPE_FIELD) {
533         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
534         mem_d(self);
535         return NULL;
536     }
537
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
539     self->expression.node.keep = true; /* keep */
540
541     if (owner->expression.vtype == TYPE_VECTOR) {
542         self->expression.vtype = TYPE_FLOAT;
543         self->expression.next  = NULL;
544     } else {
545         self->expression.vtype = TYPE_FIELD;
546         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
547     }
548
549     self->owner = owner;
550     self->field = field;
551
552     return self;
553 }
554
555 void ast_member_delete(ast_member *self)
556 {
557     /* The owner is always an ast_value, which has .keep=true,
558      * also: ast_members are usually deleted after the owner, thus
559      * this will cause invalid access
560     ast_unref(self->owner);
561      * once we allow (expression).x to access a vector-member, we need
562      * to change this: preferably by creating an alternate ast node for this
563      * purpose that is not garbage-collected.
564     */
565     ast_expression_delete((ast_expression*)self);
566     mem_d(self);
567 }
568
569 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
570 {
571     const ast_expression *outtype;
572     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
573
574     outtype = array->expression.next;
575     if (!outtype) {
576         mem_d(self);
577         /* Error: field has no type... */
578         return NULL;
579     }
580
581     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
582
583     self->array = array;
584     self->index = index;
585
586     if (!ast_type_adopt(self, outtype)) {
587         ast_array_index_delete(self);
588         return NULL;
589     }
590
591     return self;
592 }
593
594 void ast_array_index_delete(ast_array_index *self)
595 {
596     ast_unref(self->array);
597     ast_unref(self->index);
598     ast_expression_delete((ast_expression*)self);
599     mem_d(self);
600 }
601
602 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
603 {
604     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
605     if (!ontrue && !onfalse) {
606         /* because it is invalid */
607         mem_d(self);
608         return NULL;
609     }
610     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
611
612     self->cond     = cond;
613     self->on_true  = ontrue;
614     self->on_false = onfalse;
615
616     return self;
617 }
618
619 void ast_ifthen_delete(ast_ifthen *self)
620 {
621     ast_unref(self->cond);
622     if (self->on_true)
623         ast_unref(self->on_true);
624     if (self->on_false)
625         ast_unref(self->on_false);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
631 {
632     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
633     /* This time NEITHER must be NULL */
634     if (!ontrue || !onfalse) {
635         mem_d(self);
636         return NULL;
637     }
638     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
639
640     self->cond     = cond;
641     self->on_true  = ontrue;
642     self->on_false = onfalse;
643     self->phi_out  = NULL;
644
645     return self;
646 }
647
648 void ast_ternary_delete(ast_ternary *self)
649 {
650     ast_unref(self->cond);
651     ast_unref(self->on_true);
652     ast_unref(self->on_false);
653     ast_expression_delete((ast_expression*)self);
654     mem_d(self);
655 }
656
657 ast_loop* ast_loop_new(lex_ctx ctx,
658                        ast_expression *initexpr,
659                        ast_expression *precond,
660                        ast_expression *postcond,
661                        ast_expression *increment,
662                        ast_expression *body)
663 {
664     ast_instantiate(ast_loop, ctx, ast_loop_delete);
665     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
666
667     self->initexpr  = initexpr;
668     self->precond   = precond;
669     self->postcond  = postcond;
670     self->increment = increment;
671     self->body      = body;
672
673     return self;
674 }
675
676 void ast_loop_delete(ast_loop *self)
677 {
678     if (self->initexpr)
679         ast_unref(self->initexpr);
680     if (self->precond)
681         ast_unref(self->precond);
682     if (self->postcond)
683         ast_unref(self->postcond);
684     if (self->increment)
685         ast_unref(self->increment);
686     if (self->body)
687         ast_unref(self->body);
688     ast_expression_delete((ast_expression*)self);
689     mem_d(self);
690 }
691
692 ast_call* ast_call_new(lex_ctx ctx,
693                        ast_expression *funcexpr)
694 {
695     ast_instantiate(ast_call, ctx, ast_call_delete);
696     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
697
698     MEM_VECTOR_INIT(self, params);
699
700     self->func = funcexpr;
701
702     self->expression.vtype = funcexpr->expression.next->expression.vtype;
703     if (funcexpr->expression.next->expression.next)
704         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
705
706     return self;
707 }
708 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
709
710 void ast_call_delete(ast_call *self)
711 {
712     size_t i;
713     for (i = 0; i < self->params_count; ++i)
714         ast_unref(self->params[i]);
715     MEM_VECTOR_CLEAR(self, params);
716
717     if (self->func)
718         ast_unref(self->func);
719
720     ast_expression_delete((ast_expression*)self);
721     mem_d(self);
722 }
723
724 bool ast_call_check_types(ast_call *self)
725 {
726     size_t i;
727     bool   retval = true;
728     const  ast_expression *func = self->func;
729     size_t count = self->params_count;
730     if (count > func->expression.params_count)
731         count = func->expression.params_count;
732
733     for (i = 0; i < count; ++i) {
734         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
735             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
736                      (unsigned int)(i+1));
737             /* we don't immediately return */
738             retval = false;
739         }
740     }
741     return retval;
742 }
743
744 ast_store* ast_store_new(lex_ctx ctx, int op,
745                          ast_expression *dest, ast_expression *source)
746 {
747     ast_instantiate(ast_store, ctx, ast_store_delete);
748     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
749
750     self->op = op;
751     self->dest = dest;
752     self->source = source;
753
754     self->expression.vtype = dest->expression.vtype;
755     if (dest->expression.next) {
756         self->expression.next = ast_type_copy(ctx, dest);
757         if (!self->expression.next) {
758             ast_delete(self);
759             return NULL;
760         }
761     }
762     else
763         self->expression.next = NULL;
764
765     return self;
766 }
767
768 void ast_store_delete(ast_store *self)
769 {
770     ast_unref(self->dest);
771     ast_unref(self->source);
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 ast_block* ast_block_new(lex_ctx ctx)
777 {
778     ast_instantiate(ast_block, ctx, ast_block_delete);
779     ast_expression_init((ast_expression*)self,
780                         (ast_expression_codegen*)&ast_block_codegen);
781
782     MEM_VECTOR_INIT(self, locals);
783     MEM_VECTOR_INIT(self, exprs);
784     MEM_VECTOR_INIT(self, collect);
785
786     return self;
787 }
788 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
789 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
791
792 bool ast_block_collect(ast_block *self, ast_expression *expr)
793 {
794     if (!ast_block_collect_add(self, expr))
795         return false;
796     expr->expression.node.keep = true;
797     return true;
798 }
799
800 void ast_block_delete(ast_block *self)
801 {
802     size_t i;
803     for (i = 0; i < self->exprs_count; ++i)
804         ast_unref(self->exprs[i]);
805     MEM_VECTOR_CLEAR(self, exprs);
806     for (i = 0; i < self->locals_count; ++i)
807         ast_delete(self->locals[i]);
808     MEM_VECTOR_CLEAR(self, locals);
809     for (i = 0; i < self->collect_count; ++i)
810         ast_delete(self->collect[i]);
811     MEM_VECTOR_CLEAR(self, collect);
812     ast_expression_delete((ast_expression*)self);
813     mem_d(self);
814 }
815
816 bool ast_block_set_type(ast_block *self, ast_expression *from)
817 {
818     if (self->expression.next)
819         ast_delete(self->expression.next);
820     self->expression.vtype = from->expression.vtype;
821     if (from->expression.next) {
822         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
823         if (!self->expression.next)
824             return false;
825     }
826     else
827         self->expression.next = NULL;
828     return true;
829 }
830
831 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
832 {
833     ast_instantiate(ast_function, ctx, ast_function_delete);
834
835     if (!vtype ||
836         vtype->isconst ||
837         vtype->expression.vtype != TYPE_FUNCTION)
838     {
839         mem_d(self);
840         return NULL;
841     }
842
843     self->vtype = vtype;
844     self->name = name ? util_strdup(name) : NULL;
845     MEM_VECTOR_INIT(self, blocks);
846
847     self->labelcount = 0;
848     self->builtin = 0;
849
850     self->ir_func = NULL;
851     self->curblock = NULL;
852
853     self->breakblock    = NULL;
854     self->continueblock = NULL;
855
856     vtype->isconst = true;
857     vtype->constval.vfunc = self;
858
859     return self;
860 }
861
862 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
863
864 void ast_function_delete(ast_function *self)
865 {
866     size_t i;
867     if (self->name)
868         mem_d((void*)self->name);
869     if (self->vtype) {
870         /* ast_value_delete(self->vtype); */
871         self->vtype->isconst = false;
872         self->vtype->constval.vfunc = NULL;
873         /* We use unref - if it was stored in a global table it is supposed
874          * to be deleted from *there*
875          */
876         ast_unref(self->vtype);
877     }
878     for (i = 0; i < self->blocks_count; ++i)
879         ast_delete(self->blocks[i]);
880     MEM_VECTOR_CLEAR(self, blocks);
881     mem_d(self);
882 }
883
884 const char* ast_function_label(ast_function *self, const char *prefix)
885 {
886     size_t id;
887     size_t len;
888     char  *from;
889
890     if (!opts_dump)
891         return NULL;
892
893     id  = (self->labelcount++);
894     len = strlen(prefix);
895
896     from = self->labelbuf + sizeof(self->labelbuf)-1;
897     *from-- = 0;
898     do {
899         unsigned int digit = id % 10;
900         *from = digit + '0';
901         id /= 10;
902     } while (id);
903     memcpy(from - len, prefix, len);
904     return from - len;
905 }
906
907 /*********************************************************************/
908 /* AST codegen part
909  * by convention you must never pass NULL to the 'ir_value **out'
910  * parameter. If you really don't care about the output, pass a dummy.
911  * But I can't imagine a pituation where the output is truly unnecessary.
912  */
913
914 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     /* NOTE: This is the codegen for a variable used in an expression.
917      * It is not the codegen to generate the value. For this purpose,
918      * ast_local_codegen and ast_global_codegen are to be used before this
919      * is executed. ast_function_codegen should take care of its locals,
920      * and the ast-user should take care of ast_global_codegen to be used
921      * on all the globals.
922      */
923     if (!self->ir_v) {
924         char typename[1024];
925         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
926         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
927         return false;
928     }
929     *out = self->ir_v;
930     return true;
931 }
932
933 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
934 {
935     ir_value *v = NULL;
936
937     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
938     {
939         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
940         if (!func)
941             return false;
942         func->context = ast_ctx(self);
943         func->value->context = ast_ctx(self);
944
945         self->constval.vfunc->ir_func = func;
946         self->ir_v = func->value;
947         /* The function is filled later on ast_function_codegen... */
948         return true;
949     }
950
951     if (isfield && self->expression.vtype == TYPE_FIELD) {
952         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
953         if (!v)
954             return false;
955         v->context = ast_ctx(self);
956         if (self->isconst) {
957             asterror(ast_ctx(self), "TODO: constant field pointers with value");
958             goto error;
959         }
960         self->ir_v = v;
961         return true;
962     }
963
964     if (self->expression.vtype == TYPE_ARRAY) {
965         size_t ai;
966         char   *name;
967         size_t  namelen;
968
969         ast_expression_common *elemtype = &self->expression.next->expression;
970         int vtype = elemtype->vtype;
971         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
972         if (!self->expression.count || self->expression.count > opts_max_array_size) {
973             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
974         }
975
976         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
977         if (!self->ir_values) {
978             asterror(ast_ctx(self), "failed to allocate array values");
979             return false;
980         }
981
982         v = ir_builder_create_global(ir, self->name, vtype);
983         if (!v) {
984             asterror(ast_ctx(self), "ir_builder_create_global failed");
985             return false;
986         }
987         if (vtype == TYPE_FIELD)
988             v->fieldtype = elemtype->next->expression.vtype;
989         v->context = ast_ctx(self);
990
991         namelen = strlen(self->name);
992         name    = (char*)mem_a(namelen + 16);
993         strcpy(name, self->name);
994
995         self->ir_values[0] = v;
996         for (ai = 1; ai < self->expression.count; ++ai) {
997             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
998             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
999             if (!self->ir_values[ai]) {
1000                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1001                 return false;
1002             }
1003             if (vtype == TYPE_FIELD)
1004                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1005             self->ir_values[ai]->context = ast_ctx(self);
1006         }
1007     }
1008     else
1009     {
1010         /* Arrays don't do this since there's no "array" value which spans across the
1011          * whole thing.
1012          */
1013         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1014         if (!v) {
1015             asterror(ast_ctx(self), "ir_builder_create_global failed");
1016             return false;
1017         }
1018         if (self->expression.vtype == TYPE_FIELD)
1019             v->fieldtype = self->expression.next->expression.vtype;
1020         v->context = ast_ctx(self);
1021     }
1022
1023     if (self->isconst) {
1024         switch (self->expression.vtype)
1025         {
1026             case TYPE_FLOAT:
1027                 if (!ir_value_set_float(v, self->constval.vfloat))
1028                     goto error;
1029                 break;
1030             case TYPE_VECTOR:
1031                 if (!ir_value_set_vector(v, self->constval.vvec))
1032                     goto error;
1033                 break;
1034             case TYPE_STRING:
1035                 if (!ir_value_set_string(v, self->constval.vstring))
1036                     goto error;
1037                 break;
1038             case TYPE_ARRAY:
1039                 asterror(ast_ctx(self), "TODO: global constant array");
1040                 break;
1041             case TYPE_FUNCTION:
1042                 asterror(ast_ctx(self), "global of type function not properly generated");
1043                 goto error;
1044                 /* Cannot generate an IR value for a function,
1045                  * need a pointer pointing to a function rather.
1046                  */
1047             default:
1048                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1049                 break;
1050         }
1051     }
1052
1053     /* link us to the ir_value */
1054     self->ir_v = v;
1055     return true;
1056
1057 error: /* clean up */
1058     ir_value_delete(v);
1059     return false;
1060 }
1061
1062 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1063 {
1064     ir_value *v = NULL;
1065     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1066     {
1067         /* Do we allow local functions? I think not...
1068          * this is NOT a function pointer atm.
1069          */
1070         return false;
1071     }
1072
1073     if (self->expression.vtype == TYPE_ARRAY)
1074     {
1075         asterror(ast_ctx(self), "TODO: ast_local_codgen for TYPE_ARRAY");
1076         return false;
1077     }
1078
1079     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1080     if (!v)
1081         return false;
1082     if (self->expression.vtype == TYPE_FIELD)
1083         v->fieldtype = self->expression.next->expression.vtype;
1084     v->context = ast_ctx(self);
1085
1086     /* A constant local... hmmm...
1087      * I suppose the IR will have to deal with this
1088      */
1089     if (self->isconst) {
1090         switch (self->expression.vtype)
1091         {
1092             case TYPE_FLOAT:
1093                 if (!ir_value_set_float(v, self->constval.vfloat))
1094                     goto error;
1095                 break;
1096             case TYPE_VECTOR:
1097                 if (!ir_value_set_vector(v, self->constval.vvec))
1098                     goto error;
1099                 break;
1100             case TYPE_STRING:
1101                 if (!ir_value_set_string(v, self->constval.vstring))
1102                     goto error;
1103                 break;
1104             default:
1105                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1106                 break;
1107         }
1108     }
1109
1110     /* link us to the ir_value */
1111     self->ir_v = v;
1112     return true;
1113
1114 error: /* clean up */
1115     ir_value_delete(v);
1116     return false;
1117 }
1118
1119 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1120 {
1121     ir_function *irf;
1122     ir_value    *dummy;
1123     ast_expression_common *ec;
1124     size_t    i;
1125
1126     irf = self->ir_func;
1127     if (!irf) {
1128         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1129         return false;
1130     }
1131
1132     /* fill the parameter list */
1133     ec = &self->vtype->expression;
1134     for (i = 0; i < ec->params_count; ++i)
1135     {
1136         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1137             return false;
1138         if (!self->builtin) {
1139             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1140                 return false;
1141         }
1142     }
1143
1144     if (self->builtin) {
1145         irf->builtin = self->builtin;
1146         return true;
1147     }
1148
1149     if (!self->blocks_count) {
1150         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1151         return false;
1152     }
1153
1154     self->curblock = ir_function_create_block(irf, "entry");
1155     if (!self->curblock) {
1156         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1157         return false;
1158     }
1159
1160     for (i = 0; i < self->blocks_count; ++i) {
1161         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1162         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1163             return false;
1164     }
1165
1166     /* TODO: check return types */
1167     if (!self->curblock->is_return)
1168     {
1169         return ir_block_create_return(self->curblock, NULL);
1170         /* From now on the parser has to handle this situation */
1171 #if 0
1172         if (!self->vtype->expression.next ||
1173             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1174         {
1175             return ir_block_create_return(self->curblock, NULL);
1176         }
1177         else
1178         {
1179             /* error("missing return"); */
1180             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1181             return false;
1182         }
1183 #endif
1184     }
1185     return true;
1186 }
1187
1188 /* Note, you will not see ast_block_codegen generate ir_blocks.
1189  * To the AST and the IR, blocks are 2 different things.
1190  * In the AST it represents a block of code, usually enclosed in
1191  * curly braces {...}.
1192  * While in the IR it represents a block in terms of control-flow.
1193  */
1194 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1195 {
1196     size_t i;
1197
1198     /* We don't use this
1199      * Note: an ast-representation using the comma-operator
1200      * of the form: (a, b, c) = x should not assign to c...
1201      */
1202     if (lvalue) {
1203         asterror(ast_ctx(self), "not an l-value (code-block)");
1204         return false;
1205     }
1206
1207     if (self->expression.outr) {
1208         *out = self->expression.outr;
1209         return true;
1210     }
1211
1212     /* output is NULL at first, we'll have each expression
1213      * assign to out output, thus, a comma-operator represention
1214      * using an ast_block will return the last generated value,
1215      * so: (b, c) + a  executed both b and c, and returns c,
1216      * which is then added to a.
1217      */
1218     *out = NULL;
1219
1220     /* generate locals */
1221     for (i = 0; i < self->locals_count; ++i)
1222     {
1223         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1224             if (opts_debug)
1225                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1226             return false;
1227         }
1228     }
1229
1230     for (i = 0; i < self->exprs_count; ++i)
1231     {
1232         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1233         if (!(*gen)(self->exprs[i], func, false, out))
1234             return false;
1235     }
1236
1237     self->expression.outr = *out;
1238
1239     return true;
1240 }
1241
1242 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1243 {
1244     ast_expression_codegen *cgen;
1245     ir_value *left, *right;
1246
1247     if (lvalue && self->expression.outl) {
1248         *out = self->expression.outl;
1249         return true;
1250     }
1251
1252     if (!lvalue && self->expression.outr) {
1253         *out = self->expression.outr;
1254         return true;
1255     }
1256
1257     cgen = self->dest->expression.codegen;
1258     /* lvalue! */
1259     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1260         return false;
1261     self->expression.outl = left;
1262
1263     cgen = self->source->expression.codegen;
1264     /* rvalue! */
1265     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1266         return false;
1267
1268     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1269         return false;
1270     self->expression.outr = right;
1271
1272     /* Theoretically, an assinment returns its left side as an
1273      * lvalue, if we don't need an lvalue though, we return
1274      * the right side as an rvalue, otherwise we have to
1275      * somehow know whether or not we need to dereference the pointer
1276      * on the left side - that is: OP_LOAD if it was an address.
1277      * Also: in original QC we cannot OP_LOADP *anyway*.
1278      */
1279     *out = (lvalue ? left : right);
1280
1281     return true;
1282 }
1283
1284 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1285 {
1286     ast_expression_codegen *cgen;
1287     ir_value *left, *right;
1288
1289     /* A binary operation cannot yield an l-value */
1290     if (lvalue) {
1291         asterror(ast_ctx(self), "not an l-value (binop)");
1292         return false;
1293     }
1294
1295     if (self->expression.outr) {
1296         *out = self->expression.outr;
1297         return true;
1298     }
1299
1300     cgen = self->left->expression.codegen;
1301     /* lvalue! */
1302     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1303         return false;
1304
1305     cgen = self->right->expression.codegen;
1306     /* rvalue! */
1307     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1308         return false;
1309
1310     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1311                                  self->op, left, right);
1312     if (!*out)
1313         return false;
1314     self->expression.outr = *out;
1315
1316     return true;
1317 }
1318
1319 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1320 {
1321     ast_expression_codegen *cgen;
1322     ir_value *leftl, *leftr, *right, *bin;
1323
1324     if (lvalue && self->expression.outl) {
1325         *out = self->expression.outl;
1326         return true;
1327     }
1328
1329     if (!lvalue && self->expression.outr) {
1330         *out = self->expression.outr;
1331         return true;
1332     }
1333
1334     /* for a binstore we need both an lvalue and an rvalue for the left side */
1335     /* rvalue of destination! */
1336     cgen = self->dest->expression.codegen;
1337     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1338         return false;
1339
1340     /* source as rvalue only */
1341     cgen = self->source->expression.codegen;
1342     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1343         return false;
1344
1345     /* now the binary */
1346     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1347                                 self->opbin, leftr, right);
1348     self->expression.outr = bin;
1349
1350     /* now store them */
1351     cgen = self->dest->expression.codegen;
1352     /* lvalue of destination */
1353     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1354         return false;
1355     self->expression.outl = leftl;
1356
1357     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1358         return false;
1359     self->expression.outr = bin;
1360
1361     /* Theoretically, an assinment returns its left side as an
1362      * lvalue, if we don't need an lvalue though, we return
1363      * the right side as an rvalue, otherwise we have to
1364      * somehow know whether or not we need to dereference the pointer
1365      * on the left side - that is: OP_LOAD if it was an address.
1366      * Also: in original QC we cannot OP_LOADP *anyway*.
1367      */
1368     *out = (lvalue ? leftl : bin);
1369
1370     return true;
1371 }
1372
1373 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1374 {
1375     ast_expression_codegen *cgen;
1376     ir_value *operand;
1377
1378     /* An unary operation cannot yield an l-value */
1379     if (lvalue) {
1380         asterror(ast_ctx(self), "not an l-value (binop)");
1381         return false;
1382     }
1383
1384     if (self->expression.outr) {
1385         *out = self->expression.outr;
1386         return true;
1387     }
1388
1389     cgen = self->operand->expression.codegen;
1390     /* lvalue! */
1391     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1392         return false;
1393
1394     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1395                                  self->op, operand);
1396     if (!*out)
1397         return false;
1398     self->expression.outr = *out;
1399
1400     return true;
1401 }
1402
1403 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1404 {
1405     ast_expression_codegen *cgen;
1406     ir_value *operand;
1407
1408     /* In the context of a return operation, we don't actually return
1409      * anything...
1410      */
1411     if (lvalue) {
1412         asterror(ast_ctx(self), "return-expression is not an l-value");
1413         return false;
1414     }
1415
1416     if (self->expression.outr) {
1417         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1418         return false;
1419     }
1420     self->expression.outr = (ir_value*)1;
1421
1422     if (self->operand) {
1423         cgen = self->operand->expression.codegen;
1424         /* lvalue! */
1425         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1426             return false;
1427
1428         if (!ir_block_create_return(func->curblock, operand))
1429             return false;
1430     } else {
1431         if (!ir_block_create_return(func->curblock, NULL))
1432             return false;
1433     }
1434
1435     return true;
1436 }
1437
1438 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1439 {
1440     ast_expression_codegen *cgen;
1441     ir_value *ent, *field;
1442
1443     /* This function needs to take the 'lvalue' flag into account!
1444      * As lvalue we provide a field-pointer, as rvalue we provide the
1445      * value in a temp.
1446      */
1447
1448     if (lvalue && self->expression.outl) {
1449         *out = self->expression.outl;
1450         return true;
1451     }
1452
1453     if (!lvalue && self->expression.outr) {
1454         *out = self->expression.outr;
1455         return true;
1456     }
1457
1458     cgen = self->entity->expression.codegen;
1459     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1460         return false;
1461
1462     cgen = self->field->expression.codegen;
1463     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1464         return false;
1465
1466     if (lvalue) {
1467         /* address! */
1468         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1469                                             ent, field);
1470     } else {
1471         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1472                                              ent, field, self->expression.vtype);
1473     }
1474     if (!*out) {
1475         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1476                  (lvalue ? "ADDRESS" : "FIELD"),
1477                  type_name[self->expression.vtype]);
1478         return false;
1479     }
1480
1481     if (lvalue)
1482         self->expression.outl = *out;
1483     else
1484         self->expression.outr = *out;
1485
1486     /* Hm that should be it... */
1487     return true;
1488 }
1489
1490 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1491 {
1492     ast_expression_codegen *cgen;
1493     ir_value *vec;
1494
1495     /* in QC this is always an lvalue */
1496     (void)lvalue;
1497     if (self->expression.outl) {
1498         *out = self->expression.outl;
1499         return true;
1500     }
1501
1502     cgen = self->owner->expression.codegen;
1503     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1504         return false;
1505
1506     if (vec->vtype != TYPE_VECTOR &&
1507         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1508     {
1509         return false;
1510     }
1511
1512     *out = ir_value_vector_member(vec, self->field);
1513     self->expression.outl = *out;
1514
1515     return (*out != NULL);
1516 }
1517
1518 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1519 {
1520     ast_value *arr;
1521     ast_value *idx;
1522
1523     if (!lvalue && self->expression.outr) {
1524         *out = self->expression.outr;
1525     }
1526     if (lvalue && self->expression.outl) {
1527         *out = self->expression.outl;
1528     }
1529
1530     if (!ast_istype(self->array, ast_value)) {
1531         asterror(ast_ctx(self), "array indexing this way is not supported");
1532         /* note this would actually be pointer indexing because the left side is
1533          * not an actual array but (hopefully) an indexable expression.
1534          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1535          * support this path will be filled.
1536          */
1537         return false;
1538     }
1539
1540     if (!ast_istype(self->index, ast_value)) {
1541         if (lvalue) {
1542             asterror(ast_ctx(self), "array indexing here needs a compile-time constant");
1543             return false;
1544         } else {
1545             /* Time to use accessor functions */
1546             ast_expression_codegen *cgen;
1547             ir_value               *iridx, *funval;
1548             ir_instr               *call;
1549
1550             if (!arr->getter) {
1551                 asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1552                 return false;
1553             }
1554
1555             cgen = self->index->expression.codegen;
1556             if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1557                 return false;
1558
1559             cgen = arr->getter->expression.codegen;
1560             if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1561                 return false;
1562
1563             call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1564             if (!call)
1565                 return false;
1566             if (!ir_call_param(call, iridx))
1567                 return false;
1568
1569             *out = ir_call_value(call);
1570             self->expression.outr = *out;
1571             return true;
1572         }
1573     }
1574
1575     arr = (ast_value*)self->array;
1576     idx = (ast_value*)self->index;
1577
1578     if (!idx->isconst) {
1579         asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1580         return false;
1581     }
1582
1583     if (idx->expression.vtype == TYPE_FLOAT)
1584         *out = arr->ir_values[(int)idx->constval.vfloat];
1585     else if (idx->expression.vtype == TYPE_INTEGER)
1586         *out = arr->ir_values[idx->constval.vint];
1587     else {
1588         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1589         return false;
1590     }
1591     return true;
1592 }
1593
1594 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1595 {
1596     ast_expression_codegen *cgen;
1597
1598     ir_value *condval;
1599     ir_value *dummy;
1600
1601     ir_block *cond = func->curblock;
1602     ir_block *ontrue;
1603     ir_block *onfalse;
1604     ir_block *ontrue_endblock = NULL;
1605     ir_block *onfalse_endblock = NULL;
1606     ir_block *merge;
1607
1608     /* We don't output any value, thus also don't care about r/lvalue */
1609     (void)out;
1610     (void)lvalue;
1611
1612     if (self->expression.outr) {
1613         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1614         return false;
1615     }
1616     self->expression.outr = (ir_value*)1;
1617
1618     /* generate the condition */
1619     func->curblock = cond;
1620     cgen = self->cond->expression.codegen;
1621     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1622         return false;
1623
1624     /* on-true path */
1625
1626     if (self->on_true) {
1627         /* create on-true block */
1628         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1629         if (!ontrue)
1630             return false;
1631
1632         /* enter the block */
1633         func->curblock = ontrue;
1634
1635         /* generate */
1636         cgen = self->on_true->expression.codegen;
1637         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1638             return false;
1639
1640         /* we now need to work from the current endpoint */
1641         ontrue_endblock = func->curblock;
1642     } else
1643         ontrue = NULL;
1644
1645     /* on-false path */
1646     if (self->on_false) {
1647         /* create on-false block */
1648         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1649         if (!onfalse)
1650             return false;
1651
1652         /* enter the block */
1653         func->curblock = onfalse;
1654
1655         /* generate */
1656         cgen = self->on_false->expression.codegen;
1657         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1658             return false;
1659
1660         /* we now need to work from the current endpoint */
1661         onfalse_endblock = func->curblock;
1662     } else
1663         onfalse = NULL;
1664
1665     /* Merge block were they all merge in to */
1666     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1667     if (!merge)
1668         return false;
1669
1670     /* add jumps ot the merge block */
1671     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1672         return false;
1673     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1674         return false;
1675
1676     /* we create the if here, that way all blocks are ordered :)
1677      */
1678     if (!ir_block_create_if(cond, condval,
1679                             (ontrue  ? ontrue  : merge),
1680                             (onfalse ? onfalse : merge)))
1681     {
1682         return false;
1683     }
1684
1685     /* Now enter the merge block */
1686     func->curblock = merge;
1687
1688     return true;
1689 }
1690
1691 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1692 {
1693     ast_expression_codegen *cgen;
1694
1695     ir_value *condval;
1696     ir_value *trueval, *falseval;
1697     ir_instr *phi;
1698
1699     ir_block *cond = func->curblock;
1700     ir_block *ontrue;
1701     ir_block *onfalse;
1702     ir_block *merge;
1703
1704     /* Ternary can never create an lvalue... */
1705     if (lvalue)
1706         return false;
1707
1708     /* In theory it shouldn't be possible to pass through a node twice, but
1709      * in case we add any kind of optimization pass for the AST itself, it
1710      * may still happen, thus we remember a created ir_value and simply return one
1711      * if it already exists.
1712      */
1713     if (self->phi_out) {
1714         *out = self->phi_out;
1715         return true;
1716     }
1717
1718     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1719
1720     /* generate the condition */
1721     func->curblock = cond;
1722     cgen = self->cond->expression.codegen;
1723     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1724         return false;
1725
1726     /* create on-true block */
1727     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1728     if (!ontrue)
1729         return false;
1730     else
1731     {
1732         /* enter the block */
1733         func->curblock = ontrue;
1734
1735         /* generate */
1736         cgen = self->on_true->expression.codegen;
1737         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1738             return false;
1739     }
1740
1741     /* create on-false block */
1742     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1743     if (!onfalse)
1744         return false;
1745     else
1746     {
1747         /* enter the block */
1748         func->curblock = onfalse;
1749
1750         /* generate */
1751         cgen = self->on_false->expression.codegen;
1752         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1753             return false;
1754     }
1755
1756     /* create merge block */
1757     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1758     if (!merge)
1759         return false;
1760     /* jump to merge block */
1761     if (!ir_block_create_jump(ontrue, merge))
1762         return false;
1763     if (!ir_block_create_jump(onfalse, merge))
1764         return false;
1765
1766     /* create if instruction */
1767     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1768         return false;
1769
1770     /* Now enter the merge block */
1771     func->curblock = merge;
1772
1773     /* Here, now, we need a PHI node
1774      * but first some sanity checking...
1775      */
1776     if (trueval->vtype != falseval->vtype) {
1777         /* error("ternary with different types on the two sides"); */
1778         return false;
1779     }
1780
1781     /* create PHI */
1782     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1783     if (!phi ||
1784         !ir_phi_add(phi, ontrue,  trueval) ||
1785         !ir_phi_add(phi, onfalse, falseval))
1786     {
1787         return false;
1788     }
1789
1790     self->phi_out = ir_phi_value(phi);
1791     *out = self->phi_out;
1792
1793     return true;
1794 }
1795
1796 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1797 {
1798     ast_expression_codegen *cgen;
1799
1800     ir_value *dummy      = NULL;
1801     ir_value *precond    = NULL;
1802     ir_value *postcond   = NULL;
1803
1804     /* Since we insert some jumps "late" so we have blocks
1805      * ordered "nicely", we need to keep track of the actual end-blocks
1806      * of expressions to add the jumps to.
1807      */
1808     ir_block *bbody      = NULL, *end_bbody      = NULL;
1809     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1810     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1811     ir_block *bincrement = NULL, *end_bincrement = NULL;
1812     ir_block *bout       = NULL, *bin            = NULL;
1813
1814     /* let's at least move the outgoing block to the end */
1815     size_t    bout_id;
1816
1817     /* 'break' and 'continue' need to be able to find the right blocks */
1818     ir_block *bcontinue     = NULL;
1819     ir_block *bbreak        = NULL;
1820
1821     ir_block *old_bcontinue = NULL;
1822     ir_block *old_bbreak    = NULL;
1823
1824     ir_block *tmpblock      = NULL;
1825
1826     (void)lvalue;
1827     (void)out;
1828
1829     if (self->expression.outr) {
1830         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1831         return false;
1832     }
1833     self->expression.outr = (ir_value*)1;
1834
1835     /* NOTE:
1836      * Should we ever need some kind of block ordering, better make this function
1837      * move blocks around than write a block ordering algorithm later... after all
1838      * the ast and ir should work together, not against each other.
1839      */
1840
1841     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1842      * anyway if for example it contains a ternary.
1843      */
1844     if (self->initexpr)
1845     {
1846         cgen = self->initexpr->expression.codegen;
1847         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1848             return false;
1849     }
1850
1851     /* Store the block from which we enter this chaos */
1852     bin = func->curblock;
1853
1854     /* The pre-loop condition needs its own block since we
1855      * need to be able to jump to the start of that expression.
1856      */
1857     if (self->precond)
1858     {
1859         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1860         if (!bprecond)
1861             return false;
1862
1863         /* the pre-loop-condition the least important place to 'continue' at */
1864         bcontinue = bprecond;
1865
1866         /* enter */
1867         func->curblock = bprecond;
1868
1869         /* generate */
1870         cgen = self->precond->expression.codegen;
1871         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1872             return false;
1873
1874         end_bprecond = func->curblock;
1875     } else {
1876         bprecond = end_bprecond = NULL;
1877     }
1878
1879     /* Now the next blocks won't be ordered nicely, but we need to
1880      * generate them this early for 'break' and 'continue'.
1881      */
1882     if (self->increment) {
1883         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1884         if (!bincrement)
1885             return false;
1886         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1887     } else {
1888         bincrement = end_bincrement = NULL;
1889     }
1890
1891     if (self->postcond) {
1892         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1893         if (!bpostcond)
1894             return false;
1895         bcontinue = bpostcond; /* postcond comes before the increment */
1896     } else {
1897         bpostcond = end_bpostcond = NULL;
1898     }
1899
1900     bout_id = func->ir_func->blocks_count;
1901     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1902     if (!bout)
1903         return false;
1904     bbreak = bout;
1905
1906     /* The loop body... */
1907     if (self->body)
1908     {
1909         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1910         if (!bbody)
1911             return false;
1912
1913         /* enter */
1914         func->curblock = bbody;
1915
1916         old_bbreak          = func->breakblock;
1917         old_bcontinue       = func->continueblock;
1918         func->breakblock    = bbreak;
1919         func->continueblock = bcontinue;
1920
1921         /* generate */
1922         cgen = self->body->expression.codegen;
1923         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1924             return false;
1925
1926         end_bbody = func->curblock;
1927         func->breakblock    = old_bbreak;
1928         func->continueblock = old_bcontinue;
1929     }
1930
1931     /* post-loop-condition */
1932     if (self->postcond)
1933     {
1934         /* enter */
1935         func->curblock = bpostcond;
1936
1937         /* generate */
1938         cgen = self->postcond->expression.codegen;
1939         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1940             return false;
1941
1942         end_bpostcond = func->curblock;
1943     }
1944
1945     /* The incrementor */
1946     if (self->increment)
1947     {
1948         /* enter */
1949         func->curblock = bincrement;
1950
1951         /* generate */
1952         cgen = self->increment->expression.codegen;
1953         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1954             return false;
1955
1956         end_bincrement = func->curblock;
1957     }
1958
1959     /* In any case now, we continue from the outgoing block */
1960     func->curblock = bout;
1961
1962     /* Now all blocks are in place */
1963     /* From 'bin' we jump to whatever comes first */
1964     if      (bprecond)   tmpblock = bprecond;
1965     else if (bbody)      tmpblock = bbody;
1966     else if (bpostcond)  tmpblock = bpostcond;
1967     else                 tmpblock = bout;
1968     if (!ir_block_create_jump(bin, tmpblock))
1969         return false;
1970
1971     /* From precond */
1972     if (bprecond)
1973     {
1974         ir_block *ontrue, *onfalse;
1975         if      (bbody)      ontrue = bbody;
1976         else if (bincrement) ontrue = bincrement;
1977         else if (bpostcond)  ontrue = bpostcond;
1978         else                 ontrue = bprecond;
1979         onfalse = bout;
1980         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1981             return false;
1982     }
1983
1984     /* from body */
1985     if (bbody)
1986     {
1987         if      (bincrement) tmpblock = bincrement;
1988         else if (bpostcond)  tmpblock = bpostcond;
1989         else if (bprecond)   tmpblock = bprecond;
1990         else                 tmpblock = bout;
1991         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1992             return false;
1993     }
1994
1995     /* from increment */
1996     if (bincrement)
1997     {
1998         if      (bpostcond)  tmpblock = bpostcond;
1999         else if (bprecond)   tmpblock = bprecond;
2000         else if (bbody)      tmpblock = bbody;
2001         else                 tmpblock = bout;
2002         if (!ir_block_create_jump(end_bincrement, tmpblock))
2003             return false;
2004     }
2005
2006     /* from postcond */
2007     if (bpostcond)
2008     {
2009         ir_block *ontrue, *onfalse;
2010         if      (bprecond)   ontrue = bprecond;
2011         else if (bbody)      ontrue = bbody;
2012         else if (bincrement) ontrue = bincrement;
2013         else                 ontrue = bpostcond;
2014         onfalse = bout;
2015         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2016             return false;
2017     }
2018
2019     /* Move 'bout' to the end */
2020     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2021         !ir_function_blocks_add(func->ir_func, bout))
2022     {
2023         ir_block_delete(bout);
2024         return false;
2025     }
2026
2027     return true;
2028 }
2029
2030 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2031 {
2032     ast_expression_codegen *cgen;
2033     ir_value_vector         params;
2034     ir_instr               *callinstr;
2035     size_t i;
2036
2037     ir_value *funval = NULL;
2038
2039     /* return values are never lvalues */
2040     if (lvalue) {
2041         asterror(ast_ctx(self), "not an l-value (function call)");
2042         return false;
2043     }
2044
2045     if (self->expression.outr) {
2046         *out = self->expression.outr;
2047         return true;
2048     }
2049
2050     cgen = self->func->expression.codegen;
2051     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2052         return false;
2053     if (!funval)
2054         return false;
2055
2056     MEM_VECTOR_INIT(&params, v);
2057
2058     /* parameters */
2059     for (i = 0; i < self->params_count; ++i)
2060     {
2061         ir_value *param;
2062         ast_expression *expr = self->params[i];
2063
2064         cgen = expr->expression.codegen;
2065         if (!(*cgen)(expr, func, false, &param))
2066             goto error;
2067         if (!param)
2068             goto error;
2069         if (!ir_value_vector_v_add(&params, param))
2070             goto error;
2071     }
2072
2073     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2074     if (!callinstr)
2075         goto error;
2076
2077     for (i = 0; i < params.v_count; ++i) {
2078         if (!ir_call_param(callinstr, params.v[i]))
2079             goto error;
2080     }
2081
2082     *out = ir_call_value(callinstr);
2083     self->expression.outr = *out;
2084
2085     MEM_VECTOR_CLEAR(&params, v);
2086     return true;
2087 error:
2088     MEM_VECTOR_CLEAR(&params, v);
2089     return false;
2090 }