]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_member's are now kept, since they are used like variables: multiple times
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 static ast_value* ast_value_copy(const ast_value *self)
96 {
97     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
98     if (self->expression.next) {
99         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
100         if (!cp->expression.next) {
101             ast_value_delete(cp);
102             return NULL;
103         }
104     }
105     return cp;
106 }
107
108 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
109 {
110     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
111     self->expression.codegen = NULL;
112     self->expression.next    = NULL;
113     self->expression.vtype   = vtype;
114     return self;
115 }
116
117 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
118 {
119     size_t i;
120     const ast_expression_common *fromex;
121     ast_expression_common *selfex;
122
123     if (!ex)
124         return NULL;
125     else
126     {
127         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
128
129         fromex   = &ex->expression;
130         selfex = &self->expression;
131
132         /* This may never be codegen()d */
133         selfex->codegen = NULL;
134
135         selfex->vtype = fromex->vtype;
136         if (fromex->next)
137         {
138             selfex->next = ast_type_copy(ctx, fromex->next);
139             if (!selfex->next) {
140                 ast_expression_delete_full(self);
141                 return NULL;
142             }
143         }
144         else
145             selfex->next = NULL;
146
147         for (i = 0; i < fromex->params_count; ++i) {
148             ast_value *v = ast_value_copy(fromex->params[i]);
149             if (!v || !ast_expression_common_params_add(selfex, v)) {
150                 ast_expression_delete_full(self);
151                 return NULL;
152             }
153         }
154
155         return self;
156     }
157 }
158
159 bool ast_compare_type(ast_expression *a, ast_expression *b)
160 {
161     if (a->expression.vtype != b->expression.vtype)
162         return false;
163     if (!a->expression.next != !b->expression.next)
164         return false;
165     if (a->expression.params_count != b->expression.params_count)
166         return false;
167     if (a->expression.params_count) {
168         size_t i;
169         for (i = 0; i < a->expression.params_count; ++i) {
170             if (!ast_compare_type((ast_expression*)a->expression.params[i],
171                                   (ast_expression*)b->expression.params[i]))
172                 return false;
173         }
174     }
175     if (a->expression.next)
176         return ast_compare_type(a->expression.next, b->expression.next);
177     return true;
178 }
179
180 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
181 {
182     ast_instantiate(ast_value, ctx, ast_value_delete);
183     ast_expression_init((ast_expression*)self,
184                         (ast_expression_codegen*)&ast_value_codegen);
185     self->expression.node.keep = true; /* keep */
186
187     self->name = name ? util_strdup(name) : NULL;
188     self->expression.vtype = t;
189     self->expression.next  = NULL;
190     self->isconst = false;
191     memset(&self->constval, 0, sizeof(self->constval));
192
193     self->ir_v    = NULL;
194
195     return self;
196 }
197
198 void ast_value_delete(ast_value* self)
199 {
200     if (self->name)
201         mem_d((void*)self->name);
202     if (self->isconst) {
203         switch (self->expression.vtype)
204         {
205         case TYPE_STRING:
206             mem_d((void*)self->constval.vstring);
207             break;
208         case TYPE_FUNCTION:
209             /* unlink us from the function node */
210             self->constval.vfunc->vtype = NULL;
211             break;
212         /* NOTE: delete function? currently collected in
213          * the parser structure
214          */
215         default:
216             break;
217         }
218     }
219     ast_expression_delete((ast_expression*)self);
220     mem_d(self);
221 }
222
223 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
224 {
225     return ast_expression_common_params_add(&self->expression, p);
226 }
227
228 bool ast_value_set_name(ast_value *self, const char *name)
229 {
230     if (self->name)
231         mem_d((void*)self->name);
232     self->name = util_strdup(name);
233     return !!self->name;
234 }
235
236 ast_binary* ast_binary_new(lex_ctx ctx, int op,
237                            ast_expression* left, ast_expression* right)
238 {
239     ast_instantiate(ast_binary, ctx, ast_binary_delete);
240     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
241
242     self->op = op;
243     self->left = left;
244     self->right = right;
245
246     if (op >= INSTR_EQ_F && op <= INSTR_GT)
247         self->expression.vtype = TYPE_FLOAT;
248     else if (op == INSTR_AND || op == INSTR_OR ||
249              op == INSTR_BITAND || op == INSTR_BITOR)
250         self->expression.vtype = TYPE_FLOAT;
251     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
252         self->expression.vtype = TYPE_VECTOR;
253     else if (op == INSTR_MUL_V)
254         self->expression.vtype = TYPE_FLOAT;
255     else
256         self->expression.vtype = left->expression.vtype;
257
258     return self;
259 }
260
261 void ast_binary_delete(ast_binary *self)
262 {
263     ast_unref(self->left);
264     ast_unref(self->right);
265     ast_expression_delete((ast_expression*)self);
266     mem_d(self);
267 }
268
269 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
270                                ast_expression* left, ast_expression* right)
271 {
272     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
273     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
274
275     self->opstore = storop;
276     self->opbin   = op;
277     self->dest    = left;
278     self->source  = right;
279
280     self->expression.vtype = left->expression.vtype;
281     if (left->expression.next) {
282         self->expression.next = ast_type_copy(ctx, left);
283         if (!self->expression.next) {
284             ast_delete(self);
285             return NULL;
286         }
287     }
288     else
289         self->expression.next = NULL;
290
291     return self;
292 }
293
294 void ast_binstore_delete(ast_binstore *self)
295 {
296     ast_unref(self->dest);
297     ast_unref(self->source);
298     ast_expression_delete((ast_expression*)self);
299     mem_d(self);
300 }
301
302 ast_unary* ast_unary_new(lex_ctx ctx, int op,
303                          ast_expression *expr)
304 {
305     ast_instantiate(ast_unary, ctx, ast_unary_delete);
306     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
307
308     self->op = op;
309     self->operand = expr;
310
311     return self;
312 }
313
314 void ast_unary_delete(ast_unary *self)
315 {
316     ast_unref(self->operand);
317     ast_expression_delete((ast_expression*)self);
318     mem_d(self);
319 }
320
321 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
322 {
323     ast_instantiate(ast_return, ctx, ast_return_delete);
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
325
326     self->operand = expr;
327
328     return self;
329 }
330
331 void ast_return_delete(ast_return *self)
332 {
333     ast_unref(self->operand);
334     ast_expression_delete((ast_expression*)self);
335     mem_d(self);
336 }
337
338 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
339 {
340     const ast_expression *outtype;
341
342     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
343
344     if (field->expression.vtype != TYPE_FIELD) {
345         mem_d(self);
346         return NULL;
347     }
348
349     outtype = field->expression.next;
350     if (!outtype) {
351         mem_d(self);
352         /* Error: field has no type... */
353         return NULL;
354     }
355
356     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
357
358     self->expression.vtype = outtype->expression.vtype;
359     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
360
361     self->entity = entity;
362     self->field  = field;
363
364     return self;
365 }
366
367 void ast_entfield_delete(ast_entfield *self)
368 {
369     ast_unref(self->entity);
370     ast_unref(self->field);
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
376 {
377     ast_instantiate(ast_member, ctx, ast_member_delete);
378     if (field >= 3) {
379         mem_d(self);
380         return NULL;
381     }
382
383     if (owner->expression.vtype != TYPE_VECTOR &&
384         owner->expression.vtype != TYPE_FIELD) {
385         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
386         mem_d(self);
387         return NULL;
388     }
389
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
391     self->expression.node.keep = true; /* keep */
392
393     if (owner->expression.vtype == TYPE_VECTOR) {
394         self->expression.vtype = TYPE_FLOAT;
395         self->expression.next  = NULL;
396     } else {
397         self->expression.vtype = TYPE_FIELD;
398         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
399     }
400
401     self->owner = owner;
402     self->field = field;
403
404     return self;
405 }
406
407 void ast_member_delete(ast_member *self)
408 {
409     /* The owner is always an ast_value, which has .keep=true,
410      * also: ast_members are usually deleted after the owner, thus
411      * this will cause invalid access
412     ast_unref(self->owner);
413      * once we allow (expression).x to access a vector-member, we need
414      * to change this: preferably by creating an alternate ast node for this
415      * purpose that is not garbage-collected.
416     */
417     ast_expression_delete((ast_expression*)self);
418     mem_d(self);
419 }
420
421 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
422 {
423     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
424     if (!ontrue && !onfalse) {
425         /* because it is invalid */
426         mem_d(self);
427         return NULL;
428     }
429     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
430
431     self->cond     = cond;
432     self->on_true  = ontrue;
433     self->on_false = onfalse;
434
435     return self;
436 }
437
438 void ast_ifthen_delete(ast_ifthen *self)
439 {
440     ast_unref(self->cond);
441     if (self->on_true)
442         ast_unref(self->on_true);
443     if (self->on_false)
444         ast_unref(self->on_false);
445     ast_expression_delete((ast_expression*)self);
446     mem_d(self);
447 }
448
449 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
450 {
451     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
452     /* This time NEITHER must be NULL */
453     if (!ontrue || !onfalse) {
454         mem_d(self);
455         return NULL;
456     }
457     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
458
459     self->cond     = cond;
460     self->on_true  = ontrue;
461     self->on_false = onfalse;
462     self->phi_out  = NULL;
463
464     return self;
465 }
466
467 void ast_ternary_delete(ast_ternary *self)
468 {
469     ast_unref(self->cond);
470     ast_unref(self->on_true);
471     ast_unref(self->on_false);
472     ast_expression_delete((ast_expression*)self);
473     mem_d(self);
474 }
475
476 ast_loop* ast_loop_new(lex_ctx ctx,
477                        ast_expression *initexpr,
478                        ast_expression *precond,
479                        ast_expression *postcond,
480                        ast_expression *increment,
481                        ast_expression *body)
482 {
483     ast_instantiate(ast_loop, ctx, ast_loop_delete);
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
485
486     self->initexpr  = initexpr;
487     self->precond   = precond;
488     self->postcond  = postcond;
489     self->increment = increment;
490     self->body      = body;
491
492     return self;
493 }
494
495 void ast_loop_delete(ast_loop *self)
496 {
497     if (self->initexpr)
498         ast_unref(self->initexpr);
499     if (self->precond)
500         ast_unref(self->precond);
501     if (self->postcond)
502         ast_unref(self->postcond);
503     if (self->increment)
504         ast_unref(self->increment);
505     if (self->body)
506         ast_unref(self->body);
507     ast_expression_delete((ast_expression*)self);
508     mem_d(self);
509 }
510
511 ast_call* ast_call_new(lex_ctx ctx,
512                        ast_expression *funcexpr)
513 {
514     ast_instantiate(ast_call, ctx, ast_call_delete);
515     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
516
517     MEM_VECTOR_INIT(self, params);
518
519     self->func = funcexpr;
520
521     return self;
522 }
523 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
524
525 void ast_call_delete(ast_call *self)
526 {
527     size_t i;
528     for (i = 0; i < self->params_count; ++i)
529         ast_unref(self->params[i]);
530     MEM_VECTOR_CLEAR(self, params);
531
532     if (self->func)
533         ast_unref(self->func);
534
535     ast_expression_delete((ast_expression*)self);
536     mem_d(self);
537 }
538
539 ast_store* ast_store_new(lex_ctx ctx, int op,
540                          ast_expression *dest, ast_expression *source)
541 {
542     ast_instantiate(ast_store, ctx, ast_store_delete);
543     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
544
545     self->op = op;
546     self->dest = dest;
547     self->source = source;
548
549     return self;
550 }
551
552 void ast_store_delete(ast_store *self)
553 {
554     ast_unref(self->dest);
555     ast_unref(self->source);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_block* ast_block_new(lex_ctx ctx)
561 {
562     ast_instantiate(ast_block, ctx, ast_block_delete);
563     ast_expression_init((ast_expression*)self,
564                         (ast_expression_codegen*)&ast_block_codegen);
565
566     MEM_VECTOR_INIT(self, locals);
567     MEM_VECTOR_INIT(self, exprs);
568     MEM_VECTOR_INIT(self, collect);
569
570     return self;
571 }
572 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
573 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
574 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
575
576 bool ast_block_collect(ast_block *self, ast_expression *expr)
577 {
578     if (!ast_block_collect_add(self, expr))
579         return false;
580     expr->expression.node.keep = true;
581     return true;
582 }
583
584 void ast_block_delete(ast_block *self)
585 {
586     size_t i;
587     for (i = 0; i < self->exprs_count; ++i)
588         ast_unref(self->exprs[i]);
589     MEM_VECTOR_CLEAR(self, exprs);
590     for (i = 0; i < self->locals_count; ++i)
591         ast_delete(self->locals[i]);
592     MEM_VECTOR_CLEAR(self, locals);
593     for (i = 0; i < self->collect_count; ++i)
594         ast_delete(self->collect[i]);
595     MEM_VECTOR_CLEAR(self, collect);
596     ast_expression_delete((ast_expression*)self);
597     mem_d(self);
598 }
599
600 bool ast_block_set_type(ast_block *self, ast_expression *from)
601 {
602     if (self->expression.next)
603         ast_delete(self->expression.next);
604     self->expression.vtype = from->expression.vtype;
605     if (from->expression.next) {
606         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
607         if (!self->expression.next)
608             return false;
609     }
610     return true;
611 }
612
613 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
614 {
615     ast_instantiate(ast_function, ctx, ast_function_delete);
616
617     if (!vtype ||
618         vtype->isconst ||
619         vtype->expression.vtype != TYPE_FUNCTION)
620     {
621         mem_d(self);
622         return NULL;
623     }
624
625     self->vtype = vtype;
626     self->name = name ? util_strdup(name) : NULL;
627     MEM_VECTOR_INIT(self, blocks);
628
629     self->labelcount = 0;
630     self->builtin = 0;
631
632     self->ir_func = NULL;
633     self->curblock = NULL;
634
635     self->breakblock    = NULL;
636     self->continueblock = NULL;
637
638     vtype->isconst = true;
639     vtype->constval.vfunc = self;
640
641     return self;
642 }
643
644 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
645
646 void ast_function_delete(ast_function *self)
647 {
648     size_t i;
649     if (self->name)
650         mem_d((void*)self->name);
651     if (self->vtype) {
652         /* ast_value_delete(self->vtype); */
653         self->vtype->isconst = false;
654         self->vtype->constval.vfunc = NULL;
655         /* We use unref - if it was stored in a global table it is supposed
656          * to be deleted from *there*
657          */
658         ast_unref(self->vtype);
659     }
660     for (i = 0; i < self->blocks_count; ++i)
661         ast_delete(self->blocks[i]);
662     MEM_VECTOR_CLEAR(self, blocks);
663     mem_d(self);
664 }
665
666 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
667 {
668     unsigned int base = 10;
669 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
670 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
671     if (size < 1)
672         return;
673     checknul();
674     if (!num)
675         addch('0');
676     else {
677         while (num)
678         {
679             int digit = num % base;
680             num /= base;
681             addch('0' + digit);
682         }
683     }
684
685     *buf = 0;
686 #undef addch
687 #undef checknul
688 }
689
690 const char* ast_function_label(ast_function *self, const char *prefix)
691 {
692     size_t id = (self->labelcount++);
693     size_t len = strlen(prefix);
694     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
695     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
696     return self->labelbuf;
697 }
698
699 /*********************************************************************/
700 /* AST codegen part
701  * by convention you must never pass NULL to the 'ir_value **out'
702  * parameter. If you really don't care about the output, pass a dummy.
703  * But I can't imagine a pituation where the output is truly unnecessary.
704  */
705
706 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
707 {
708     /* NOTE: This is the codegen for a variable used in an expression.
709      * It is not the codegen to generate the value. For this purpose,
710      * ast_local_codegen and ast_global_codegen are to be used before this
711      * is executed. ast_function_codegen should take care of its locals,
712      * and the ast-user should take care of ast_global_codegen to be used
713      * on all the globals.
714      */
715     if (!self->ir_v) {
716         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
717         return false;
718     }
719     *out = self->ir_v;
720     return true;
721 }
722
723 bool ast_global_codegen(ast_value *self, ir_builder *ir)
724 {
725     ir_value *v = NULL;
726     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
727     {
728         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
729         if (!func)
730             return false;
731
732         self->constval.vfunc->ir_func = func;
733         self->ir_v = func->value;
734         /* The function is filled later on ast_function_codegen... */
735         return true;
736     }
737
738     if (self->expression.vtype == TYPE_FIELD) {
739         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
740         if (!v)
741             return false;
742         if (self->isconst) {
743             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
744             goto error;
745         }
746         self->ir_v = v;
747         return true;
748     }
749
750     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
751     if (!v) {
752         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
753         return false;
754     }
755
756     if (self->isconst) {
757         switch (self->expression.vtype)
758         {
759             case TYPE_FLOAT:
760                 if (!ir_value_set_float(v, self->constval.vfloat))
761                     goto error;
762                 break;
763             case TYPE_VECTOR:
764                 if (!ir_value_set_vector(v, self->constval.vvec))
765                     goto error;
766                 break;
767             case TYPE_STRING:
768                 if (!ir_value_set_string(v, self->constval.vstring))
769                     goto error;
770                 break;
771             case TYPE_FUNCTION:
772                 asterror(ast_ctx(self), "global of type function not properly generated\n");
773                 goto error;
774                 /* Cannot generate an IR value for a function,
775                  * need a pointer pointing to a function rather.
776                  */
777             default:
778                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
779                 break;
780         }
781     }
782
783     /* link us to the ir_value */
784     self->ir_v = v;
785     return true;
786
787 error: /* clean up */
788     ir_value_delete(v);
789     return false;
790 }
791
792 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
793 {
794     ir_value *v = NULL;
795     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
796     {
797         /* Do we allow local functions? I think not...
798          * this is NOT a function pointer atm.
799          */
800         return false;
801     }
802
803     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
804     if (!v)
805         return false;
806
807     /* A constant local... hmmm...
808      * I suppose the IR will have to deal with this
809      */
810     if (self->isconst) {
811         switch (self->expression.vtype)
812         {
813             case TYPE_FLOAT:
814                 if (!ir_value_set_float(v, self->constval.vfloat))
815                     goto error;
816                 break;
817             case TYPE_VECTOR:
818                 if (!ir_value_set_vector(v, self->constval.vvec))
819                     goto error;
820                 break;
821             case TYPE_STRING:
822                 if (!ir_value_set_string(v, self->constval.vstring))
823                     goto error;
824                 break;
825             default:
826                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
827                 break;
828         }
829     }
830
831     /* link us to the ir_value */
832     self->ir_v = v;
833     return true;
834
835 error: /* clean up */
836     ir_value_delete(v);
837     return false;
838 }
839
840 bool ast_function_codegen(ast_function *self, ir_builder *ir)
841 {
842     ir_function *irf;
843     ir_value    *dummy;
844     ast_expression_common *ec;
845     size_t    i;
846
847     irf = self->ir_func;
848     if (!irf) {
849         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
850         return false;
851     }
852
853     /* fill the parameter list */
854     ec = &self->vtype->expression;
855     for (i = 0; i < ec->params_count; ++i)
856     {
857         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
858             return false;
859         if (!self->builtin) {
860             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
861                 return false;
862         }
863     }
864
865     if (self->builtin) {
866         irf->builtin = self->builtin;
867         return true;
868     }
869
870     if (!self->blocks_count) {
871         asterror(ast_ctx(self), "function `%s` has no body", self->name);
872         return false;
873     }
874
875     self->curblock = ir_function_create_block(irf, "entry");
876     if (!self->curblock)
877         return false;
878
879     for (i = 0; i < self->blocks_count; ++i) {
880         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
881         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
882             return false;
883     }
884
885     /* TODO: check return types */
886     if (!self->curblock->is_return)
887     {
888         if (!self->vtype->expression.next ||
889             self->vtype->expression.next->expression.vtype == TYPE_VOID)
890         {
891             return ir_block_create_return(self->curblock, NULL);
892         }
893         else
894         {
895             /* error("missing return"); */
896             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
897             return false;
898         }
899     }
900     return true;
901 }
902
903 /* Note, you will not see ast_block_codegen generate ir_blocks.
904  * To the AST and the IR, blocks are 2 different things.
905  * In the AST it represents a block of code, usually enclosed in
906  * curly braces {...}.
907  * While in the IR it represents a block in terms of control-flow.
908  */
909 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
910 {
911     size_t i;
912
913     /* We don't use this
914      * Note: an ast-representation using the comma-operator
915      * of the form: (a, b, c) = x should not assign to c...
916      */
917     (void)lvalue;
918     if (self->expression.outr) {
919         *out = self->expression.outr;
920         return true;
921     }
922
923     /* output is NULL at first, we'll have each expression
924      * assign to out output, thus, a comma-operator represention
925      * using an ast_block will return the last generated value,
926      * so: (b, c) + a  executed both b and c, and returns c,
927      * which is then added to a.
928      */
929     *out = NULL;
930
931     /* generate locals */
932     for (i = 0; i < self->locals_count; ++i)
933     {
934         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
935             return false;
936     }
937
938     for (i = 0; i < self->exprs_count; ++i)
939     {
940         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
941         if (!(*gen)(self->exprs[i], func, false, out))
942             return false;
943     }
944
945     self->expression.outr = *out;
946
947     return true;
948 }
949
950 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
951 {
952     ast_expression_codegen *cgen;
953     ir_value *left, *right;
954
955     if (lvalue && self->expression.outl) {
956         *out = self->expression.outl;
957         return true;
958     }
959
960     if (!lvalue && self->expression.outr) {
961         *out = self->expression.outr;
962         return true;
963     }
964
965     cgen = self->dest->expression.codegen;
966     /* lvalue! */
967     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
968         return false;
969     self->expression.outl = left;
970
971     cgen = self->source->expression.codegen;
972     /* rvalue! */
973     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
974         return false;
975
976     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
977         return false;
978     self->expression.outr = right;
979
980     /* Theoretically, an assinment returns its left side as an
981      * lvalue, if we don't need an lvalue though, we return
982      * the right side as an rvalue, otherwise we have to
983      * somehow know whether or not we need to dereference the pointer
984      * on the left side - that is: OP_LOAD if it was an address.
985      * Also: in original QC we cannot OP_LOADP *anyway*.
986      */
987     *out = (lvalue ? left : right);
988
989     return true;
990 }
991
992 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
993 {
994     ast_expression_codegen *cgen;
995     ir_value *left, *right;
996
997     /* In the context of a binary operation, we can disregard
998      * the lvalue flag.
999      */
1000     (void)lvalue;
1001     if (self->expression.outr) {
1002         *out = self->expression.outr;
1003         return true;
1004     }
1005
1006     cgen = self->left->expression.codegen;
1007     /* lvalue! */
1008     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1009         return false;
1010
1011     cgen = self->right->expression.codegen;
1012     /* rvalue! */
1013     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1014         return false;
1015
1016     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1017                                  self->op, left, right);
1018     if (!*out)
1019         return false;
1020     self->expression.outr = *out;
1021
1022     return true;
1023 }
1024
1025 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1026 {
1027     ast_expression_codegen *cgen;
1028     ir_value *leftl, *leftr, *right, *bin;
1029
1030     if (lvalue && self->expression.outl) {
1031         *out = self->expression.outl;
1032         return true;
1033     }
1034
1035     if (!lvalue && self->expression.outr) {
1036         *out = self->expression.outr;
1037         return true;
1038     }
1039
1040     /* for a binstore we need both an lvalue and an rvalue for the left side */
1041     /* rvalue of destination! */
1042     cgen = self->dest->expression.codegen;
1043     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1044         return false;
1045
1046     /* source as rvalue only */
1047     cgen = self->source->expression.codegen;
1048     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1049         return false;
1050
1051     /* now the binary */
1052     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1053                                 self->opbin, leftr, right);
1054     self->expression.outr = bin;
1055
1056     /* now store them */
1057     cgen = self->dest->expression.codegen;
1058     /* lvalue of destination */
1059     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1060         return false;
1061     self->expression.outl = leftl;
1062
1063     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1064         return false;
1065     self->expression.outr = bin;
1066
1067     /* Theoretically, an assinment returns its left side as an
1068      * lvalue, if we don't need an lvalue though, we return
1069      * the right side as an rvalue, otherwise we have to
1070      * somehow know whether or not we need to dereference the pointer
1071      * on the left side - that is: OP_LOAD if it was an address.
1072      * Also: in original QC we cannot OP_LOADP *anyway*.
1073      */
1074     *out = (lvalue ? leftl : bin);
1075
1076     return true;
1077 }
1078
1079 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1080 {
1081     ast_expression_codegen *cgen;
1082     ir_value *operand;
1083
1084     /* In the context of a unary operation, we can disregard
1085      * the lvalue flag.
1086      */
1087     (void)lvalue;
1088     if (self->expression.outr) {
1089         *out = self->expression.outr;
1090         return true;
1091     }
1092
1093     cgen = self->operand->expression.codegen;
1094     /* lvalue! */
1095     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1096         return false;
1097
1098     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1099                                  self->op, operand);
1100     if (!*out)
1101         return false;
1102     self->expression.outr = *out;
1103
1104     return true;
1105 }
1106
1107 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1108 {
1109     ast_expression_codegen *cgen;
1110     ir_value *operand;
1111
1112     /* In the context of a return operation, we can disregard
1113      * the lvalue flag.
1114      */
1115     (void)lvalue;
1116     if (self->expression.outr) {
1117         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1118         return false;
1119     }
1120     self->expression.outr = (ir_value*)1;
1121
1122     cgen = self->operand->expression.codegen;
1123     /* lvalue! */
1124     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1125         return false;
1126
1127     if (!ir_block_create_return(func->curblock, operand))
1128         return false;
1129
1130     return true;
1131 }
1132
1133 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1134 {
1135     ast_expression_codegen *cgen;
1136     ir_value *ent, *field;
1137
1138     /* This function needs to take the 'lvalue' flag into account!
1139      * As lvalue we provide a field-pointer, as rvalue we provide the
1140      * value in a temp.
1141      */
1142
1143     if (lvalue && self->expression.outl) {
1144         *out = self->expression.outl;
1145         return true;
1146     }
1147
1148     if (!lvalue && self->expression.outr) {
1149         *out = self->expression.outr;
1150         return true;
1151     }
1152
1153     cgen = self->entity->expression.codegen;
1154     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1155         return false;
1156
1157     cgen = self->field->expression.codegen;
1158     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1159         return false;
1160
1161     if (lvalue) {
1162         /* address! */
1163         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1164                                             ent, field);
1165     } else {
1166         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1167                                              ent, field, self->expression.vtype);
1168     }
1169     if (!*out) {
1170         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1171                  (lvalue ? "ADDRESS" : "FIELD"),
1172                  type_name[self->expression.vtype]);
1173         return false;
1174     }
1175
1176     if (lvalue)
1177         self->expression.outl = *out;
1178     else
1179         self->expression.outr = *out;
1180
1181     /* Hm that should be it... */
1182     return true;
1183 }
1184
1185 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1186 {
1187     ast_expression_codegen *cgen;
1188     ir_value *vec;
1189
1190     /* in QC this is always an lvalue */
1191     (void)lvalue;
1192     if (self->expression.outl) {
1193         *out = self->expression.outl;
1194         return true;
1195     }
1196
1197     cgen = self->owner->expression.codegen;
1198     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1199         return false;
1200
1201     if (vec->vtype != TYPE_VECTOR &&
1202         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1203     {
1204         return false;
1205     }
1206
1207     *out = ir_value_vector_member(vec, self->field);
1208     self->expression.outl = *out;
1209
1210     return (*out != NULL);
1211 }
1212
1213 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1214 {
1215     ast_expression_codegen *cgen;
1216
1217     ir_value *condval;
1218     ir_value *dummy;
1219
1220     ir_block *cond = func->curblock;
1221     ir_block *ontrue;
1222     ir_block *onfalse;
1223     ir_block *merge;
1224
1225     /* We don't output any value, thus also don't care about r/lvalue */
1226     (void)out;
1227     (void)lvalue;
1228
1229     if (self->expression.outr) {
1230         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1231         return false;
1232     }
1233     self->expression.outr = (ir_value*)1;
1234
1235     /* generate the condition */
1236     func->curblock = cond;
1237     cgen = self->cond->expression.codegen;
1238     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1239         return false;
1240
1241     /* on-true path */
1242
1243     if (self->on_true) {
1244         /* create on-true block */
1245         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1246         if (!ontrue)
1247             return false;
1248
1249         /* enter the block */
1250         func->curblock = ontrue;
1251
1252         /* generate */
1253         cgen = self->on_true->expression.codegen;
1254         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1255             return false;
1256     } else
1257         ontrue = NULL;
1258
1259     /* on-false path */
1260     if (self->on_false) {
1261         /* create on-false block */
1262         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1263         if (!onfalse)
1264             return false;
1265
1266         /* enter the block */
1267         func->curblock = onfalse;
1268
1269         /* generate */
1270         cgen = self->on_false->expression.codegen;
1271         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1272             return false;
1273     } else
1274         onfalse = NULL;
1275
1276     /* Merge block were they all merge in to */
1277     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1278     if (!merge)
1279         return false;
1280
1281     /* add jumps ot the merge block */
1282     if (ontrue && !ir_block_create_jump(ontrue, merge))
1283         return false;
1284     if (onfalse && !ir_block_create_jump(onfalse, merge))
1285         return false;
1286
1287     /* we create the if here, that way all blocks are ordered :)
1288      */
1289     if (!ir_block_create_if(cond, condval,
1290                             (ontrue  ? ontrue  : merge),
1291                             (onfalse ? onfalse : merge)))
1292     {
1293         return false;
1294     }
1295
1296     /* Now enter the merge block */
1297     func->curblock = merge;
1298
1299     return true;
1300 }
1301
1302 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1303 {
1304     ast_expression_codegen *cgen;
1305
1306     ir_value *condval;
1307     ir_value *trueval, *falseval;
1308     ir_instr *phi;
1309
1310     ir_block *cond = func->curblock;
1311     ir_block *ontrue;
1312     ir_block *onfalse;
1313     ir_block *merge;
1314
1315     /* Ternary can never create an lvalue... */
1316     if (lvalue)
1317         return false;
1318
1319     /* In theory it shouldn't be possible to pass through a node twice, but
1320      * in case we add any kind of optimization pass for the AST itself, it
1321      * may still happen, thus we remember a created ir_value and simply return one
1322      * if it already exists.
1323      */
1324     if (self->phi_out) {
1325         *out = self->phi_out;
1326         return true;
1327     }
1328
1329     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1330
1331     /* generate the condition */
1332     func->curblock = cond;
1333     cgen = self->cond->expression.codegen;
1334     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1335         return false;
1336
1337     /* create on-true block */
1338     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1339     if (!ontrue)
1340         return false;
1341     else
1342     {
1343         /* enter the block */
1344         func->curblock = ontrue;
1345
1346         /* generate */
1347         cgen = self->on_true->expression.codegen;
1348         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1349             return false;
1350     }
1351
1352     /* create on-false block */
1353     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1354     if (!onfalse)
1355         return false;
1356     else
1357     {
1358         /* enter the block */
1359         func->curblock = onfalse;
1360
1361         /* generate */
1362         cgen = self->on_false->expression.codegen;
1363         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1364             return false;
1365     }
1366
1367     /* create merge block */
1368     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1369     if (!merge)
1370         return false;
1371     /* jump to merge block */
1372     if (!ir_block_create_jump(ontrue, merge))
1373         return false;
1374     if (!ir_block_create_jump(onfalse, merge))
1375         return false;
1376
1377     /* create if instruction */
1378     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1379         return false;
1380
1381     /* Now enter the merge block */
1382     func->curblock = merge;
1383
1384     /* Here, now, we need a PHI node
1385      * but first some sanity checking...
1386      */
1387     if (trueval->vtype != falseval->vtype) {
1388         /* error("ternary with different types on the two sides"); */
1389         return false;
1390     }
1391
1392     /* create PHI */
1393     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1394     if (!phi ||
1395         !ir_phi_add(phi, ontrue,  trueval) ||
1396         !ir_phi_add(phi, onfalse, falseval))
1397     {
1398         return false;
1399     }
1400
1401     self->phi_out = ir_phi_value(phi);
1402     *out = self->phi_out;
1403
1404     return true;
1405 }
1406
1407 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1408 {
1409     ast_expression_codegen *cgen;
1410
1411     ir_value *dummy      = NULL;
1412     ir_value *precond    = NULL;
1413     ir_value *postcond   = NULL;
1414
1415     /* Since we insert some jumps "late" so we have blocks
1416      * ordered "nicely", we need to keep track of the actual end-blocks
1417      * of expressions to add the jumps to.
1418      */
1419     ir_block *bbody      = NULL, *end_bbody      = NULL;
1420     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1421     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1422     ir_block *bincrement = NULL, *end_bincrement = NULL;
1423     ir_block *bout       = NULL, *bin            = NULL;
1424
1425     /* let's at least move the outgoing block to the end */
1426     size_t    bout_id;
1427
1428     /* 'break' and 'continue' need to be able to find the right blocks */
1429     ir_block *bcontinue     = NULL;
1430     ir_block *bbreak        = NULL;
1431
1432     ir_block *old_bcontinue = NULL;
1433     ir_block *old_bbreak    = NULL;
1434
1435     ir_block *tmpblock      = NULL;
1436
1437     (void)lvalue;
1438     (void)out;
1439
1440     if (self->expression.outr) {
1441         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1442         return false;
1443     }
1444     self->expression.outr = (ir_value*)1;
1445
1446     /* NOTE:
1447      * Should we ever need some kind of block ordering, better make this function
1448      * move blocks around than write a block ordering algorithm later... after all
1449      * the ast and ir should work together, not against each other.
1450      */
1451
1452     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1453      * anyway if for example it contains a ternary.
1454      */
1455     if (self->initexpr)
1456     {
1457         cgen = self->initexpr->expression.codegen;
1458         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1459             return false;
1460     }
1461
1462     /* Store the block from which we enter this chaos */
1463     bin = func->curblock;
1464
1465     /* The pre-loop condition needs its own block since we
1466      * need to be able to jump to the start of that expression.
1467      */
1468     if (self->precond)
1469     {
1470         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1471         if (!bprecond)
1472             return false;
1473
1474         /* the pre-loop-condition the least important place to 'continue' at */
1475         bcontinue = bprecond;
1476
1477         /* enter */
1478         func->curblock = bprecond;
1479
1480         /* generate */
1481         cgen = self->precond->expression.codegen;
1482         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1483             return false;
1484
1485         end_bprecond = func->curblock;
1486     } else {
1487         bprecond = end_bprecond = NULL;
1488     }
1489
1490     /* Now the next blocks won't be ordered nicely, but we need to
1491      * generate them this early for 'break' and 'continue'.
1492      */
1493     if (self->increment) {
1494         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1495         if (!bincrement)
1496             return false;
1497         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1498     } else {
1499         bincrement = end_bincrement = NULL;
1500     }
1501
1502     if (self->postcond) {
1503         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1504         if (!bpostcond)
1505             return false;
1506         bcontinue = bpostcond; /* postcond comes before the increment */
1507     } else {
1508         bpostcond = end_bpostcond = NULL;
1509     }
1510
1511     bout_id = func->ir_func->blocks_count;
1512     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1513     if (!bout)
1514         return false;
1515     bbreak = bout;
1516
1517     /* The loop body... */
1518     if (self->body)
1519     {
1520         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1521         if (!bbody)
1522             return false;
1523
1524         /* enter */
1525         func->curblock = bbody;
1526
1527         old_bbreak          = func->breakblock;
1528         old_bcontinue       = func->continueblock;
1529         func->breakblock    = bbreak;
1530         func->continueblock = bcontinue;
1531
1532         /* generate */
1533         cgen = self->body->expression.codegen;
1534         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1535             return false;
1536
1537         end_bbody = func->curblock;
1538         func->breakblock    = old_bbreak;
1539         func->continueblock = old_bcontinue;
1540     }
1541
1542     /* post-loop-condition */
1543     if (self->postcond)
1544     {
1545         /* enter */
1546         func->curblock = bpostcond;
1547
1548         /* generate */
1549         cgen = self->postcond->expression.codegen;
1550         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1551             return false;
1552
1553         end_bpostcond = func->curblock;
1554     }
1555
1556     /* The incrementor */
1557     if (self->increment)
1558     {
1559         /* enter */
1560         func->curblock = bincrement;
1561
1562         /* generate */
1563         cgen = self->increment->expression.codegen;
1564         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1565             return false;
1566
1567         end_bincrement = func->curblock;
1568     }
1569
1570     /* In any case now, we continue from the outgoing block */
1571     func->curblock = bout;
1572
1573     /* Now all blocks are in place */
1574     /* From 'bin' we jump to whatever comes first */
1575     if      (bprecond)   tmpblock = bprecond;
1576     else if (bbody)      tmpblock = bbody;
1577     else if (bpostcond)  tmpblock = bpostcond;
1578     else                 tmpblock = bout;
1579     if (!ir_block_create_jump(bin, tmpblock))
1580         return false;
1581
1582     /* From precond */
1583     if (bprecond)
1584     {
1585         ir_block *ontrue, *onfalse;
1586         if      (bbody)      ontrue = bbody;
1587         else if (bincrement) ontrue = bincrement;
1588         else if (bpostcond)  ontrue = bpostcond;
1589         else                 ontrue = bprecond;
1590         onfalse = bout;
1591         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1592             return false;
1593     }
1594
1595     /* from body */
1596     if (bbody)
1597     {
1598         if      (bincrement) tmpblock = bincrement;
1599         else if (bpostcond)  tmpblock = bpostcond;
1600         else if (bprecond)   tmpblock = bprecond;
1601         else                 tmpblock = bout;
1602         if (!ir_block_create_jump(end_bbody, tmpblock))
1603             return false;
1604     }
1605
1606     /* from increment */
1607     if (bincrement)
1608     {
1609         if      (bpostcond)  tmpblock = bpostcond;
1610         else if (bprecond)   tmpblock = bprecond;
1611         else if (bbody)      tmpblock = bbody;
1612         else                 tmpblock = bout;
1613         if (!ir_block_create_jump(end_bincrement, tmpblock))
1614             return false;
1615     }
1616
1617     /* from postcond */
1618     if (bpostcond)
1619     {
1620         ir_block *ontrue, *onfalse;
1621         if      (bprecond)   ontrue = bprecond;
1622         else if (bbody)      ontrue = bbody;
1623         else if (bincrement) ontrue = bincrement;
1624         else                 ontrue = bpostcond;
1625         onfalse = bout;
1626         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1627             return false;
1628     }
1629
1630     /* Move 'bout' to the end */
1631     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1632         !ir_function_blocks_add(func->ir_func, bout))
1633     {
1634         ir_block_delete(bout);
1635         return false;
1636     }
1637
1638     return true;
1639 }
1640
1641 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1642 {
1643     ast_expression_codegen *cgen;
1644     ir_value_vector         params;
1645     ir_instr               *callinstr;
1646     size_t i;
1647
1648     ir_value *funval = NULL;
1649
1650     /* return values are never lvalues */
1651     (void)lvalue;
1652
1653     if (self->expression.outr) {
1654         *out = self->expression.outr;
1655         return true;
1656     }
1657
1658     cgen = self->func->expression.codegen;
1659     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1660         return false;
1661     if (!funval)
1662         return false;
1663
1664     MEM_VECTOR_INIT(&params, v);
1665
1666     /* parameters */
1667     for (i = 0; i < self->params_count; ++i)
1668     {
1669         ir_value *param;
1670         ast_expression *expr = self->params[i];
1671
1672         cgen = expr->expression.codegen;
1673         if (!(*cgen)(expr, func, false, &param))
1674             goto error;
1675         if (!param)
1676             goto error;
1677         if (!ir_value_vector_v_add(&params, param))
1678             goto error;
1679     }
1680
1681     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1682     if (!callinstr)
1683         goto error;
1684
1685     for (i = 0; i < params.v_count; ++i) {
1686         if (!ir_call_param(callinstr, params.v[i]))
1687             goto error;
1688     }
1689
1690     *out = ir_call_value(callinstr);
1691     self->expression.outr = *out;
1692
1693     MEM_VECTOR_CLEAR(&params, v);
1694     return true;
1695 error:
1696     MEM_VECTOR_CLEAR(&params, v);
1697     return false;
1698 }