]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
let ast_node have a use-counter, helpful for the parser to delete unused fields which...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.uses    = 0;
61     self->node.nodetype = nodetype;
62 }
63
64 /* General expression initialization */
65 static void ast_expression_init(ast_expression *self,
66                                 ast_expression_codegen *codegen)
67 {
68     self->expression.codegen = codegen;
69     self->expression.vtype   = TYPE_VOID;
70     self->expression.next    = NULL;
71     self->expression.outl    = NULL;
72     self->expression.outr    = NULL;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
96 static ast_value* ast_value_copy(const ast_value *self)
97 {
98     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
99     if (self->expression.next) {
100         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
101         if (!cp->expression.next) {
102             ast_value_delete(cp);
103             return NULL;
104         }
105     }
106     return cp;
107 }
108
109 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
110 {
111     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
112     self->expression.codegen = NULL;
113     self->expression.next    = NULL;
114     self->expression.vtype   = vtype;
115     return self;
116 }
117
118 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
119 {
120     size_t i;
121     const ast_expression_common *fromex;
122     ast_expression_common *selfex;
123
124     if (!ex)
125         return NULL;
126     else
127     {
128         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
129
130         fromex   = &ex->expression;
131         selfex = &self->expression;
132
133         /* This may never be codegen()d */
134         selfex->codegen = NULL;
135
136         selfex->vtype = fromex->vtype;
137         if (fromex->next)
138         {
139             selfex->next = ast_type_copy(ctx, fromex->next);
140             if (!selfex->next) {
141                 ast_expression_delete_full(self);
142                 return NULL;
143             }
144         }
145         else
146             selfex->next = NULL;
147
148         for (i = 0; i < fromex->params_count; ++i) {
149             ast_value *v = ast_value_copy(fromex->params[i]);
150             if (!v || !ast_expression_common_params_add(selfex, v)) {
151                 ast_expression_delete_full(self);
152                 return NULL;
153             }
154         }
155
156         return self;
157     }
158 }
159
160 bool ast_compare_type(ast_expression *a, ast_expression *b)
161 {
162     if (a->expression.vtype != b->expression.vtype)
163         return false;
164     if (!a->expression.next != !b->expression.next)
165         return false;
166     if (a->expression.params_count != b->expression.params_count)
167         return false;
168     if (a->expression.params_count) {
169         size_t i;
170         for (i = 0; i < a->expression.params_count; ++i) {
171             if (!ast_compare_type((ast_expression*)a->expression.params[i],
172                                   (ast_expression*)b->expression.params[i]))
173                 return false;
174         }
175     }
176     if (a->expression.next)
177         return ast_compare_type(a->expression.next, b->expression.next);
178     return true;
179 }
180
181 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
182 {
183     ast_instantiate(ast_value, ctx, ast_value_delete);
184     ast_expression_init((ast_expression*)self,
185                         (ast_expression_codegen*)&ast_value_codegen);
186     self->expression.node.keep = true; /* keep */
187
188     self->name = name ? util_strdup(name) : NULL;
189     self->expression.vtype = t;
190     self->expression.next  = NULL;
191     self->isconst = false;
192     memset(&self->constval, 0, sizeof(self->constval));
193
194     self->ir_v    = NULL;
195
196     return self;
197 }
198
199 void ast_value_delete(ast_value* self)
200 {
201     if (self->name)
202         mem_d((void*)self->name);
203     if (self->isconst) {
204         switch (self->expression.vtype)
205         {
206         case TYPE_STRING:
207             mem_d((void*)self->constval.vstring);
208             break;
209         case TYPE_FUNCTION:
210             /* unlink us from the function node */
211             self->constval.vfunc->vtype = NULL;
212             break;
213         /* NOTE: delete function? currently collected in
214          * the parser structure
215          */
216         default:
217             break;
218         }
219     }
220     ast_expression_delete((ast_expression*)self);
221     mem_d(self);
222 }
223
224 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
225 {
226     return ast_expression_common_params_add(&self->expression, p);
227 }
228
229 bool ast_value_set_name(ast_value *self, const char *name)
230 {
231     if (self->name)
232         mem_d((void*)self->name);
233     self->name = util_strdup(name);
234     return !!self->name;
235 }
236
237 ast_binary* ast_binary_new(lex_ctx ctx, int op,
238                            ast_expression* left, ast_expression* right)
239 {
240     ast_instantiate(ast_binary, ctx, ast_binary_delete);
241     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
242
243     self->op = op;
244     self->left = left;
245     self->right = right;
246
247     if (op >= INSTR_EQ_F && op <= INSTR_GT)
248         self->expression.vtype = TYPE_FLOAT;
249     else if (op == INSTR_AND || op == INSTR_OR ||
250              op == INSTR_BITAND || op == INSTR_BITOR)
251         self->expression.vtype = TYPE_FLOAT;
252     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
253         self->expression.vtype = TYPE_VECTOR;
254     else if (op == INSTR_MUL_V)
255         self->expression.vtype = TYPE_FLOAT;
256     else
257         self->expression.vtype = left->expression.vtype;
258
259     ast_use(left);
260     ast_use(right);
261
262     return self;
263 }
264
265 void ast_binary_delete(ast_binary *self)
266 {
267     ast_unref(self->left);
268     ast_unref(self->right);
269     ast_expression_delete((ast_expression*)self);
270     mem_d(self);
271 }
272
273 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
274                                ast_expression* left, ast_expression* right)
275 {
276     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
277     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
278
279     self->opstore = storop;
280     self->opbin   = op;
281     self->dest    = left;
282     self->source  = right;
283
284     self->expression.vtype = left->expression.vtype;
285     if (left->expression.next) {
286         self->expression.next = ast_type_copy(ctx, left);
287         if (!self->expression.next) {
288             ast_delete(self);
289             return NULL;
290         }
291     }
292     else
293         self->expression.next = NULL;
294
295     ast_use(left);
296     ast_use(right);
297     ast_use(left);
298
299     return self;
300 }
301
302 void ast_binstore_delete(ast_binstore *self)
303 {
304     ast_unref(self->dest);
305     ast_unref(self->source);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_unary* ast_unary_new(lex_ctx ctx, int op,
311                          ast_expression *expr)
312 {
313     ast_instantiate(ast_unary, ctx, ast_unary_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
315
316     self->op = op;
317     self->operand = expr;
318
319     ast_use(expr);
320
321     return self;
322 }
323
324 void ast_unary_delete(ast_unary *self)
325 {
326     ast_unref(self->operand);
327     ast_expression_delete((ast_expression*)self);
328     mem_d(self);
329 }
330
331 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
332 {
333     ast_instantiate(ast_return, ctx, ast_return_delete);
334     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
335
336     self->operand = expr;
337
338     ast_use(expr);
339
340     return self;
341 }
342
343 void ast_return_delete(ast_return *self)
344 {
345     ast_unref(self->operand);
346     ast_expression_delete((ast_expression*)self);
347     mem_d(self);
348 }
349
350 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
351 {
352     const ast_expression *outtype;
353
354     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
355
356     if (field->expression.vtype != TYPE_FIELD) {
357         mem_d(self);
358         return NULL;
359     }
360
361     outtype = field->expression.next;
362     if (!outtype) {
363         mem_d(self);
364         /* Error: field has no type... */
365         return NULL;
366     }
367
368     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
369
370     self->expression.vtype = outtype->expression.vtype;
371     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
372
373     self->entity = entity;
374     self->field  = field;
375
376     ast_use(entity);
377     ast_use(field);
378
379     return self;
380 }
381
382 void ast_entfield_delete(ast_entfield *self)
383 {
384     ast_unref(self->entity);
385     ast_unref(self->field);
386     ast_expression_delete((ast_expression*)self);
387     mem_d(self);
388 }
389
390 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
391 {
392     ast_instantiate(ast_member, ctx, ast_member_delete);
393     if (field >= 3) {
394         mem_d(self);
395         return NULL;
396     }
397
398     if (owner->expression.vtype != TYPE_VECTOR &&
399         owner->expression.vtype != TYPE_FIELD) {
400         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
401         mem_d(self);
402         return NULL;
403     }
404
405     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
406
407     if (owner->expression.vtype == TYPE_VECTOR) {
408         self->expression.vtype = TYPE_FLOAT;
409         self->expression.next  = NULL;
410     } else {
411         self->expression.vtype = TYPE_FIELD;
412         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
413     }
414
415     self->owner = owner;
416     self->field = field;
417
418     ast_use(owner);
419
420     return self;
421 }
422
423 void ast_member_delete(ast_member *self)
424 {
425     ast_unref(self->owner);
426     ast_expression_delete((ast_expression*)self);
427     mem_d(self);
428 }
429
430 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
431 {
432     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
433     if (!ontrue && !onfalse) {
434         /* because it is invalid */
435         mem_d(self);
436         return NULL;
437     }
438     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
439
440     self->cond     = cond;
441     self->on_true  = ontrue;
442     self->on_false = onfalse;
443
444     ast_use(cond);
445     if (ontrue)  ast_use(ontrue);
446     if (onfalse) ast_use(onfalse);
447
448     return self;
449 }
450
451 void ast_ifthen_delete(ast_ifthen *self)
452 {
453     ast_unref(self->cond);
454     if (self->on_true)
455         ast_unref(self->on_true);
456     if (self->on_false)
457         ast_unref(self->on_false);
458     ast_expression_delete((ast_expression*)self);
459     mem_d(self);
460 }
461
462 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
463 {
464     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
465     /* This time NEITHER must be NULL */
466     if (!ontrue || !onfalse) {
467         mem_d(self);
468         return NULL;
469     }
470     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
471
472     self->cond     = cond;
473     self->on_true  = ontrue;
474     self->on_false = onfalse;
475     self->phi_out  = NULL;
476
477     ast_use(cond);
478     ast_use(ontrue);
479     ast_use(onfalse);
480
481     return self;
482 }
483
484 void ast_ternary_delete(ast_ternary *self)
485 {
486     ast_unref(self->cond);
487     ast_unref(self->on_true);
488     ast_unref(self->on_false);
489     ast_expression_delete((ast_expression*)self);
490     mem_d(self);
491 }
492
493 ast_loop* ast_loop_new(lex_ctx ctx,
494                        ast_expression *initexpr,
495                        ast_expression *precond,
496                        ast_expression *postcond,
497                        ast_expression *increment,
498                        ast_expression *body)
499 {
500     ast_instantiate(ast_loop, ctx, ast_loop_delete);
501     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
502
503     self->initexpr  = initexpr;
504     self->precond   = precond;
505     self->postcond  = postcond;
506     self->increment = increment;
507     self->body      = body;
508
509     if (initexpr)  ast_use(initexpr);
510     if (precond)   ast_use(precond);
511     if (postcond)  ast_use(postcond);
512     if (increment) ast_use(increment);
513     if (body)      ast_use(body);
514
515     return self;
516 }
517
518 void ast_loop_delete(ast_loop *self)
519 {
520     if (self->initexpr)
521         ast_unref(self->initexpr);
522     if (self->precond)
523         ast_unref(self->precond);
524     if (self->postcond)
525         ast_unref(self->postcond);
526     if (self->increment)
527         ast_unref(self->increment);
528     if (self->body)
529         ast_unref(self->body);
530     ast_expression_delete((ast_expression*)self);
531     mem_d(self);
532 }
533
534 ast_call* ast_call_new(lex_ctx ctx,
535                        ast_expression *funcexpr)
536 {
537     ast_instantiate(ast_call, ctx, ast_call_delete);
538     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
539
540     MEM_VECTOR_INIT(self, params);
541
542     self->func = funcexpr;
543     ast_use(funcexpr);
544
545     return self;
546 }
547 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
548
549 bool ast_call_add_param(ast_call *self, ast_expression *expr)
550 {
551     if (!ast_call_params_add(self, expr))
552         return false;
553     ast_use(expr);
554     return true;
555 }
556
557 void ast_call_delete(ast_call *self)
558 {
559     size_t i;
560     for (i = 0; i < self->params_count; ++i)
561         ast_unref(self->params[i]);
562     MEM_VECTOR_CLEAR(self, params);
563
564     if (self->func)
565         ast_unref(self->func);
566
567     ast_expression_delete((ast_expression*)self);
568     mem_d(self);
569 }
570
571 ast_store* ast_store_new(lex_ctx ctx, int op,
572                          ast_expression *dest, ast_expression *source)
573 {
574     ast_instantiate(ast_store, ctx, ast_store_delete);
575     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
576
577     self->op = op;
578     self->dest = dest;
579     self->source = source;
580
581     ast_use(dest);
582     ast_use(source);
583
584     return self;
585 }
586
587 void ast_store_delete(ast_store *self)
588 {
589     ast_unref(self->dest);
590     ast_unref(self->source);
591     ast_expression_delete((ast_expression*)self);
592     mem_d(self);
593 }
594
595 ast_block* ast_block_new(lex_ctx ctx)
596 {
597     ast_instantiate(ast_block, ctx, ast_block_delete);
598     ast_expression_init((ast_expression*)self,
599                         (ast_expression_codegen*)&ast_block_codegen);
600
601     MEM_VECTOR_INIT(self, locals);
602     MEM_VECTOR_INIT(self, exprs);
603
604     return self;
605 }
606 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
607 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
608
609 bool ast_block_add_expr(ast_block *self, ast_expression *expr)
610 {
611     if (!ast_block_exprs_add(self, expr))
612         return false;
613     ast_use(expr);
614     return true;
615 }
616
617 void ast_block_delete(ast_block *self)
618 {
619     size_t i;
620     for (i = 0; i < self->exprs_count; ++i)
621         ast_unref(self->exprs[i]);
622     MEM_VECTOR_CLEAR(self, exprs);
623     for (i = 0; i < self->locals_count; ++i)
624         ast_delete(self->locals[i]);
625     MEM_VECTOR_CLEAR(self, locals);
626     ast_expression_delete((ast_expression*)self);
627     mem_d(self);
628 }
629
630 bool ast_block_set_type(ast_block *self, ast_expression *from)
631 {
632     if (self->expression.next)
633         ast_delete(self->expression.next);
634     self->expression.vtype = from->expression.vtype;
635     if (from->expression.next) {
636         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
637         if (!self->expression.next)
638             return false;
639     }
640     return true;
641 }
642
643 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
644 {
645     ast_instantiate(ast_function, ctx, ast_function_delete);
646
647     if (!vtype ||
648         vtype->isconst ||
649         vtype->expression.vtype != TYPE_FUNCTION)
650     {
651         mem_d(self);
652         return NULL;
653     }
654
655     self->vtype = vtype;
656     self->name = name ? util_strdup(name) : NULL;
657     MEM_VECTOR_INIT(self, blocks);
658
659     self->labelcount = 0;
660     self->builtin = 0;
661
662     self->ir_func = NULL;
663     self->curblock = NULL;
664
665     self->breakblock    = NULL;
666     self->continueblock = NULL;
667
668     vtype->isconst = true;
669     vtype->constval.vfunc = self;
670
671     return self;
672 }
673
674 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
675
676 void ast_function_delete(ast_function *self)
677 {
678     size_t i;
679     if (self->name)
680         mem_d((void*)self->name);
681     if (self->vtype) {
682         /* ast_value_delete(self->vtype); */
683         self->vtype->isconst = false;
684         self->vtype->constval.vfunc = NULL;
685         /* We use unref - if it was stored in a global table it is supposed
686          * to be deleted from *there*
687          */
688         ast_unref(self->vtype);
689     }
690     for (i = 0; i < self->blocks_count; ++i)
691         ast_delete(self->blocks[i]);
692     MEM_VECTOR_CLEAR(self, blocks);
693     mem_d(self);
694 }
695
696 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
697 {
698     unsigned int base = 10;
699 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
700 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
701     if (size < 1)
702         return;
703     checknul();
704     if (!num)
705         addch('0');
706     else {
707         while (num)
708         {
709             int digit = num % base;
710             num /= base;
711             addch('0' + digit);
712         }
713     }
714
715     *buf = 0;
716 #undef addch
717 #undef checknul
718 }
719
720 const char* ast_function_label(ast_function *self, const char *prefix)
721 {
722     size_t id = (self->labelcount++);
723     size_t len = strlen(prefix);
724     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
725     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
726     return self->labelbuf;
727 }
728
729 /*********************************************************************/
730 /* AST codegen part
731  * by convention you must never pass NULL to the 'ir_value **out'
732  * parameter. If you really don't care about the output, pass a dummy.
733  * But I can't imagine a pituation where the output is truly unnecessary.
734  */
735
736 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
737 {
738     /* NOTE: This is the codegen for a variable used in an expression.
739      * It is not the codegen to generate the value. For this purpose,
740      * ast_local_codegen and ast_global_codegen are to be used before this
741      * is executed. ast_function_codegen should take care of its locals,
742      * and the ast-user should take care of ast_global_codegen to be used
743      * on all the globals.
744      */
745     if (!self->ir_v) {
746         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
747         return false;
748     }
749     *out = self->ir_v;
750     return true;
751 }
752
753 bool ast_global_codegen(ast_value *self, ir_builder *ir)
754 {
755     ir_value *v = NULL;
756     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
757     {
758         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
759         if (!func)
760             return false;
761
762         self->constval.vfunc->ir_func = func;
763         self->ir_v = func->value;
764         /* The function is filled later on ast_function_codegen... */
765         return true;
766     }
767
768     if (self->expression.vtype == TYPE_FIELD) {
769         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
770         if (!v)
771             return false;
772         if (self->isconst) {
773             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
774             goto error;
775         }
776         self->ir_v = v;
777         return true;
778     }
779
780     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
781     if (!v) {
782         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
783         return false;
784     }
785
786     if (self->isconst) {
787         switch (self->expression.vtype)
788         {
789             case TYPE_FLOAT:
790                 if (!ir_value_set_float(v, self->constval.vfloat))
791                     goto error;
792                 break;
793             case TYPE_VECTOR:
794                 if (!ir_value_set_vector(v, self->constval.vvec))
795                     goto error;
796                 break;
797             case TYPE_STRING:
798                 if (!ir_value_set_string(v, self->constval.vstring))
799                     goto error;
800                 break;
801             case TYPE_FUNCTION:
802                 asterror(ast_ctx(self), "global of type function not properly generated\n");
803                 goto error;
804                 /* Cannot generate an IR value for a function,
805                  * need a pointer pointing to a function rather.
806                  */
807             default:
808                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
809                 break;
810         }
811     }
812
813     /* link us to the ir_value */
814     self->ir_v = v;
815     return true;
816
817 error: /* clean up */
818     ir_value_delete(v);
819     return false;
820 }
821
822 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
823 {
824     ir_value *v = NULL;
825     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
826     {
827         /* Do we allow local functions? I think not...
828          * this is NOT a function pointer atm.
829          */
830         return false;
831     }
832
833     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
834     if (!v)
835         return false;
836
837     /* A constant local... hmmm...
838      * I suppose the IR will have to deal with this
839      */
840     if (self->isconst) {
841         switch (self->expression.vtype)
842         {
843             case TYPE_FLOAT:
844                 if (!ir_value_set_float(v, self->constval.vfloat))
845                     goto error;
846                 break;
847             case TYPE_VECTOR:
848                 if (!ir_value_set_vector(v, self->constval.vvec))
849                     goto error;
850                 break;
851             case TYPE_STRING:
852                 if (!ir_value_set_string(v, self->constval.vstring))
853                     goto error;
854                 break;
855             default:
856                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
857                 break;
858         }
859     }
860
861     /* link us to the ir_value */
862     self->ir_v = v;
863     return true;
864
865 error: /* clean up */
866     ir_value_delete(v);
867     return false;
868 }
869
870 bool ast_function_codegen(ast_function *self, ir_builder *ir)
871 {
872     ir_function *irf;
873     ir_value    *dummy;
874     ast_expression_common *ec;
875     size_t    i;
876
877     irf = self->ir_func;
878     if (!irf) {
879         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
880         return false;
881     }
882
883     /* fill the parameter list */
884     ec = &self->vtype->expression;
885     for (i = 0; i < ec->params_count; ++i)
886     {
887         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
888             return false;
889         if (!self->builtin) {
890             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
891                 return false;
892         }
893     }
894
895     if (self->builtin) {
896         irf->builtin = self->builtin;
897         return true;
898     }
899
900     if (!self->blocks_count) {
901         asterror(ast_ctx(self), "function `%s` has no body", self->name);
902         return false;
903     }
904
905     self->curblock = ir_function_create_block(irf, "entry");
906     if (!self->curblock)
907         return false;
908
909     for (i = 0; i < self->blocks_count; ++i) {
910         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
911         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
912             return false;
913     }
914
915     /* TODO: check return types */
916     if (!self->curblock->is_return)
917     {
918         if (!self->vtype->expression.next ||
919             self->vtype->expression.next->expression.vtype == TYPE_VOID)
920         {
921             return ir_block_create_return(self->curblock, NULL);
922         }
923         else
924         {
925             /* error("missing return"); */
926             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
927             return false;
928         }
929     }
930     return true;
931 }
932
933 /* Note, you will not see ast_block_codegen generate ir_blocks.
934  * To the AST and the IR, blocks are 2 different things.
935  * In the AST it represents a block of code, usually enclosed in
936  * curly braces {...}.
937  * While in the IR it represents a block in terms of control-flow.
938  */
939 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
940 {
941     size_t i;
942
943     /* We don't use this
944      * Note: an ast-representation using the comma-operator
945      * of the form: (a, b, c) = x should not assign to c...
946      */
947     (void)lvalue;
948     if (self->expression.outr) {
949         *out = self->expression.outr;
950         return true;
951     }
952
953     /* output is NULL at first, we'll have each expression
954      * assign to out output, thus, a comma-operator represention
955      * using an ast_block will return the last generated value,
956      * so: (b, c) + a  executed both b and c, and returns c,
957      * which is then added to a.
958      */
959     *out = NULL;
960
961     /* generate locals */
962     for (i = 0; i < self->locals_count; ++i)
963     {
964         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
965             return false;
966     }
967
968     for (i = 0; i < self->exprs_count; ++i)
969     {
970         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
971         if (!(*gen)(self->exprs[i], func, false, out))
972             return false;
973     }
974
975     self->expression.outr = *out;
976
977     return true;
978 }
979
980 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
981 {
982     ast_expression_codegen *cgen;
983     ir_value *left, *right;
984
985     if (lvalue && self->expression.outl) {
986         *out = self->expression.outl;
987         return true;
988     }
989
990     if (!lvalue && self->expression.outr) {
991         *out = self->expression.outr;
992         return true;
993     }
994
995     cgen = self->dest->expression.codegen;
996     /* lvalue! */
997     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
998         return false;
999     self->expression.outl = left;
1000
1001     cgen = self->source->expression.codegen;
1002     /* rvalue! */
1003     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1004         return false;
1005
1006     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1007         return false;
1008     self->expression.outr = right;
1009
1010     /* Theoretically, an assinment returns its left side as an
1011      * lvalue, if we don't need an lvalue though, we return
1012      * the right side as an rvalue, otherwise we have to
1013      * somehow know whether or not we need to dereference the pointer
1014      * on the left side - that is: OP_LOAD if it was an address.
1015      * Also: in original QC we cannot OP_LOADP *anyway*.
1016      */
1017     *out = (lvalue ? left : right);
1018
1019     return true;
1020 }
1021
1022 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1023 {
1024     ast_expression_codegen *cgen;
1025     ir_value *left, *right;
1026
1027     /* In the context of a binary operation, we can disregard
1028      * the lvalue flag.
1029      */
1030     (void)lvalue;
1031     if (self->expression.outr) {
1032         *out = self->expression.outr;
1033         return true;
1034     }
1035
1036     cgen = self->left->expression.codegen;
1037     /* lvalue! */
1038     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1039         return false;
1040
1041     cgen = self->right->expression.codegen;
1042     /* rvalue! */
1043     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1044         return false;
1045
1046     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1047                                  self->op, left, right);
1048     if (!*out)
1049         return false;
1050     self->expression.outr = *out;
1051
1052     return true;
1053 }
1054
1055 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1056 {
1057     ast_expression_codegen *cgen;
1058     ir_value *leftl, *leftr, *right, *bin;
1059
1060     if (lvalue && self->expression.outl) {
1061         *out = self->expression.outl;
1062         return true;
1063     }
1064
1065     if (!lvalue && self->expression.outr) {
1066         *out = self->expression.outr;
1067         return true;
1068     }
1069
1070     /* for a binstore we need both an lvalue and an rvalue for the left side */
1071     /* rvalue of destination! */
1072     cgen = self->dest->expression.codegen;
1073     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1074         return false;
1075
1076     /* source as rvalue only */
1077     cgen = self->source->expression.codegen;
1078     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1079         return false;
1080
1081     /* now the binary */
1082     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1083                                 self->opbin, leftr, right);
1084     self->expression.outr = bin;
1085
1086     /* now store them */
1087     cgen = self->dest->expression.codegen;
1088     /* lvalue of destination */
1089     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1090         return false;
1091     self->expression.outl = leftl;
1092
1093     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1094         return false;
1095     self->expression.outr = bin;
1096
1097     /* Theoretically, an assinment returns its left side as an
1098      * lvalue, if we don't need an lvalue though, we return
1099      * the right side as an rvalue, otherwise we have to
1100      * somehow know whether or not we need to dereference the pointer
1101      * on the left side - that is: OP_LOAD if it was an address.
1102      * Also: in original QC we cannot OP_LOADP *anyway*.
1103      */
1104     *out = (lvalue ? leftl : bin);
1105
1106     return true;
1107 }
1108
1109 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1110 {
1111     ast_expression_codegen *cgen;
1112     ir_value *operand;
1113
1114     /* In the context of a unary operation, we can disregard
1115      * the lvalue flag.
1116      */
1117     (void)lvalue;
1118     if (self->expression.outr) {
1119         *out = self->expression.outr;
1120         return true;
1121     }
1122
1123     cgen = self->operand->expression.codegen;
1124     /* lvalue! */
1125     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1126         return false;
1127
1128     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1129                                  self->op, operand);
1130     if (!*out)
1131         return false;
1132     self->expression.outr = *out;
1133
1134     return true;
1135 }
1136
1137 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1138 {
1139     ast_expression_codegen *cgen;
1140     ir_value *operand;
1141
1142     /* In the context of a return operation, we can disregard
1143      * the lvalue flag.
1144      */
1145     (void)lvalue;
1146     if (self->expression.outr) {
1147         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1148         return false;
1149     }
1150     self->expression.outr = (ir_value*)1;
1151
1152     cgen = self->operand->expression.codegen;
1153     /* lvalue! */
1154     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1155         return false;
1156
1157     if (!ir_block_create_return(func->curblock, operand))
1158         return false;
1159
1160     return true;
1161 }
1162
1163 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1164 {
1165     ast_expression_codegen *cgen;
1166     ir_value *ent, *field;
1167
1168     /* This function needs to take the 'lvalue' flag into account!
1169      * As lvalue we provide a field-pointer, as rvalue we provide the
1170      * value in a temp.
1171      */
1172
1173     if (lvalue && self->expression.outl) {
1174         *out = self->expression.outl;
1175         return true;
1176     }
1177
1178     if (!lvalue && self->expression.outr) {
1179         *out = self->expression.outr;
1180         return true;
1181     }
1182
1183     cgen = self->entity->expression.codegen;
1184     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1185         return false;
1186
1187     cgen = self->field->expression.codegen;
1188     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1189         return false;
1190
1191     if (lvalue) {
1192         /* address! */
1193         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1194                                             ent, field);
1195     } else {
1196         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1197                                              ent, field, self->expression.vtype);
1198     }
1199     if (!*out) {
1200         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1201                  (lvalue ? "ADDRESS" : "FIELD"),
1202                  type_name[self->expression.vtype]);
1203         return false;
1204     }
1205
1206     if (lvalue)
1207         self->expression.outl = *out;
1208     else
1209         self->expression.outr = *out;
1210
1211     /* Hm that should be it... */
1212     return true;
1213 }
1214
1215 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1216 {
1217     ast_expression_codegen *cgen;
1218     ir_value *vec;
1219
1220     /* in QC this is always an lvalue */
1221     (void)lvalue;
1222     if (self->expression.outl) {
1223         *out = self->expression.outl;
1224         return true;
1225     }
1226
1227     cgen = self->owner->expression.codegen;
1228     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1229         return false;
1230
1231     if (vec->vtype != TYPE_VECTOR &&
1232         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1233     {
1234         return false;
1235     }
1236
1237     *out = ir_value_vector_member(vec, self->field);
1238     self->expression.outl = *out;
1239
1240     return (*out != NULL);
1241 }
1242
1243 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1244 {
1245     ast_expression_codegen *cgen;
1246
1247     ir_value *condval;
1248     ir_value *dummy;
1249
1250     ir_block *cond = func->curblock;
1251     ir_block *ontrue;
1252     ir_block *onfalse;
1253     ir_block *merge;
1254
1255     /* We don't output any value, thus also don't care about r/lvalue */
1256     (void)out;
1257     (void)lvalue;
1258
1259     if (self->expression.outr) {
1260         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1261         return false;
1262     }
1263     self->expression.outr = (ir_value*)1;
1264
1265     /* generate the condition */
1266     func->curblock = cond;
1267     cgen = self->cond->expression.codegen;
1268     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1269         return false;
1270
1271     /* on-true path */
1272
1273     if (self->on_true) {
1274         /* create on-true block */
1275         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1276         if (!ontrue)
1277             return false;
1278
1279         /* enter the block */
1280         func->curblock = ontrue;
1281
1282         /* generate */
1283         cgen = self->on_true->expression.codegen;
1284         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1285             return false;
1286     } else
1287         ontrue = NULL;
1288
1289     /* on-false path */
1290     if (self->on_false) {
1291         /* create on-false block */
1292         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1293         if (!onfalse)
1294             return false;
1295
1296         /* enter the block */
1297         func->curblock = onfalse;
1298
1299         /* generate */
1300         cgen = self->on_false->expression.codegen;
1301         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1302             return false;
1303     } else
1304         onfalse = NULL;
1305
1306     /* Merge block were they all merge in to */
1307     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1308     if (!merge)
1309         return false;
1310
1311     /* add jumps ot the merge block */
1312     if (ontrue && !ir_block_create_jump(ontrue, merge))
1313         return false;
1314     if (onfalse && !ir_block_create_jump(onfalse, merge))
1315         return false;
1316
1317     /* we create the if here, that way all blocks are ordered :)
1318      */
1319     if (!ir_block_create_if(cond, condval,
1320                             (ontrue  ? ontrue  : merge),
1321                             (onfalse ? onfalse : merge)))
1322     {
1323         return false;
1324     }
1325
1326     /* Now enter the merge block */
1327     func->curblock = merge;
1328
1329     return true;
1330 }
1331
1332 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1333 {
1334     ast_expression_codegen *cgen;
1335
1336     ir_value *condval;
1337     ir_value *trueval, *falseval;
1338     ir_instr *phi;
1339
1340     ir_block *cond = func->curblock;
1341     ir_block *ontrue;
1342     ir_block *onfalse;
1343     ir_block *merge;
1344
1345     /* Ternary can never create an lvalue... */
1346     if (lvalue)
1347         return false;
1348
1349     /* In theory it shouldn't be possible to pass through a node twice, but
1350      * in case we add any kind of optimization pass for the AST itself, it
1351      * may still happen, thus we remember a created ir_value and simply return one
1352      * if it already exists.
1353      */
1354     if (self->phi_out) {
1355         *out = self->phi_out;
1356         return true;
1357     }
1358
1359     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1360
1361     /* generate the condition */
1362     func->curblock = cond;
1363     cgen = self->cond->expression.codegen;
1364     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1365         return false;
1366
1367     /* create on-true block */
1368     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1369     if (!ontrue)
1370         return false;
1371     else
1372     {
1373         /* enter the block */
1374         func->curblock = ontrue;
1375
1376         /* generate */
1377         cgen = self->on_true->expression.codegen;
1378         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1379             return false;
1380     }
1381
1382     /* create on-false block */
1383     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1384     if (!onfalse)
1385         return false;
1386     else
1387     {
1388         /* enter the block */
1389         func->curblock = onfalse;
1390
1391         /* generate */
1392         cgen = self->on_false->expression.codegen;
1393         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1394             return false;
1395     }
1396
1397     /* create merge block */
1398     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1399     if (!merge)
1400         return false;
1401     /* jump to merge block */
1402     if (!ir_block_create_jump(ontrue, merge))
1403         return false;
1404     if (!ir_block_create_jump(onfalse, merge))
1405         return false;
1406
1407     /* create if instruction */
1408     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1409         return false;
1410
1411     /* Now enter the merge block */
1412     func->curblock = merge;
1413
1414     /* Here, now, we need a PHI node
1415      * but first some sanity checking...
1416      */
1417     if (trueval->vtype != falseval->vtype) {
1418         /* error("ternary with different types on the two sides"); */
1419         return false;
1420     }
1421
1422     /* create PHI */
1423     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1424     if (!phi ||
1425         !ir_phi_add(phi, ontrue,  trueval) ||
1426         !ir_phi_add(phi, onfalse, falseval))
1427     {
1428         return false;
1429     }
1430
1431     self->phi_out = ir_phi_value(phi);
1432     *out = self->phi_out;
1433
1434     return true;
1435 }
1436
1437 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1438 {
1439     ast_expression_codegen *cgen;
1440
1441     ir_value *dummy      = NULL;
1442     ir_value *precond    = NULL;
1443     ir_value *postcond   = NULL;
1444
1445     /* Since we insert some jumps "late" so we have blocks
1446      * ordered "nicely", we need to keep track of the actual end-blocks
1447      * of expressions to add the jumps to.
1448      */
1449     ir_block *bbody      = NULL, *end_bbody      = NULL;
1450     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1451     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1452     ir_block *bincrement = NULL, *end_bincrement = NULL;
1453     ir_block *bout       = NULL, *bin            = NULL;
1454
1455     /* let's at least move the outgoing block to the end */
1456     size_t    bout_id;
1457
1458     /* 'break' and 'continue' need to be able to find the right blocks */
1459     ir_block *bcontinue     = NULL;
1460     ir_block *bbreak        = NULL;
1461
1462     ir_block *old_bcontinue = NULL;
1463     ir_block *old_bbreak    = NULL;
1464
1465     ir_block *tmpblock      = NULL;
1466
1467     (void)lvalue;
1468     (void)out;
1469
1470     if (self->expression.outr) {
1471         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1472         return false;
1473     }
1474     self->expression.outr = (ir_value*)1;
1475
1476     /* NOTE:
1477      * Should we ever need some kind of block ordering, better make this function
1478      * move blocks around than write a block ordering algorithm later... after all
1479      * the ast and ir should work together, not against each other.
1480      */
1481
1482     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1483      * anyway if for example it contains a ternary.
1484      */
1485     if (self->initexpr)
1486     {
1487         cgen = self->initexpr->expression.codegen;
1488         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1489             return false;
1490     }
1491
1492     /* Store the block from which we enter this chaos */
1493     bin = func->curblock;
1494
1495     /* The pre-loop condition needs its own block since we
1496      * need to be able to jump to the start of that expression.
1497      */
1498     if (self->precond)
1499     {
1500         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1501         if (!bprecond)
1502             return false;
1503
1504         /* the pre-loop-condition the least important place to 'continue' at */
1505         bcontinue = bprecond;
1506
1507         /* enter */
1508         func->curblock = bprecond;
1509
1510         /* generate */
1511         cgen = self->precond->expression.codegen;
1512         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1513             return false;
1514
1515         end_bprecond = func->curblock;
1516     } else {
1517         bprecond = end_bprecond = NULL;
1518     }
1519
1520     /* Now the next blocks won't be ordered nicely, but we need to
1521      * generate them this early for 'break' and 'continue'.
1522      */
1523     if (self->increment) {
1524         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1525         if (!bincrement)
1526             return false;
1527         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1528     } else {
1529         bincrement = end_bincrement = NULL;
1530     }
1531
1532     if (self->postcond) {
1533         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1534         if (!bpostcond)
1535             return false;
1536         bcontinue = bpostcond; /* postcond comes before the increment */
1537     } else {
1538         bpostcond = end_bpostcond = NULL;
1539     }
1540
1541     bout_id = func->ir_func->blocks_count;
1542     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1543     if (!bout)
1544         return false;
1545     bbreak = bout;
1546
1547     /* The loop body... */
1548     if (self->body)
1549     {
1550         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1551         if (!bbody)
1552             return false;
1553
1554         /* enter */
1555         func->curblock = bbody;
1556
1557         old_bbreak          = func->breakblock;
1558         old_bcontinue       = func->continueblock;
1559         func->breakblock    = bbreak;
1560         func->continueblock = bcontinue;
1561
1562         /* generate */
1563         cgen = self->body->expression.codegen;
1564         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1565             return false;
1566
1567         end_bbody = func->curblock;
1568         func->breakblock    = old_bbreak;
1569         func->continueblock = old_bcontinue;
1570     }
1571
1572     /* post-loop-condition */
1573     if (self->postcond)
1574     {
1575         /* enter */
1576         func->curblock = bpostcond;
1577
1578         /* generate */
1579         cgen = self->postcond->expression.codegen;
1580         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1581             return false;
1582
1583         end_bpostcond = func->curblock;
1584     }
1585
1586     /* The incrementor */
1587     if (self->increment)
1588     {
1589         /* enter */
1590         func->curblock = bincrement;
1591
1592         /* generate */
1593         cgen = self->increment->expression.codegen;
1594         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1595             return false;
1596
1597         end_bincrement = func->curblock;
1598     }
1599
1600     /* In any case now, we continue from the outgoing block */
1601     func->curblock = bout;
1602
1603     /* Now all blocks are in place */
1604     /* From 'bin' we jump to whatever comes first */
1605     if      (bprecond)   tmpblock = bprecond;
1606     else if (bbody)      tmpblock = bbody;
1607     else if (bpostcond)  tmpblock = bpostcond;
1608     else                 tmpblock = bout;
1609     if (!ir_block_create_jump(bin, tmpblock))
1610         return false;
1611
1612     /* From precond */
1613     if (bprecond)
1614     {
1615         ir_block *ontrue, *onfalse;
1616         if      (bbody)      ontrue = bbody;
1617         else if (bincrement) ontrue = bincrement;
1618         else if (bpostcond)  ontrue = bpostcond;
1619         else                 ontrue = bprecond;
1620         onfalse = bout;
1621         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1622             return false;
1623     }
1624
1625     /* from body */
1626     if (bbody)
1627     {
1628         if      (bincrement) tmpblock = bincrement;
1629         else if (bpostcond)  tmpblock = bpostcond;
1630         else if (bprecond)   tmpblock = bprecond;
1631         else                 tmpblock = bout;
1632         if (!ir_block_create_jump(end_bbody, tmpblock))
1633             return false;
1634     }
1635
1636     /* from increment */
1637     if (bincrement)
1638     {
1639         if      (bpostcond)  tmpblock = bpostcond;
1640         else if (bprecond)   tmpblock = bprecond;
1641         else if (bbody)      tmpblock = bbody;
1642         else                 tmpblock = bout;
1643         if (!ir_block_create_jump(end_bincrement, tmpblock))
1644             return false;
1645     }
1646
1647     /* from postcond */
1648     if (bpostcond)
1649     {
1650         ir_block *ontrue, *onfalse;
1651         if      (bprecond)   ontrue = bprecond;
1652         else if (bbody)      ontrue = bbody;
1653         else if (bincrement) ontrue = bincrement;
1654         else                 ontrue = bpostcond;
1655         onfalse = bout;
1656         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1657             return false;
1658     }
1659
1660     /* Move 'bout' to the end */
1661     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1662         !ir_function_blocks_add(func->ir_func, bout))
1663     {
1664         ir_block_delete(bout);
1665         return false;
1666     }
1667
1668     return true;
1669 }
1670
1671 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1672 {
1673     ast_expression_codegen *cgen;
1674     ir_value_vector         params;
1675     ir_instr               *callinstr;
1676     size_t i;
1677
1678     ir_value *funval = NULL;
1679
1680     /* return values are never lvalues */
1681     (void)lvalue;
1682
1683     if (self->expression.outr) {
1684         *out = self->expression.outr;
1685         return true;
1686     }
1687
1688     cgen = self->func->expression.codegen;
1689     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1690         return false;
1691     if (!funval)
1692         return false;
1693
1694     MEM_VECTOR_INIT(&params, v);
1695
1696     /* parameters */
1697     for (i = 0; i < self->params_count; ++i)
1698     {
1699         ir_value *param;
1700         ast_expression *expr = self->params[i];
1701
1702         cgen = expr->expression.codegen;
1703         if (!(*cgen)(expr, func, false, &param))
1704             goto error;
1705         if (!param)
1706             goto error;
1707         if (!ir_value_vector_v_add(&params, param))
1708             goto error;
1709     }
1710
1711     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1712     if (!callinstr)
1713         goto error;
1714
1715     for (i = 0; i < params.v_count; ++i) {
1716         if (!ir_call_param(callinstr, params.v[i]))
1717             goto error;
1718     }
1719
1720     *out = ir_call_value(callinstr);
1721     self->expression.outr = *out;
1722
1723     MEM_VECTOR_CLEAR(&params, v);
1724     return true;
1725 error:
1726     MEM_VECTOR_CLEAR(&params, v);
1727     return false;
1728 }