]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast->ir for TYPE_ARRAY globals
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     return self;
331 }
332
333 void ast_value_delete(ast_value* self)
334 {
335     if (self->name)
336         mem_d((void*)self->name);
337     if (self->isconst) {
338         switch (self->expression.vtype)
339         {
340         case TYPE_STRING:
341             mem_d((void*)self->constval.vstring);
342             break;
343         case TYPE_FUNCTION:
344             /* unlink us from the function node */
345             self->constval.vfunc->vtype = NULL;
346             break;
347         /* NOTE: delete function? currently collected in
348          * the parser structure
349          */
350         default:
351             break;
352         }
353     }
354     if (self->ir_values)
355         mem_d(self->ir_values);
356     ast_expression_delete((ast_expression*)self);
357     mem_d(self);
358 }
359
360 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
361 {
362     return ast_expression_common_params_add(&self->expression, p);
363 }
364
365 bool ast_value_set_name(ast_value *self, const char *name)
366 {
367     if (self->name)
368         mem_d((void*)self->name);
369     self->name = util_strdup(name);
370     return !!self->name;
371 }
372
373 ast_binary* ast_binary_new(lex_ctx ctx, int op,
374                            ast_expression* left, ast_expression* right)
375 {
376     ast_instantiate(ast_binary, ctx, ast_binary_delete);
377     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
378
379     self->op = op;
380     self->left = left;
381     self->right = right;
382
383     if (op >= INSTR_EQ_F && op <= INSTR_GT)
384         self->expression.vtype = TYPE_FLOAT;
385     else if (op == INSTR_AND || op == INSTR_OR ||
386              op == INSTR_BITAND || op == INSTR_BITOR)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
389         self->expression.vtype = TYPE_VECTOR;
390     else if (op == INSTR_MUL_V)
391         self->expression.vtype = TYPE_FLOAT;
392     else
393         self->expression.vtype = left->expression.vtype;
394
395     return self;
396 }
397
398 void ast_binary_delete(ast_binary *self)
399 {
400     ast_unref(self->left);
401     ast_unref(self->right);
402     ast_expression_delete((ast_expression*)self);
403     mem_d(self);
404 }
405
406 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
407                                ast_expression* left, ast_expression* right)
408 {
409     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
410     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
411
412     self->opstore = storop;
413     self->opbin   = op;
414     self->dest    = left;
415     self->source  = right;
416
417     self->expression.vtype = left->expression.vtype;
418     if (left->expression.next) {
419         self->expression.next = ast_type_copy(ctx, left);
420         if (!self->expression.next) {
421             ast_delete(self);
422             return NULL;
423         }
424     }
425     else
426         self->expression.next = NULL;
427
428     return self;
429 }
430
431 void ast_binstore_delete(ast_binstore *self)
432 {
433     ast_unref(self->dest);
434     ast_unref(self->source);
435     ast_expression_delete((ast_expression*)self);
436     mem_d(self);
437 }
438
439 ast_unary* ast_unary_new(lex_ctx ctx, int op,
440                          ast_expression *expr)
441 {
442     ast_instantiate(ast_unary, ctx, ast_unary_delete);
443     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
444
445     self->op = op;
446     self->operand = expr;
447
448     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
449         self->expression.vtype = TYPE_FLOAT;
450     } else
451         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
452
453     return self;
454 }
455
456 void ast_unary_delete(ast_unary *self)
457 {
458     ast_unref(self->operand);
459     ast_expression_delete((ast_expression*)self);
460     mem_d(self);
461 }
462
463 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
464 {
465     ast_instantiate(ast_return, ctx, ast_return_delete);
466     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
467
468     self->operand = expr;
469
470     return self;
471 }
472
473 void ast_return_delete(ast_return *self)
474 {
475     if (self->operand)
476         ast_unref(self->operand);
477     ast_expression_delete((ast_expression*)self);
478     mem_d(self);
479 }
480
481 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
482 {
483     const ast_expression *outtype;
484
485     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
486
487     if (field->expression.vtype != TYPE_FIELD) {
488         mem_d(self);
489         return NULL;
490     }
491
492     outtype = field->expression.next;
493     if (!outtype) {
494         mem_d(self);
495         /* Error: field has no type... */
496         return NULL;
497     }
498
499     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
500
501     self->entity = entity;
502     self->field  = field;
503
504     if (!ast_type_adopt(self, outtype)) {
505         ast_entfield_delete(self);
506         return NULL;
507     }
508
509     return self;
510 }
511
512 void ast_entfield_delete(ast_entfield *self)
513 {
514     ast_unref(self->entity);
515     ast_unref(self->field);
516     ast_expression_delete((ast_expression*)self);
517     mem_d(self);
518 }
519
520 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
521 {
522     ast_instantiate(ast_member, ctx, ast_member_delete);
523     if (field >= 3) {
524         mem_d(self);
525         return NULL;
526     }
527
528     if (owner->expression.vtype != TYPE_VECTOR &&
529         owner->expression.vtype != TYPE_FIELD) {
530         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
531         mem_d(self);
532         return NULL;
533     }
534
535     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
536     self->expression.node.keep = true; /* keep */
537
538     if (owner->expression.vtype == TYPE_VECTOR) {
539         self->expression.vtype = TYPE_FLOAT;
540         self->expression.next  = NULL;
541     } else {
542         self->expression.vtype = TYPE_FIELD;
543         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
544     }
545
546     self->owner = owner;
547     self->field = field;
548
549     return self;
550 }
551
552 void ast_member_delete(ast_member *self)
553 {
554     /* The owner is always an ast_value, which has .keep=true,
555      * also: ast_members are usually deleted after the owner, thus
556      * this will cause invalid access
557     ast_unref(self->owner);
558      * once we allow (expression).x to access a vector-member, we need
559      * to change this: preferably by creating an alternate ast node for this
560      * purpose that is not garbage-collected.
561     */
562     ast_expression_delete((ast_expression*)self);
563     mem_d(self);
564 }
565
566 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
567 {
568     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
569     if (!ontrue && !onfalse) {
570         /* because it is invalid */
571         mem_d(self);
572         return NULL;
573     }
574     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
575
576     self->cond     = cond;
577     self->on_true  = ontrue;
578     self->on_false = onfalse;
579
580     return self;
581 }
582
583 void ast_ifthen_delete(ast_ifthen *self)
584 {
585     ast_unref(self->cond);
586     if (self->on_true)
587         ast_unref(self->on_true);
588     if (self->on_false)
589         ast_unref(self->on_false);
590     ast_expression_delete((ast_expression*)self);
591     mem_d(self);
592 }
593
594 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
595 {
596     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
597     /* This time NEITHER must be NULL */
598     if (!ontrue || !onfalse) {
599         mem_d(self);
600         return NULL;
601     }
602     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
603
604     self->cond     = cond;
605     self->on_true  = ontrue;
606     self->on_false = onfalse;
607     self->phi_out  = NULL;
608
609     return self;
610 }
611
612 void ast_ternary_delete(ast_ternary *self)
613 {
614     ast_unref(self->cond);
615     ast_unref(self->on_true);
616     ast_unref(self->on_false);
617     ast_expression_delete((ast_expression*)self);
618     mem_d(self);
619 }
620
621 ast_loop* ast_loop_new(lex_ctx ctx,
622                        ast_expression *initexpr,
623                        ast_expression *precond,
624                        ast_expression *postcond,
625                        ast_expression *increment,
626                        ast_expression *body)
627 {
628     ast_instantiate(ast_loop, ctx, ast_loop_delete);
629     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
630
631     self->initexpr  = initexpr;
632     self->precond   = precond;
633     self->postcond  = postcond;
634     self->increment = increment;
635     self->body      = body;
636
637     return self;
638 }
639
640 void ast_loop_delete(ast_loop *self)
641 {
642     if (self->initexpr)
643         ast_unref(self->initexpr);
644     if (self->precond)
645         ast_unref(self->precond);
646     if (self->postcond)
647         ast_unref(self->postcond);
648     if (self->increment)
649         ast_unref(self->increment);
650     if (self->body)
651         ast_unref(self->body);
652     ast_expression_delete((ast_expression*)self);
653     mem_d(self);
654 }
655
656 ast_call* ast_call_new(lex_ctx ctx,
657                        ast_expression *funcexpr)
658 {
659     ast_instantiate(ast_call, ctx, ast_call_delete);
660     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
661
662     MEM_VECTOR_INIT(self, params);
663
664     self->func = funcexpr;
665
666     self->expression.vtype = funcexpr->expression.next->expression.vtype;
667     if (funcexpr->expression.next->expression.next)
668         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
669
670     return self;
671 }
672 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
673
674 void ast_call_delete(ast_call *self)
675 {
676     size_t i;
677     for (i = 0; i < self->params_count; ++i)
678         ast_unref(self->params[i]);
679     MEM_VECTOR_CLEAR(self, params);
680
681     if (self->func)
682         ast_unref(self->func);
683
684     ast_expression_delete((ast_expression*)self);
685     mem_d(self);
686 }
687
688 bool ast_call_check_types(ast_call *self)
689 {
690     size_t i;
691     bool   retval = true;
692     const  ast_expression *func = self->func;
693     size_t count = self->params_count;
694     if (count > func->expression.params_count)
695         count = func->expression.params_count;
696
697     for (i = 0; i < count; ++i) {
698         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
699             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
700                      (unsigned int)(i+1));
701             /* we don't immediately return */
702             retval = false;
703         }
704     }
705     return retval;
706 }
707
708 ast_store* ast_store_new(lex_ctx ctx, int op,
709                          ast_expression *dest, ast_expression *source)
710 {
711     ast_instantiate(ast_store, ctx, ast_store_delete);
712     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
713
714     self->op = op;
715     self->dest = dest;
716     self->source = source;
717
718     self->expression.vtype = dest->expression.vtype;
719     if (dest->expression.next) {
720         self->expression.next = ast_type_copy(ctx, dest);
721         if (!self->expression.next) {
722             ast_delete(self);
723             return NULL;
724         }
725     }
726     else
727         self->expression.next = NULL;
728
729     return self;
730 }
731
732 void ast_store_delete(ast_store *self)
733 {
734     ast_unref(self->dest);
735     ast_unref(self->source);
736     ast_expression_delete((ast_expression*)self);
737     mem_d(self);
738 }
739
740 ast_block* ast_block_new(lex_ctx ctx)
741 {
742     ast_instantiate(ast_block, ctx, ast_block_delete);
743     ast_expression_init((ast_expression*)self,
744                         (ast_expression_codegen*)&ast_block_codegen);
745
746     MEM_VECTOR_INIT(self, locals);
747     MEM_VECTOR_INIT(self, exprs);
748     MEM_VECTOR_INIT(self, collect);
749
750     return self;
751 }
752 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
753 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
754 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
755
756 bool ast_block_collect(ast_block *self, ast_expression *expr)
757 {
758     if (!ast_block_collect_add(self, expr))
759         return false;
760     expr->expression.node.keep = true;
761     return true;
762 }
763
764 void ast_block_delete(ast_block *self)
765 {
766     size_t i;
767     for (i = 0; i < self->exprs_count; ++i)
768         ast_unref(self->exprs[i]);
769     MEM_VECTOR_CLEAR(self, exprs);
770     for (i = 0; i < self->locals_count; ++i)
771         ast_delete(self->locals[i]);
772     MEM_VECTOR_CLEAR(self, locals);
773     for (i = 0; i < self->collect_count; ++i)
774         ast_delete(self->collect[i]);
775     MEM_VECTOR_CLEAR(self, collect);
776     ast_expression_delete((ast_expression*)self);
777     mem_d(self);
778 }
779
780 bool ast_block_set_type(ast_block *self, ast_expression *from)
781 {
782     if (self->expression.next)
783         ast_delete(self->expression.next);
784     self->expression.vtype = from->expression.vtype;
785     if (from->expression.next) {
786         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
787         if (!self->expression.next)
788             return false;
789     }
790     else
791         self->expression.next = NULL;
792     return true;
793 }
794
795 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
796 {
797     ast_instantiate(ast_function, ctx, ast_function_delete);
798
799     if (!vtype ||
800         vtype->isconst ||
801         vtype->expression.vtype != TYPE_FUNCTION)
802     {
803         mem_d(self);
804         return NULL;
805     }
806
807     self->vtype = vtype;
808     self->name = name ? util_strdup(name) : NULL;
809     MEM_VECTOR_INIT(self, blocks);
810
811     self->labelcount = 0;
812     self->builtin = 0;
813
814     self->ir_func = NULL;
815     self->curblock = NULL;
816
817     self->breakblock    = NULL;
818     self->continueblock = NULL;
819
820     vtype->isconst = true;
821     vtype->constval.vfunc = self;
822
823     return self;
824 }
825
826 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
827
828 void ast_function_delete(ast_function *self)
829 {
830     size_t i;
831     if (self->name)
832         mem_d((void*)self->name);
833     if (self->vtype) {
834         /* ast_value_delete(self->vtype); */
835         self->vtype->isconst = false;
836         self->vtype->constval.vfunc = NULL;
837         /* We use unref - if it was stored in a global table it is supposed
838          * to be deleted from *there*
839          */
840         ast_unref(self->vtype);
841     }
842     for (i = 0; i < self->blocks_count; ++i)
843         ast_delete(self->blocks[i]);
844     MEM_VECTOR_CLEAR(self, blocks);
845     mem_d(self);
846 }
847
848 const char* ast_function_label(ast_function *self, const char *prefix)
849 {
850     size_t id;
851     size_t len;
852     char  *from;
853
854     if (!opts_dump)
855         return NULL;
856
857     id  = (self->labelcount++);
858     len = strlen(prefix);
859
860     from = self->labelbuf + sizeof(self->labelbuf)-1;
861     *from-- = 0;
862     do {
863         unsigned int digit = id % 10;
864         *from = digit + '0';
865         id /= 10;
866     } while (id);
867     memcpy(from - len, prefix, len);
868     return from - len;
869 }
870
871 /*********************************************************************/
872 /* AST codegen part
873  * by convention you must never pass NULL to the 'ir_value **out'
874  * parameter. If you really don't care about the output, pass a dummy.
875  * But I can't imagine a pituation where the output is truly unnecessary.
876  */
877
878 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
879 {
880     /* NOTE: This is the codegen for a variable used in an expression.
881      * It is not the codegen to generate the value. For this purpose,
882      * ast_local_codegen and ast_global_codegen are to be used before this
883      * is executed. ast_function_codegen should take care of its locals,
884      * and the ast-user should take care of ast_global_codegen to be used
885      * on all the globals.
886      */
887     if (!self->ir_v) {
888         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
889         return false;
890     }
891     *out = self->ir_v;
892     return true;
893 }
894
895 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
896 {
897     ir_value *v = NULL;
898     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
899     {
900         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
901         if (!func)
902             return false;
903         func->context = ast_ctx(self);
904         func->value->context = ast_ctx(self);
905
906         self->constval.vfunc->ir_func = func;
907         self->ir_v = func->value;
908         /* The function is filled later on ast_function_codegen... */
909         return true;
910     }
911
912     if (isfield && self->expression.vtype == TYPE_FIELD) {
913         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
914         if (!v)
915             return false;
916         v->context = ast_ctx(self);
917         if (self->isconst) {
918             asterror(ast_ctx(self), "TODO: constant field pointers with value");
919             goto error;
920         }
921         self->ir_v = v;
922         return true;
923     }
924
925     if (self->expression.vtype == TYPE_ARRAY) {
926         size_t ai;
927         char   *name;
928         size_t  namelen;
929
930         ast_expression_common *elemtype = &self->expression.next->expression;
931         int vtype = elemtype->vtype;
932 printf("Generating `%s`\n", self->name);
933         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
934         if (!self->expression.count || self->expression.count > opts_max_array_size) {
935             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
936         }
937
938         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
939         if (!self->ir_values) {
940             asterror(ast_ctx(self), "failed to allocate array values");
941             return false;
942         }
943
944         v = ir_builder_create_global(ir, self->name, vtype);
945         if (!v) {
946             asterror(ast_ctx(self), "ir_builder_create_global failed");
947             return false;
948         }
949         if (vtype == TYPE_FIELD)
950             v->fieldtype = elemtype->next->expression.vtype;
951         v->context = ast_ctx(self);
952
953         namelen = strlen(self->name);
954         name    = (char*)mem_a(namelen + 16);
955         strcpy(name, self->name);
956
957         self->ir_values[0] = v;
958         for (ai = 1; ai < self->expression.count; ++ai) {
959             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
960             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
961             if (!self->ir_values[ai]) {
962                 asterror(ast_ctx(self), "ir_builder_create_global failed");
963                 return false;
964             }
965             if (vtype == TYPE_FIELD)
966                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
967             self->ir_values[ai]->context = ast_ctx(self);
968         }
969     }
970     else
971     {
972         /* Arrays don't do this since there's no "array" value which spans across the
973          * whole thing.
974          */
975         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
976         if (!v) {
977             asterror(ast_ctx(self), "ir_builder_create_global failed");
978             return false;
979         }
980         if (self->expression.vtype == TYPE_FIELD)
981             v->fieldtype = self->expression.next->expression.vtype;
982         v->context = ast_ctx(self);
983     }
984
985     if (self->isconst) {
986         switch (self->expression.vtype)
987         {
988             case TYPE_FLOAT:
989                 if (!ir_value_set_float(v, self->constval.vfloat))
990                     goto error;
991                 break;
992             case TYPE_VECTOR:
993                 if (!ir_value_set_vector(v, self->constval.vvec))
994                     goto error;
995                 break;
996             case TYPE_STRING:
997                 if (!ir_value_set_string(v, self->constval.vstring))
998                     goto error;
999                 break;
1000             case TYPE_ARRAY:
1001                 asterror(ast_ctx(self), "TODO: global constant array");
1002                 break;
1003             case TYPE_FUNCTION:
1004                 asterror(ast_ctx(self), "global of type function not properly generated");
1005                 goto error;
1006                 /* Cannot generate an IR value for a function,
1007                  * need a pointer pointing to a function rather.
1008                  */
1009             default:
1010                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1011                 break;
1012         }
1013     }
1014
1015     /* link us to the ir_value */
1016     self->ir_v = v;
1017     return true;
1018
1019 error: /* clean up */
1020     ir_value_delete(v);
1021     return false;
1022 }
1023
1024 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1025 {
1026     ir_value *v = NULL;
1027     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1028     {
1029         /* Do we allow local functions? I think not...
1030          * this is NOT a function pointer atm.
1031          */
1032         return false;
1033     }
1034
1035     if (self->expression.vtype == TYPE_ARRAY)
1036     {
1037         asterror(ast_ctx(self), "TODO: ast_local_codgen for TYPE_ARRAY");
1038         return false;
1039     }
1040
1041     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1042     if (!v)
1043         return false;
1044     if (self->expression.vtype == TYPE_FIELD)
1045         v->fieldtype = self->expression.next->expression.vtype;
1046     v->context = ast_ctx(self);
1047
1048     /* A constant local... hmmm...
1049      * I suppose the IR will have to deal with this
1050      */
1051     if (self->isconst) {
1052         switch (self->expression.vtype)
1053         {
1054             case TYPE_FLOAT:
1055                 if (!ir_value_set_float(v, self->constval.vfloat))
1056                     goto error;
1057                 break;
1058             case TYPE_VECTOR:
1059                 if (!ir_value_set_vector(v, self->constval.vvec))
1060                     goto error;
1061                 break;
1062             case TYPE_STRING:
1063                 if (!ir_value_set_string(v, self->constval.vstring))
1064                     goto error;
1065                 break;
1066             default:
1067                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1068                 break;
1069         }
1070     }
1071
1072     /* link us to the ir_value */
1073     self->ir_v = v;
1074     return true;
1075
1076 error: /* clean up */
1077     ir_value_delete(v);
1078     return false;
1079 }
1080
1081 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1082 {
1083     ir_function *irf;
1084     ir_value    *dummy;
1085     ast_expression_common *ec;
1086     size_t    i;
1087
1088     irf = self->ir_func;
1089     if (!irf) {
1090         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1091         return false;
1092     }
1093
1094     /* fill the parameter list */
1095     ec = &self->vtype->expression;
1096     for (i = 0; i < ec->params_count; ++i)
1097     {
1098         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1099             return false;
1100         if (!self->builtin) {
1101             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1102                 return false;
1103         }
1104     }
1105
1106     if (self->builtin) {
1107         irf->builtin = self->builtin;
1108         return true;
1109     }
1110
1111     if (!self->blocks_count) {
1112         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1113         return false;
1114     }
1115
1116     self->curblock = ir_function_create_block(irf, "entry");
1117     if (!self->curblock) {
1118         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1119         return false;
1120     }
1121
1122     for (i = 0; i < self->blocks_count; ++i) {
1123         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1124         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1125             return false;
1126     }
1127
1128     /* TODO: check return types */
1129     if (!self->curblock->is_return)
1130     {
1131         return ir_block_create_return(self->curblock, NULL);
1132         /* From now on the parser has to handle this situation */
1133 #if 0
1134         if (!self->vtype->expression.next ||
1135             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1136         {
1137             return ir_block_create_return(self->curblock, NULL);
1138         }
1139         else
1140         {
1141             /* error("missing return"); */
1142             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1143             return false;
1144         }
1145 #endif
1146     }
1147     return true;
1148 }
1149
1150 /* Note, you will not see ast_block_codegen generate ir_blocks.
1151  * To the AST and the IR, blocks are 2 different things.
1152  * In the AST it represents a block of code, usually enclosed in
1153  * curly braces {...}.
1154  * While in the IR it represents a block in terms of control-flow.
1155  */
1156 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1157 {
1158     size_t i;
1159
1160     /* We don't use this
1161      * Note: an ast-representation using the comma-operator
1162      * of the form: (a, b, c) = x should not assign to c...
1163      */
1164     if (lvalue) {
1165         asterror(ast_ctx(self), "not an l-value (code-block)");
1166         return false;
1167     }
1168
1169     if (self->expression.outr) {
1170         *out = self->expression.outr;
1171         return true;
1172     }
1173
1174     /* output is NULL at first, we'll have each expression
1175      * assign to out output, thus, a comma-operator represention
1176      * using an ast_block will return the last generated value,
1177      * so: (b, c) + a  executed both b and c, and returns c,
1178      * which is then added to a.
1179      */
1180     *out = NULL;
1181
1182     /* generate locals */
1183     for (i = 0; i < self->locals_count; ++i)
1184     {
1185         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1186             if (opts_debug)
1187                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1188             return false;
1189         }
1190     }
1191
1192     for (i = 0; i < self->exprs_count; ++i)
1193     {
1194         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1195         if (!(*gen)(self->exprs[i], func, false, out))
1196             return false;
1197     }
1198
1199     self->expression.outr = *out;
1200
1201     return true;
1202 }
1203
1204 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1205 {
1206     ast_expression_codegen *cgen;
1207     ir_value *left, *right;
1208
1209     if (lvalue && self->expression.outl) {
1210         *out = self->expression.outl;
1211         return true;
1212     }
1213
1214     if (!lvalue && self->expression.outr) {
1215         *out = self->expression.outr;
1216         return true;
1217     }
1218
1219     cgen = self->dest->expression.codegen;
1220     /* lvalue! */
1221     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1222         return false;
1223     self->expression.outl = left;
1224
1225     cgen = self->source->expression.codegen;
1226     /* rvalue! */
1227     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1228         return false;
1229
1230     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1231         return false;
1232     self->expression.outr = right;
1233
1234     /* Theoretically, an assinment returns its left side as an
1235      * lvalue, if we don't need an lvalue though, we return
1236      * the right side as an rvalue, otherwise we have to
1237      * somehow know whether or not we need to dereference the pointer
1238      * on the left side - that is: OP_LOAD if it was an address.
1239      * Also: in original QC we cannot OP_LOADP *anyway*.
1240      */
1241     *out = (lvalue ? left : right);
1242
1243     return true;
1244 }
1245
1246 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1247 {
1248     ast_expression_codegen *cgen;
1249     ir_value *left, *right;
1250
1251     /* A binary operation cannot yield an l-value */
1252     if (lvalue) {
1253         asterror(ast_ctx(self), "not an l-value (binop)");
1254         return false;
1255     }
1256
1257     if (self->expression.outr) {
1258         *out = self->expression.outr;
1259         return true;
1260     }
1261
1262     cgen = self->left->expression.codegen;
1263     /* lvalue! */
1264     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1265         return false;
1266
1267     cgen = self->right->expression.codegen;
1268     /* rvalue! */
1269     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1270         return false;
1271
1272     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1273                                  self->op, left, right);
1274     if (!*out)
1275         return false;
1276     self->expression.outr = *out;
1277
1278     return true;
1279 }
1280
1281 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1282 {
1283     ast_expression_codegen *cgen;
1284     ir_value *leftl, *leftr, *right, *bin;
1285
1286     if (lvalue && self->expression.outl) {
1287         *out = self->expression.outl;
1288         return true;
1289     }
1290
1291     if (!lvalue && self->expression.outr) {
1292         *out = self->expression.outr;
1293         return true;
1294     }
1295
1296     /* for a binstore we need both an lvalue and an rvalue for the left side */
1297     /* rvalue of destination! */
1298     cgen = self->dest->expression.codegen;
1299     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1300         return false;
1301
1302     /* source as rvalue only */
1303     cgen = self->source->expression.codegen;
1304     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1305         return false;
1306
1307     /* now the binary */
1308     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1309                                 self->opbin, leftr, right);
1310     self->expression.outr = bin;
1311
1312     /* now store them */
1313     cgen = self->dest->expression.codegen;
1314     /* lvalue of destination */
1315     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1316         return false;
1317     self->expression.outl = leftl;
1318
1319     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1320         return false;
1321     self->expression.outr = bin;
1322
1323     /* Theoretically, an assinment returns its left side as an
1324      * lvalue, if we don't need an lvalue though, we return
1325      * the right side as an rvalue, otherwise we have to
1326      * somehow know whether or not we need to dereference the pointer
1327      * on the left side - that is: OP_LOAD if it was an address.
1328      * Also: in original QC we cannot OP_LOADP *anyway*.
1329      */
1330     *out = (lvalue ? leftl : bin);
1331
1332     return true;
1333 }
1334
1335 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1336 {
1337     ast_expression_codegen *cgen;
1338     ir_value *operand;
1339
1340     /* An unary operation cannot yield an l-value */
1341     if (lvalue) {
1342         asterror(ast_ctx(self), "not an l-value (binop)");
1343         return false;
1344     }
1345
1346     if (self->expression.outr) {
1347         *out = self->expression.outr;
1348         return true;
1349     }
1350
1351     cgen = self->operand->expression.codegen;
1352     /* lvalue! */
1353     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1354         return false;
1355
1356     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1357                                  self->op, operand);
1358     if (!*out)
1359         return false;
1360     self->expression.outr = *out;
1361
1362     return true;
1363 }
1364
1365 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1366 {
1367     ast_expression_codegen *cgen;
1368     ir_value *operand;
1369
1370     /* In the context of a return operation, we don't actually return
1371      * anything...
1372      */
1373     if (lvalue) {
1374         asterror(ast_ctx(self), "return-expression is not an l-value");
1375         return false;
1376     }
1377
1378     if (self->expression.outr) {
1379         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1380         return false;
1381     }
1382     self->expression.outr = (ir_value*)1;
1383
1384     if (self->operand) {
1385         cgen = self->operand->expression.codegen;
1386         /* lvalue! */
1387         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1388             return false;
1389
1390         if (!ir_block_create_return(func->curblock, operand))
1391             return false;
1392     } else {
1393         if (!ir_block_create_return(func->curblock, NULL))
1394             return false;
1395     }
1396
1397     return true;
1398 }
1399
1400 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1401 {
1402     ast_expression_codegen *cgen;
1403     ir_value *ent, *field;
1404
1405     /* This function needs to take the 'lvalue' flag into account!
1406      * As lvalue we provide a field-pointer, as rvalue we provide the
1407      * value in a temp.
1408      */
1409
1410     if (lvalue && self->expression.outl) {
1411         *out = self->expression.outl;
1412         return true;
1413     }
1414
1415     if (!lvalue && self->expression.outr) {
1416         *out = self->expression.outr;
1417         return true;
1418     }
1419
1420     cgen = self->entity->expression.codegen;
1421     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1422         return false;
1423
1424     cgen = self->field->expression.codegen;
1425     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1426         return false;
1427
1428     if (lvalue) {
1429         /* address! */
1430         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1431                                             ent, field);
1432     } else {
1433         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1434                                              ent, field, self->expression.vtype);
1435     }
1436     if (!*out) {
1437         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1438                  (lvalue ? "ADDRESS" : "FIELD"),
1439                  type_name[self->expression.vtype]);
1440         return false;
1441     }
1442
1443     if (lvalue)
1444         self->expression.outl = *out;
1445     else
1446         self->expression.outr = *out;
1447
1448     /* Hm that should be it... */
1449     return true;
1450 }
1451
1452 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1453 {
1454     ast_expression_codegen *cgen;
1455     ir_value *vec;
1456
1457     /* in QC this is always an lvalue */
1458     (void)lvalue;
1459     if (self->expression.outl) {
1460         *out = self->expression.outl;
1461         return true;
1462     }
1463
1464     cgen = self->owner->expression.codegen;
1465     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1466         return false;
1467
1468     if (vec->vtype != TYPE_VECTOR &&
1469         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1470     {
1471         return false;
1472     }
1473
1474     *out = ir_value_vector_member(vec, self->field);
1475     self->expression.outl = *out;
1476
1477     return (*out != NULL);
1478 }
1479
1480 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1481 {
1482     ast_expression_codegen *cgen;
1483
1484     ir_value *condval;
1485     ir_value *dummy;
1486
1487     ir_block *cond = func->curblock;
1488     ir_block *ontrue;
1489     ir_block *onfalse;
1490     ir_block *ontrue_endblock = NULL;
1491     ir_block *onfalse_endblock = NULL;
1492     ir_block *merge;
1493
1494     /* We don't output any value, thus also don't care about r/lvalue */
1495     (void)out;
1496     (void)lvalue;
1497
1498     if (self->expression.outr) {
1499         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1500         return false;
1501     }
1502     self->expression.outr = (ir_value*)1;
1503
1504     /* generate the condition */
1505     func->curblock = cond;
1506     cgen = self->cond->expression.codegen;
1507     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1508         return false;
1509
1510     /* on-true path */
1511
1512     if (self->on_true) {
1513         /* create on-true block */
1514         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1515         if (!ontrue)
1516             return false;
1517
1518         /* enter the block */
1519         func->curblock = ontrue;
1520
1521         /* generate */
1522         cgen = self->on_true->expression.codegen;
1523         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1524             return false;
1525
1526         /* we now need to work from the current endpoint */
1527         ontrue_endblock = func->curblock;
1528     } else
1529         ontrue = NULL;
1530
1531     /* on-false path */
1532     if (self->on_false) {
1533         /* create on-false block */
1534         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1535         if (!onfalse)
1536             return false;
1537
1538         /* enter the block */
1539         func->curblock = onfalse;
1540
1541         /* generate */
1542         cgen = self->on_false->expression.codegen;
1543         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1544             return false;
1545
1546         /* we now need to work from the current endpoint */
1547         onfalse_endblock = func->curblock;
1548     } else
1549         onfalse = NULL;
1550
1551     /* Merge block were they all merge in to */
1552     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1553     if (!merge)
1554         return false;
1555
1556     /* add jumps ot the merge block */
1557     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1558         return false;
1559     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1560         return false;
1561
1562     /* we create the if here, that way all blocks are ordered :)
1563      */
1564     if (!ir_block_create_if(cond, condval,
1565                             (ontrue  ? ontrue  : merge),
1566                             (onfalse ? onfalse : merge)))
1567     {
1568         return false;
1569     }
1570
1571     /* Now enter the merge block */
1572     func->curblock = merge;
1573
1574     return true;
1575 }
1576
1577 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1578 {
1579     ast_expression_codegen *cgen;
1580
1581     ir_value *condval;
1582     ir_value *trueval, *falseval;
1583     ir_instr *phi;
1584
1585     ir_block *cond = func->curblock;
1586     ir_block *ontrue;
1587     ir_block *onfalse;
1588     ir_block *merge;
1589
1590     /* Ternary can never create an lvalue... */
1591     if (lvalue)
1592         return false;
1593
1594     /* In theory it shouldn't be possible to pass through a node twice, but
1595      * in case we add any kind of optimization pass for the AST itself, it
1596      * may still happen, thus we remember a created ir_value and simply return one
1597      * if it already exists.
1598      */
1599     if (self->phi_out) {
1600         *out = self->phi_out;
1601         return true;
1602     }
1603
1604     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1605
1606     /* generate the condition */
1607     func->curblock = cond;
1608     cgen = self->cond->expression.codegen;
1609     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1610         return false;
1611
1612     /* create on-true block */
1613     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1614     if (!ontrue)
1615         return false;
1616     else
1617     {
1618         /* enter the block */
1619         func->curblock = ontrue;
1620
1621         /* generate */
1622         cgen = self->on_true->expression.codegen;
1623         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1624             return false;
1625     }
1626
1627     /* create on-false block */
1628     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1629     if (!onfalse)
1630         return false;
1631     else
1632     {
1633         /* enter the block */
1634         func->curblock = onfalse;
1635
1636         /* generate */
1637         cgen = self->on_false->expression.codegen;
1638         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1639             return false;
1640     }
1641
1642     /* create merge block */
1643     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1644     if (!merge)
1645         return false;
1646     /* jump to merge block */
1647     if (!ir_block_create_jump(ontrue, merge))
1648         return false;
1649     if (!ir_block_create_jump(onfalse, merge))
1650         return false;
1651
1652     /* create if instruction */
1653     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1654         return false;
1655
1656     /* Now enter the merge block */
1657     func->curblock = merge;
1658
1659     /* Here, now, we need a PHI node
1660      * but first some sanity checking...
1661      */
1662     if (trueval->vtype != falseval->vtype) {
1663         /* error("ternary with different types on the two sides"); */
1664         return false;
1665     }
1666
1667     /* create PHI */
1668     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1669     if (!phi ||
1670         !ir_phi_add(phi, ontrue,  trueval) ||
1671         !ir_phi_add(phi, onfalse, falseval))
1672     {
1673         return false;
1674     }
1675
1676     self->phi_out = ir_phi_value(phi);
1677     *out = self->phi_out;
1678
1679     return true;
1680 }
1681
1682 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1683 {
1684     ast_expression_codegen *cgen;
1685
1686     ir_value *dummy      = NULL;
1687     ir_value *precond    = NULL;
1688     ir_value *postcond   = NULL;
1689
1690     /* Since we insert some jumps "late" so we have blocks
1691      * ordered "nicely", we need to keep track of the actual end-blocks
1692      * of expressions to add the jumps to.
1693      */
1694     ir_block *bbody      = NULL, *end_bbody      = NULL;
1695     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1696     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1697     ir_block *bincrement = NULL, *end_bincrement = NULL;
1698     ir_block *bout       = NULL, *bin            = NULL;
1699
1700     /* let's at least move the outgoing block to the end */
1701     size_t    bout_id;
1702
1703     /* 'break' and 'continue' need to be able to find the right blocks */
1704     ir_block *bcontinue     = NULL;
1705     ir_block *bbreak        = NULL;
1706
1707     ir_block *old_bcontinue = NULL;
1708     ir_block *old_bbreak    = NULL;
1709
1710     ir_block *tmpblock      = NULL;
1711
1712     (void)lvalue;
1713     (void)out;
1714
1715     if (self->expression.outr) {
1716         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1717         return false;
1718     }
1719     self->expression.outr = (ir_value*)1;
1720
1721     /* NOTE:
1722      * Should we ever need some kind of block ordering, better make this function
1723      * move blocks around than write a block ordering algorithm later... after all
1724      * the ast and ir should work together, not against each other.
1725      */
1726
1727     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1728      * anyway if for example it contains a ternary.
1729      */
1730     if (self->initexpr)
1731     {
1732         cgen = self->initexpr->expression.codegen;
1733         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1734             return false;
1735     }
1736
1737     /* Store the block from which we enter this chaos */
1738     bin = func->curblock;
1739
1740     /* The pre-loop condition needs its own block since we
1741      * need to be able to jump to the start of that expression.
1742      */
1743     if (self->precond)
1744     {
1745         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1746         if (!bprecond)
1747             return false;
1748
1749         /* the pre-loop-condition the least important place to 'continue' at */
1750         bcontinue = bprecond;
1751
1752         /* enter */
1753         func->curblock = bprecond;
1754
1755         /* generate */
1756         cgen = self->precond->expression.codegen;
1757         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1758             return false;
1759
1760         end_bprecond = func->curblock;
1761     } else {
1762         bprecond = end_bprecond = NULL;
1763     }
1764
1765     /* Now the next blocks won't be ordered nicely, but we need to
1766      * generate them this early for 'break' and 'continue'.
1767      */
1768     if (self->increment) {
1769         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1770         if (!bincrement)
1771             return false;
1772         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1773     } else {
1774         bincrement = end_bincrement = NULL;
1775     }
1776
1777     if (self->postcond) {
1778         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1779         if (!bpostcond)
1780             return false;
1781         bcontinue = bpostcond; /* postcond comes before the increment */
1782     } else {
1783         bpostcond = end_bpostcond = NULL;
1784     }
1785
1786     bout_id = func->ir_func->blocks_count;
1787     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1788     if (!bout)
1789         return false;
1790     bbreak = bout;
1791
1792     /* The loop body... */
1793     if (self->body)
1794     {
1795         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1796         if (!bbody)
1797             return false;
1798
1799         /* enter */
1800         func->curblock = bbody;
1801
1802         old_bbreak          = func->breakblock;
1803         old_bcontinue       = func->continueblock;
1804         func->breakblock    = bbreak;
1805         func->continueblock = bcontinue;
1806
1807         /* generate */
1808         cgen = self->body->expression.codegen;
1809         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1810             return false;
1811
1812         end_bbody = func->curblock;
1813         func->breakblock    = old_bbreak;
1814         func->continueblock = old_bcontinue;
1815     }
1816
1817     /* post-loop-condition */
1818     if (self->postcond)
1819     {
1820         /* enter */
1821         func->curblock = bpostcond;
1822
1823         /* generate */
1824         cgen = self->postcond->expression.codegen;
1825         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1826             return false;
1827
1828         end_bpostcond = func->curblock;
1829     }
1830
1831     /* The incrementor */
1832     if (self->increment)
1833     {
1834         /* enter */
1835         func->curblock = bincrement;
1836
1837         /* generate */
1838         cgen = self->increment->expression.codegen;
1839         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1840             return false;
1841
1842         end_bincrement = func->curblock;
1843     }
1844
1845     /* In any case now, we continue from the outgoing block */
1846     func->curblock = bout;
1847
1848     /* Now all blocks are in place */
1849     /* From 'bin' we jump to whatever comes first */
1850     if      (bprecond)   tmpblock = bprecond;
1851     else if (bbody)      tmpblock = bbody;
1852     else if (bpostcond)  tmpblock = bpostcond;
1853     else                 tmpblock = bout;
1854     if (!ir_block_create_jump(bin, tmpblock))
1855         return false;
1856
1857     /* From precond */
1858     if (bprecond)
1859     {
1860         ir_block *ontrue, *onfalse;
1861         if      (bbody)      ontrue = bbody;
1862         else if (bincrement) ontrue = bincrement;
1863         else if (bpostcond)  ontrue = bpostcond;
1864         else                 ontrue = bprecond;
1865         onfalse = bout;
1866         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1867             return false;
1868     }
1869
1870     /* from body */
1871     if (bbody)
1872     {
1873         if      (bincrement) tmpblock = bincrement;
1874         else if (bpostcond)  tmpblock = bpostcond;
1875         else if (bprecond)   tmpblock = bprecond;
1876         else                 tmpblock = bout;
1877         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1878             return false;
1879     }
1880
1881     /* from increment */
1882     if (bincrement)
1883     {
1884         if      (bpostcond)  tmpblock = bpostcond;
1885         else if (bprecond)   tmpblock = bprecond;
1886         else if (bbody)      tmpblock = bbody;
1887         else                 tmpblock = bout;
1888         if (!ir_block_create_jump(end_bincrement, tmpblock))
1889             return false;
1890     }
1891
1892     /* from postcond */
1893     if (bpostcond)
1894     {
1895         ir_block *ontrue, *onfalse;
1896         if      (bprecond)   ontrue = bprecond;
1897         else if (bbody)      ontrue = bbody;
1898         else if (bincrement) ontrue = bincrement;
1899         else                 ontrue = bpostcond;
1900         onfalse = bout;
1901         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1902             return false;
1903     }
1904
1905     /* Move 'bout' to the end */
1906     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1907         !ir_function_blocks_add(func->ir_func, bout))
1908     {
1909         ir_block_delete(bout);
1910         return false;
1911     }
1912
1913     return true;
1914 }
1915
1916 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1917 {
1918     ast_expression_codegen *cgen;
1919     ir_value_vector         params;
1920     ir_instr               *callinstr;
1921     size_t i;
1922
1923     ir_value *funval = NULL;
1924
1925     /* return values are never lvalues */
1926     if (lvalue) {
1927         asterror(ast_ctx(self), "not an l-value (function call)");
1928         return false;
1929     }
1930
1931     if (self->expression.outr) {
1932         *out = self->expression.outr;
1933         return true;
1934     }
1935
1936     cgen = self->func->expression.codegen;
1937     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1938         return false;
1939     if (!funval)
1940         return false;
1941
1942     MEM_VECTOR_INIT(&params, v);
1943
1944     /* parameters */
1945     for (i = 0; i < self->params_count; ++i)
1946     {
1947         ir_value *param;
1948         ast_expression *expr = self->params[i];
1949
1950         cgen = expr->expression.codegen;
1951         if (!(*cgen)(expr, func, false, &param))
1952             goto error;
1953         if (!param)
1954             goto error;
1955         if (!ir_value_vector_v_add(&params, param))
1956             goto error;
1957     }
1958
1959     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1960     if (!callinstr)
1961         goto error;
1962
1963     for (i = 0; i < params.v_count; ++i) {
1964         if (!ir_call_param(callinstr, params.v[i]))
1965             goto error;
1966     }
1967
1968     *out = ir_call_value(callinstr);
1969     self->expression.outr = *out;
1970
1971     MEM_VECTOR_CLEAR(&params, v);
1972     return true;
1973 error:
1974     MEM_VECTOR_CLEAR(&params, v);
1975     return false;
1976 }