]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_value_copy should copy the expression substructure as well - exposing ast_value_c...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen = codegen;
68     self->expression.vtype   = TYPE_VOID;
69     self->expression.next    = NULL;
70     self->expression.outl    = NULL;
71     self->expression.outr    = NULL;
72     MEM_VECTOR_INIT(&self->expression, params);
73 }
74
75 static void ast_expression_delete(ast_expression *self)
76 {
77     size_t i;
78     if (self->expression.next)
79         ast_delete(self->expression.next);
80     for (i = 0; i < self->expression.params_count; ++i) {
81         ast_delete(self->expression.params[i]);
82     }
83     MEM_VECTOR_CLEAR(&self->expression, params);
84 }
85
86 static void ast_expression_delete_full(ast_expression *self)
87 {
88     ast_expression_delete(self);
89     mem_d(self);
90 }
91
92 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
93
94 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     for (i = 0; i < fromex->params_count; ++i) {
111         ast_value *v = ast_value_copy(fromex->params[i]);
112         if (!v || !ast_expression_common_params_add(selfex, v)) {
113             ast_value_delete(cp);
114             return NULL;
115         }
116     }
117     return cp;
118 }
119
120 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
121 {
122     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
123     ast_expression_init(self, NULL);
124     self->expression.codegen = NULL;
125     self->expression.next    = NULL;
126     self->expression.vtype   = vtype;
127     return self;
128 }
129
130 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
131 {
132     size_t i;
133     const ast_expression_common *fromex;
134     ast_expression_common *selfex;
135
136     if (!ex)
137         return NULL;
138     else
139     {
140         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
141         ast_expression_init(self, NULL);
142
143         fromex   = &ex->expression;
144         selfex = &self->expression;
145
146         /* This may never be codegen()d */
147         selfex->codegen = NULL;
148
149         selfex->vtype = fromex->vtype;
150         if (fromex->next)
151         {
152             selfex->next = ast_type_copy(ctx, fromex->next);
153             if (!selfex->next) {
154                 ast_expression_delete_full(self);
155                 return NULL;
156             }
157         }
158         else
159             selfex->next = NULL;
160
161         for (i = 0; i < fromex->params_count; ++i) {
162             ast_value *v = ast_value_copy(fromex->params[i]);
163             if (!v || !ast_expression_common_params_add(selfex, v)) {
164                 ast_expression_delete_full(self);
165                 return NULL;
166             }
167         }
168
169         return self;
170     }
171 }
172
173 bool ast_compare_type(ast_expression *a, ast_expression *b)
174 {
175     if (a->expression.vtype != b->expression.vtype)
176         return false;
177     if (!a->expression.next != !b->expression.next)
178         return false;
179     if (a->expression.params_count != b->expression.params_count)
180         return false;
181     if (a->expression.params_count) {
182         size_t i;
183         for (i = 0; i < a->expression.params_count; ++i) {
184             if (!ast_compare_type((ast_expression*)a->expression.params[i],
185                                   (ast_expression*)b->expression.params[i]))
186                 return false;
187         }
188     }
189     if (a->expression.next)
190         return ast_compare_type(a->expression.next, b->expression.next);
191     return true;
192 }
193
194 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
195 {
196     ast_instantiate(ast_value, ctx, ast_value_delete);
197     ast_expression_init((ast_expression*)self,
198                         (ast_expression_codegen*)&ast_value_codegen);
199     self->expression.node.keep = true; /* keep */
200
201     self->name = name ? util_strdup(name) : NULL;
202     self->expression.vtype = t;
203     self->expression.next  = NULL;
204     self->isconst = false;
205     memset(&self->constval, 0, sizeof(self->constval));
206
207     self->ir_v    = NULL;
208
209     return self;
210 }
211
212 void ast_value_delete(ast_value* self)
213 {
214     if (self->name)
215         mem_d((void*)self->name);
216     if (self->isconst) {
217         switch (self->expression.vtype)
218         {
219         case TYPE_STRING:
220             mem_d((void*)self->constval.vstring);
221             break;
222         case TYPE_FUNCTION:
223             /* unlink us from the function node */
224             self->constval.vfunc->vtype = NULL;
225             break;
226         /* NOTE: delete function? currently collected in
227          * the parser structure
228          */
229         default:
230             break;
231         }
232     }
233     ast_expression_delete((ast_expression*)self);
234     mem_d(self);
235 }
236
237 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
238 {
239     return ast_expression_common_params_add(&self->expression, p);
240 }
241
242 bool ast_value_set_name(ast_value *self, const char *name)
243 {
244     if (self->name)
245         mem_d((void*)self->name);
246     self->name = util_strdup(name);
247     return !!self->name;
248 }
249
250 ast_binary* ast_binary_new(lex_ctx ctx, int op,
251                            ast_expression* left, ast_expression* right)
252 {
253     ast_instantiate(ast_binary, ctx, ast_binary_delete);
254     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
255
256     self->op = op;
257     self->left = left;
258     self->right = right;
259
260     if (op >= INSTR_EQ_F && op <= INSTR_GT)
261         self->expression.vtype = TYPE_FLOAT;
262     else if (op == INSTR_AND || op == INSTR_OR ||
263              op == INSTR_BITAND || op == INSTR_BITOR)
264         self->expression.vtype = TYPE_FLOAT;
265     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
266         self->expression.vtype = TYPE_VECTOR;
267     else if (op == INSTR_MUL_V)
268         self->expression.vtype = TYPE_FLOAT;
269     else
270         self->expression.vtype = left->expression.vtype;
271
272     return self;
273 }
274
275 void ast_binary_delete(ast_binary *self)
276 {
277     ast_unref(self->left);
278     ast_unref(self->right);
279     ast_expression_delete((ast_expression*)self);
280     mem_d(self);
281 }
282
283 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
284                                ast_expression* left, ast_expression* right)
285 {
286     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
287     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
288
289     self->opstore = storop;
290     self->opbin   = op;
291     self->dest    = left;
292     self->source  = right;
293
294     self->expression.vtype = left->expression.vtype;
295     if (left->expression.next) {
296         self->expression.next = ast_type_copy(ctx, left);
297         if (!self->expression.next) {
298             ast_delete(self);
299             return NULL;
300         }
301     }
302     else
303         self->expression.next = NULL;
304
305     return self;
306 }
307
308 void ast_binstore_delete(ast_binstore *self)
309 {
310     ast_unref(self->dest);
311     ast_unref(self->source);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_unary* ast_unary_new(lex_ctx ctx, int op,
317                          ast_expression *expr)
318 {
319     ast_instantiate(ast_unary, ctx, ast_unary_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
321
322     self->op = op;
323     self->operand = expr;
324
325     return self;
326 }
327
328 void ast_unary_delete(ast_unary *self)
329 {
330     ast_unref(self->operand);
331     ast_expression_delete((ast_expression*)self);
332     mem_d(self);
333 }
334
335 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
336 {
337     ast_instantiate(ast_return, ctx, ast_return_delete);
338     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
339
340     self->operand = expr;
341
342     return self;
343 }
344
345 void ast_return_delete(ast_return *self)
346 {
347     ast_unref(self->operand);
348     ast_expression_delete((ast_expression*)self);
349     mem_d(self);
350 }
351
352 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
353 {
354     const ast_expression *outtype;
355
356     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
357
358     if (field->expression.vtype != TYPE_FIELD) {
359         mem_d(self);
360         return NULL;
361     }
362
363     outtype = field->expression.next;
364     if (!outtype) {
365         mem_d(self);
366         /* Error: field has no type... */
367         return NULL;
368     }
369
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
371
372     self->expression.vtype = outtype->expression.vtype;
373     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
374
375     self->entity = entity;
376     self->field  = field;
377
378     return self;
379 }
380
381 void ast_entfield_delete(ast_entfield *self)
382 {
383     ast_unref(self->entity);
384     ast_unref(self->field);
385     ast_expression_delete((ast_expression*)self);
386     mem_d(self);
387 }
388
389 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
390 {
391     ast_instantiate(ast_member, ctx, ast_member_delete);
392     if (field >= 3) {
393         mem_d(self);
394         return NULL;
395     }
396
397     if (owner->expression.vtype != TYPE_VECTOR &&
398         owner->expression.vtype != TYPE_FIELD) {
399         asterror(ctx, "member-access on an invalid owner of type %s\n", type_name[owner->expression.vtype]);
400         mem_d(self);
401         return NULL;
402     }
403
404     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
405     self->expression.node.keep = true; /* keep */
406
407     if (owner->expression.vtype == TYPE_VECTOR) {
408         self->expression.vtype = TYPE_FLOAT;
409         self->expression.next  = NULL;
410     } else {
411         self->expression.vtype = TYPE_FIELD;
412         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
413     }
414
415     self->owner = owner;
416     self->field = field;
417
418     return self;
419 }
420
421 void ast_member_delete(ast_member *self)
422 {
423     /* The owner is always an ast_value, which has .keep=true,
424      * also: ast_members are usually deleted after the owner, thus
425      * this will cause invalid access
426     ast_unref(self->owner);
427      * once we allow (expression).x to access a vector-member, we need
428      * to change this: preferably by creating an alternate ast node for this
429      * purpose that is not garbage-collected.
430     */
431     ast_expression_delete((ast_expression*)self);
432     mem_d(self);
433 }
434
435 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
436 {
437     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
438     if (!ontrue && !onfalse) {
439         /* because it is invalid */
440         mem_d(self);
441         return NULL;
442     }
443     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
444
445     self->cond     = cond;
446     self->on_true  = ontrue;
447     self->on_false = onfalse;
448
449     return self;
450 }
451
452 void ast_ifthen_delete(ast_ifthen *self)
453 {
454     ast_unref(self->cond);
455     if (self->on_true)
456         ast_unref(self->on_true);
457     if (self->on_false)
458         ast_unref(self->on_false);
459     ast_expression_delete((ast_expression*)self);
460     mem_d(self);
461 }
462
463 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
464 {
465     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
466     /* This time NEITHER must be NULL */
467     if (!ontrue || !onfalse) {
468         mem_d(self);
469         return NULL;
470     }
471     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
472
473     self->cond     = cond;
474     self->on_true  = ontrue;
475     self->on_false = onfalse;
476     self->phi_out  = NULL;
477
478     return self;
479 }
480
481 void ast_ternary_delete(ast_ternary *self)
482 {
483     ast_unref(self->cond);
484     ast_unref(self->on_true);
485     ast_unref(self->on_false);
486     ast_expression_delete((ast_expression*)self);
487     mem_d(self);
488 }
489
490 ast_loop* ast_loop_new(lex_ctx ctx,
491                        ast_expression *initexpr,
492                        ast_expression *precond,
493                        ast_expression *postcond,
494                        ast_expression *increment,
495                        ast_expression *body)
496 {
497     ast_instantiate(ast_loop, ctx, ast_loop_delete);
498     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
499
500     self->initexpr  = initexpr;
501     self->precond   = precond;
502     self->postcond  = postcond;
503     self->increment = increment;
504     self->body      = body;
505
506     return self;
507 }
508
509 void ast_loop_delete(ast_loop *self)
510 {
511     if (self->initexpr)
512         ast_unref(self->initexpr);
513     if (self->precond)
514         ast_unref(self->precond);
515     if (self->postcond)
516         ast_unref(self->postcond);
517     if (self->increment)
518         ast_unref(self->increment);
519     if (self->body)
520         ast_unref(self->body);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_call* ast_call_new(lex_ctx ctx,
526                        ast_expression *funcexpr)
527 {
528     ast_instantiate(ast_call, ctx, ast_call_delete);
529     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
530
531     MEM_VECTOR_INIT(self, params);
532
533     self->func = funcexpr;
534
535     return self;
536 }
537 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
538
539 void ast_call_delete(ast_call *self)
540 {
541     size_t i;
542     for (i = 0; i < self->params_count; ++i)
543         ast_unref(self->params[i]);
544     MEM_VECTOR_CLEAR(self, params);
545
546     if (self->func)
547         ast_unref(self->func);
548
549     ast_expression_delete((ast_expression*)self);
550     mem_d(self);
551 }
552
553 ast_store* ast_store_new(lex_ctx ctx, int op,
554                          ast_expression *dest, ast_expression *source)
555 {
556     ast_instantiate(ast_store, ctx, ast_store_delete);
557     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
558
559     self->op = op;
560     self->dest = dest;
561     self->source = source;
562
563     return self;
564 }
565
566 void ast_store_delete(ast_store *self)
567 {
568     ast_unref(self->dest);
569     ast_unref(self->source);
570     ast_expression_delete((ast_expression*)self);
571     mem_d(self);
572 }
573
574 ast_block* ast_block_new(lex_ctx ctx)
575 {
576     ast_instantiate(ast_block, ctx, ast_block_delete);
577     ast_expression_init((ast_expression*)self,
578                         (ast_expression_codegen*)&ast_block_codegen);
579
580     MEM_VECTOR_INIT(self, locals);
581     MEM_VECTOR_INIT(self, exprs);
582     MEM_VECTOR_INIT(self, collect);
583
584     return self;
585 }
586 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
587 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
588 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
589
590 bool ast_block_collect(ast_block *self, ast_expression *expr)
591 {
592     if (!ast_block_collect_add(self, expr))
593         return false;
594     expr->expression.node.keep = true;
595     return true;
596 }
597
598 void ast_block_delete(ast_block *self)
599 {
600     size_t i;
601     for (i = 0; i < self->exprs_count; ++i)
602         ast_unref(self->exprs[i]);
603     MEM_VECTOR_CLEAR(self, exprs);
604     for (i = 0; i < self->locals_count; ++i)
605         ast_delete(self->locals[i]);
606     MEM_VECTOR_CLEAR(self, locals);
607     for (i = 0; i < self->collect_count; ++i)
608         ast_delete(self->collect[i]);
609     MEM_VECTOR_CLEAR(self, collect);
610     ast_expression_delete((ast_expression*)self);
611     mem_d(self);
612 }
613
614 bool ast_block_set_type(ast_block *self, ast_expression *from)
615 {
616     if (self->expression.next)
617         ast_delete(self->expression.next);
618     self->expression.vtype = from->expression.vtype;
619     if (from->expression.next) {
620         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
621         if (!self->expression.next)
622             return false;
623     }
624     return true;
625 }
626
627 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
628 {
629     ast_instantiate(ast_function, ctx, ast_function_delete);
630
631     if (!vtype ||
632         vtype->isconst ||
633         vtype->expression.vtype != TYPE_FUNCTION)
634     {
635         mem_d(self);
636         return NULL;
637     }
638
639     self->vtype = vtype;
640     self->name = name ? util_strdup(name) : NULL;
641     MEM_VECTOR_INIT(self, blocks);
642
643     self->labelcount = 0;
644     self->builtin = 0;
645
646     self->ir_func = NULL;
647     self->curblock = NULL;
648
649     self->breakblock    = NULL;
650     self->continueblock = NULL;
651
652     vtype->isconst = true;
653     vtype->constval.vfunc = self;
654
655     return self;
656 }
657
658 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
659
660 void ast_function_delete(ast_function *self)
661 {
662     size_t i;
663     if (self->name)
664         mem_d((void*)self->name);
665     if (self->vtype) {
666         /* ast_value_delete(self->vtype); */
667         self->vtype->isconst = false;
668         self->vtype->constval.vfunc = NULL;
669         /* We use unref - if it was stored in a global table it is supposed
670          * to be deleted from *there*
671          */
672         ast_unref(self->vtype);
673     }
674     for (i = 0; i < self->blocks_count; ++i)
675         ast_delete(self->blocks[i]);
676     MEM_VECTOR_CLEAR(self, blocks);
677     mem_d(self);
678 }
679
680 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
681 {
682     unsigned int base = 10;
683 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
684 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
685     if (size < 1)
686         return;
687     checknul();
688     if (!num)
689         addch('0');
690     else {
691         while (num)
692         {
693             int digit = num % base;
694             num /= base;
695             addch('0' + digit);
696         }
697     }
698
699     *buf = 0;
700 #undef addch
701 #undef checknul
702 }
703
704 const char* ast_function_label(ast_function *self, const char *prefix)
705 {
706     size_t id = (self->labelcount++);
707     size_t len = strlen(prefix);
708     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
709     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
710     return self->labelbuf;
711 }
712
713 /*********************************************************************/
714 /* AST codegen part
715  * by convention you must never pass NULL to the 'ir_value **out'
716  * parameter. If you really don't care about the output, pass a dummy.
717  * But I can't imagine a pituation where the output is truly unnecessary.
718  */
719
720 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
721 {
722     /* NOTE: This is the codegen for a variable used in an expression.
723      * It is not the codegen to generate the value. For this purpose,
724      * ast_local_codegen and ast_global_codegen are to be used before this
725      * is executed. ast_function_codegen should take care of its locals,
726      * and the ast-user should take care of ast_global_codegen to be used
727      * on all the globals.
728      */
729     if (!self->ir_v) {
730         asterror(ast_ctx(self), "ast_value used before generated (%s)\n", self->name);
731         return false;
732     }
733     *out = self->ir_v;
734     return true;
735 }
736
737 bool ast_global_codegen(ast_value *self, ir_builder *ir)
738 {
739     ir_value *v = NULL;
740     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
741     {
742         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
743         if (!func)
744             return false;
745
746         self->constval.vfunc->ir_func = func;
747         self->ir_v = func->value;
748         /* The function is filled later on ast_function_codegen... */
749         return true;
750     }
751
752     if (self->expression.vtype == TYPE_FIELD) {
753         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
754         if (!v)
755             return false;
756         if (self->isconst) {
757             asterror(ast_ctx(self), "TODO: constant field pointers with value\n");
758             goto error;
759         }
760         self->ir_v = v;
761         return true;
762     }
763
764     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
765     if (!v) {
766         asterror(ast_ctx(self), "ir_builder_create_global failed\n");
767         return false;
768     }
769
770     if (self->isconst) {
771         switch (self->expression.vtype)
772         {
773             case TYPE_FLOAT:
774                 if (!ir_value_set_float(v, self->constval.vfloat))
775                     goto error;
776                 break;
777             case TYPE_VECTOR:
778                 if (!ir_value_set_vector(v, self->constval.vvec))
779                     goto error;
780                 break;
781             case TYPE_STRING:
782                 if (!ir_value_set_string(v, self->constval.vstring))
783                     goto error;
784                 break;
785             case TYPE_FUNCTION:
786                 asterror(ast_ctx(self), "global of type function not properly generated\n");
787                 goto error;
788                 /* Cannot generate an IR value for a function,
789                  * need a pointer pointing to a function rather.
790                  */
791             default:
792                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
793                 break;
794         }
795     }
796
797     /* link us to the ir_value */
798     self->ir_v = v;
799     return true;
800
801 error: /* clean up */
802     ir_value_delete(v);
803     return false;
804 }
805
806 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
807 {
808     ir_value *v = NULL;
809     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
810     {
811         /* Do we allow local functions? I think not...
812          * this is NOT a function pointer atm.
813          */
814         return false;
815     }
816
817     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
818     if (!v)
819         return false;
820
821     /* A constant local... hmmm...
822      * I suppose the IR will have to deal with this
823      */
824     if (self->isconst) {
825         switch (self->expression.vtype)
826         {
827             case TYPE_FLOAT:
828                 if (!ir_value_set_float(v, self->constval.vfloat))
829                     goto error;
830                 break;
831             case TYPE_VECTOR:
832                 if (!ir_value_set_vector(v, self->constval.vvec))
833                     goto error;
834                 break;
835             case TYPE_STRING:
836                 if (!ir_value_set_string(v, self->constval.vstring))
837                     goto error;
838                 break;
839             default:
840                 asterror(ast_ctx(self), "TODO: global constant type %i\n", self->expression.vtype);
841                 break;
842         }
843     }
844
845     /* link us to the ir_value */
846     self->ir_v = v;
847     return true;
848
849 error: /* clean up */
850     ir_value_delete(v);
851     return false;
852 }
853
854 bool ast_function_codegen(ast_function *self, ir_builder *ir)
855 {
856     ir_function *irf;
857     ir_value    *dummy;
858     ast_expression_common *ec;
859     size_t    i;
860
861     irf = self->ir_func;
862     if (!irf) {
863         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet\n");
864         return false;
865     }
866
867     /* fill the parameter list */
868     ec = &self->vtype->expression;
869     for (i = 0; i < ec->params_count; ++i)
870     {
871         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
872             return false;
873         if (!self->builtin) {
874             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
875                 return false;
876         }
877     }
878
879     if (self->builtin) {
880         irf->builtin = self->builtin;
881         return true;
882     }
883
884     if (!self->blocks_count) {
885         asterror(ast_ctx(self), "function `%s` has no body", self->name);
886         return false;
887     }
888
889     self->curblock = ir_function_create_block(irf, "entry");
890     if (!self->curblock)
891         return false;
892
893     for (i = 0; i < self->blocks_count; ++i) {
894         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
895         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
896             return false;
897     }
898
899     /* TODO: check return types */
900     if (!self->curblock->is_return)
901     {
902         if (!self->vtype->expression.next ||
903             self->vtype->expression.next->expression.vtype == TYPE_VOID)
904         {
905             return ir_block_create_return(self->curblock, NULL);
906         }
907         else
908         {
909             /* error("missing return"); */
910             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
911             return false;
912         }
913     }
914     return true;
915 }
916
917 /* Note, you will not see ast_block_codegen generate ir_blocks.
918  * To the AST and the IR, blocks are 2 different things.
919  * In the AST it represents a block of code, usually enclosed in
920  * curly braces {...}.
921  * While in the IR it represents a block in terms of control-flow.
922  */
923 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
924 {
925     size_t i;
926
927     /* We don't use this
928      * Note: an ast-representation using the comma-operator
929      * of the form: (a, b, c) = x should not assign to c...
930      */
931     (void)lvalue;
932     if (self->expression.outr) {
933         *out = self->expression.outr;
934         return true;
935     }
936
937     /* output is NULL at first, we'll have each expression
938      * assign to out output, thus, a comma-operator represention
939      * using an ast_block will return the last generated value,
940      * so: (b, c) + a  executed both b and c, and returns c,
941      * which is then added to a.
942      */
943     *out = NULL;
944
945     /* generate locals */
946     for (i = 0; i < self->locals_count; ++i)
947     {
948         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
949             return false;
950     }
951
952     for (i = 0; i < self->exprs_count; ++i)
953     {
954         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
955         if (!(*gen)(self->exprs[i], func, false, out))
956             return false;
957     }
958
959     self->expression.outr = *out;
960
961     return true;
962 }
963
964 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
965 {
966     ast_expression_codegen *cgen;
967     ir_value *left, *right;
968
969     if (lvalue && self->expression.outl) {
970         *out = self->expression.outl;
971         return true;
972     }
973
974     if (!lvalue && self->expression.outr) {
975         *out = self->expression.outr;
976         return true;
977     }
978
979     cgen = self->dest->expression.codegen;
980     /* lvalue! */
981     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
982         return false;
983     self->expression.outl = left;
984
985     cgen = self->source->expression.codegen;
986     /* rvalue! */
987     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
988         return false;
989
990     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
991         return false;
992     self->expression.outr = right;
993
994     /* Theoretically, an assinment returns its left side as an
995      * lvalue, if we don't need an lvalue though, we return
996      * the right side as an rvalue, otherwise we have to
997      * somehow know whether or not we need to dereference the pointer
998      * on the left side - that is: OP_LOAD if it was an address.
999      * Also: in original QC we cannot OP_LOADP *anyway*.
1000      */
1001     *out = (lvalue ? left : right);
1002
1003     return true;
1004 }
1005
1006 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1007 {
1008     ast_expression_codegen *cgen;
1009     ir_value *left, *right;
1010
1011     /* In the context of a binary operation, we can disregard
1012      * the lvalue flag.
1013      */
1014     (void)lvalue;
1015     if (self->expression.outr) {
1016         *out = self->expression.outr;
1017         return true;
1018     }
1019
1020     cgen = self->left->expression.codegen;
1021     /* lvalue! */
1022     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1023         return false;
1024
1025     cgen = self->right->expression.codegen;
1026     /* rvalue! */
1027     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1028         return false;
1029
1030     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1031                                  self->op, left, right);
1032     if (!*out)
1033         return false;
1034     self->expression.outr = *out;
1035
1036     return true;
1037 }
1038
1039 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1040 {
1041     ast_expression_codegen *cgen;
1042     ir_value *leftl, *leftr, *right, *bin;
1043
1044     if (lvalue && self->expression.outl) {
1045         *out = self->expression.outl;
1046         return true;
1047     }
1048
1049     if (!lvalue && self->expression.outr) {
1050         *out = self->expression.outr;
1051         return true;
1052     }
1053
1054     /* for a binstore we need both an lvalue and an rvalue for the left side */
1055     /* rvalue of destination! */
1056     cgen = self->dest->expression.codegen;
1057     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1058         return false;
1059
1060     /* source as rvalue only */
1061     cgen = self->source->expression.codegen;
1062     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1063         return false;
1064
1065     /* now the binary */
1066     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1067                                 self->opbin, leftr, right);
1068     self->expression.outr = bin;
1069
1070     /* now store them */
1071     cgen = self->dest->expression.codegen;
1072     /* lvalue of destination */
1073     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1074         return false;
1075     self->expression.outl = leftl;
1076
1077     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1078         return false;
1079     self->expression.outr = bin;
1080
1081     /* Theoretically, an assinment returns its left side as an
1082      * lvalue, if we don't need an lvalue though, we return
1083      * the right side as an rvalue, otherwise we have to
1084      * somehow know whether or not we need to dereference the pointer
1085      * on the left side - that is: OP_LOAD if it was an address.
1086      * Also: in original QC we cannot OP_LOADP *anyway*.
1087      */
1088     *out = (lvalue ? leftl : bin);
1089
1090     return true;
1091 }
1092
1093 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1094 {
1095     ast_expression_codegen *cgen;
1096     ir_value *operand;
1097
1098     /* In the context of a unary operation, we can disregard
1099      * the lvalue flag.
1100      */
1101     (void)lvalue;
1102     if (self->expression.outr) {
1103         *out = self->expression.outr;
1104         return true;
1105     }
1106
1107     cgen = self->operand->expression.codegen;
1108     /* lvalue! */
1109     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1110         return false;
1111
1112     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1113                                  self->op, operand);
1114     if (!*out)
1115         return false;
1116     self->expression.outr = *out;
1117
1118     return true;
1119 }
1120
1121 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1122 {
1123     ast_expression_codegen *cgen;
1124     ir_value *operand;
1125
1126     /* In the context of a return operation, we can disregard
1127      * the lvalue flag.
1128      */
1129     (void)lvalue;
1130     if (self->expression.outr) {
1131         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!\n");
1132         return false;
1133     }
1134     self->expression.outr = (ir_value*)1;
1135
1136     cgen = self->operand->expression.codegen;
1137     /* lvalue! */
1138     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1139         return false;
1140
1141     if (!ir_block_create_return(func->curblock, operand))
1142         return false;
1143
1144     return true;
1145 }
1146
1147 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1148 {
1149     ast_expression_codegen *cgen;
1150     ir_value *ent, *field;
1151
1152     /* This function needs to take the 'lvalue' flag into account!
1153      * As lvalue we provide a field-pointer, as rvalue we provide the
1154      * value in a temp.
1155      */
1156
1157     if (lvalue && self->expression.outl) {
1158         *out = self->expression.outl;
1159         return true;
1160     }
1161
1162     if (!lvalue && self->expression.outr) {
1163         *out = self->expression.outr;
1164         return true;
1165     }
1166
1167     cgen = self->entity->expression.codegen;
1168     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1169         return false;
1170
1171     cgen = self->field->expression.codegen;
1172     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1173         return false;
1174
1175     if (lvalue) {
1176         /* address! */
1177         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1178                                             ent, field);
1179     } else {
1180         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1181                                              ent, field, self->expression.vtype);
1182     }
1183     if (!*out) {
1184         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1185                  (lvalue ? "ADDRESS" : "FIELD"),
1186                  type_name[self->expression.vtype]);
1187         return false;
1188     }
1189
1190     if (lvalue)
1191         self->expression.outl = *out;
1192     else
1193         self->expression.outr = *out;
1194
1195     /* Hm that should be it... */
1196     return true;
1197 }
1198
1199 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1200 {
1201     ast_expression_codegen *cgen;
1202     ir_value *vec;
1203
1204     /* in QC this is always an lvalue */
1205     (void)lvalue;
1206     if (self->expression.outl) {
1207         *out = self->expression.outl;
1208         return true;
1209     }
1210
1211     cgen = self->owner->expression.codegen;
1212     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1213         return false;
1214
1215     if (vec->vtype != TYPE_VECTOR &&
1216         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1217     {
1218         return false;
1219     }
1220
1221     *out = ir_value_vector_member(vec, self->field);
1222     self->expression.outl = *out;
1223
1224     return (*out != NULL);
1225 }
1226
1227 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1228 {
1229     ast_expression_codegen *cgen;
1230
1231     ir_value *condval;
1232     ir_value *dummy;
1233
1234     ir_block *cond = func->curblock;
1235     ir_block *ontrue;
1236     ir_block *onfalse;
1237     ir_block *merge;
1238
1239     /* We don't output any value, thus also don't care about r/lvalue */
1240     (void)out;
1241     (void)lvalue;
1242
1243     if (self->expression.outr) {
1244         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!\n");
1245         return false;
1246     }
1247     self->expression.outr = (ir_value*)1;
1248
1249     /* generate the condition */
1250     func->curblock = cond;
1251     cgen = self->cond->expression.codegen;
1252     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1253         return false;
1254
1255     /* on-true path */
1256
1257     if (self->on_true) {
1258         /* create on-true block */
1259         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1260         if (!ontrue)
1261             return false;
1262
1263         /* enter the block */
1264         func->curblock = ontrue;
1265
1266         /* generate */
1267         cgen = self->on_true->expression.codegen;
1268         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1269             return false;
1270     } else
1271         ontrue = NULL;
1272
1273     /* on-false path */
1274     if (self->on_false) {
1275         /* create on-false block */
1276         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1277         if (!onfalse)
1278             return false;
1279
1280         /* enter the block */
1281         func->curblock = onfalse;
1282
1283         /* generate */
1284         cgen = self->on_false->expression.codegen;
1285         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1286             return false;
1287     } else
1288         onfalse = NULL;
1289
1290     /* Merge block were they all merge in to */
1291     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1292     if (!merge)
1293         return false;
1294
1295     /* add jumps ot the merge block */
1296     if (ontrue && !ir_block_create_jump(ontrue, merge))
1297         return false;
1298     if (onfalse && !ir_block_create_jump(onfalse, merge))
1299         return false;
1300
1301     /* we create the if here, that way all blocks are ordered :)
1302      */
1303     if (!ir_block_create_if(cond, condval,
1304                             (ontrue  ? ontrue  : merge),
1305                             (onfalse ? onfalse : merge)))
1306     {
1307         return false;
1308     }
1309
1310     /* Now enter the merge block */
1311     func->curblock = merge;
1312
1313     return true;
1314 }
1315
1316 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1317 {
1318     ast_expression_codegen *cgen;
1319
1320     ir_value *condval;
1321     ir_value *trueval, *falseval;
1322     ir_instr *phi;
1323
1324     ir_block *cond = func->curblock;
1325     ir_block *ontrue;
1326     ir_block *onfalse;
1327     ir_block *merge;
1328
1329     /* Ternary can never create an lvalue... */
1330     if (lvalue)
1331         return false;
1332
1333     /* In theory it shouldn't be possible to pass through a node twice, but
1334      * in case we add any kind of optimization pass for the AST itself, it
1335      * may still happen, thus we remember a created ir_value and simply return one
1336      * if it already exists.
1337      */
1338     if (self->phi_out) {
1339         *out = self->phi_out;
1340         return true;
1341     }
1342
1343     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1344
1345     /* generate the condition */
1346     func->curblock = cond;
1347     cgen = self->cond->expression.codegen;
1348     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1349         return false;
1350
1351     /* create on-true block */
1352     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1353     if (!ontrue)
1354         return false;
1355     else
1356     {
1357         /* enter the block */
1358         func->curblock = ontrue;
1359
1360         /* generate */
1361         cgen = self->on_true->expression.codegen;
1362         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1363             return false;
1364     }
1365
1366     /* create on-false block */
1367     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1368     if (!onfalse)
1369         return false;
1370     else
1371     {
1372         /* enter the block */
1373         func->curblock = onfalse;
1374
1375         /* generate */
1376         cgen = self->on_false->expression.codegen;
1377         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1378             return false;
1379     }
1380
1381     /* create merge block */
1382     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1383     if (!merge)
1384         return false;
1385     /* jump to merge block */
1386     if (!ir_block_create_jump(ontrue, merge))
1387         return false;
1388     if (!ir_block_create_jump(onfalse, merge))
1389         return false;
1390
1391     /* create if instruction */
1392     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1393         return false;
1394
1395     /* Now enter the merge block */
1396     func->curblock = merge;
1397
1398     /* Here, now, we need a PHI node
1399      * but first some sanity checking...
1400      */
1401     if (trueval->vtype != falseval->vtype) {
1402         /* error("ternary with different types on the two sides"); */
1403         return false;
1404     }
1405
1406     /* create PHI */
1407     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1408     if (!phi ||
1409         !ir_phi_add(phi, ontrue,  trueval) ||
1410         !ir_phi_add(phi, onfalse, falseval))
1411     {
1412         return false;
1413     }
1414
1415     self->phi_out = ir_phi_value(phi);
1416     *out = self->phi_out;
1417
1418     return true;
1419 }
1420
1421 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1422 {
1423     ast_expression_codegen *cgen;
1424
1425     ir_value *dummy      = NULL;
1426     ir_value *precond    = NULL;
1427     ir_value *postcond   = NULL;
1428
1429     /* Since we insert some jumps "late" so we have blocks
1430      * ordered "nicely", we need to keep track of the actual end-blocks
1431      * of expressions to add the jumps to.
1432      */
1433     ir_block *bbody      = NULL, *end_bbody      = NULL;
1434     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1435     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1436     ir_block *bincrement = NULL, *end_bincrement = NULL;
1437     ir_block *bout       = NULL, *bin            = NULL;
1438
1439     /* let's at least move the outgoing block to the end */
1440     size_t    bout_id;
1441
1442     /* 'break' and 'continue' need to be able to find the right blocks */
1443     ir_block *bcontinue     = NULL;
1444     ir_block *bbreak        = NULL;
1445
1446     ir_block *old_bcontinue = NULL;
1447     ir_block *old_bbreak    = NULL;
1448
1449     ir_block *tmpblock      = NULL;
1450
1451     (void)lvalue;
1452     (void)out;
1453
1454     if (self->expression.outr) {
1455         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!\n");
1456         return false;
1457     }
1458     self->expression.outr = (ir_value*)1;
1459
1460     /* NOTE:
1461      * Should we ever need some kind of block ordering, better make this function
1462      * move blocks around than write a block ordering algorithm later... after all
1463      * the ast and ir should work together, not against each other.
1464      */
1465
1466     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1467      * anyway if for example it contains a ternary.
1468      */
1469     if (self->initexpr)
1470     {
1471         cgen = self->initexpr->expression.codegen;
1472         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1473             return false;
1474     }
1475
1476     /* Store the block from which we enter this chaos */
1477     bin = func->curblock;
1478
1479     /* The pre-loop condition needs its own block since we
1480      * need to be able to jump to the start of that expression.
1481      */
1482     if (self->precond)
1483     {
1484         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1485         if (!bprecond)
1486             return false;
1487
1488         /* the pre-loop-condition the least important place to 'continue' at */
1489         bcontinue = bprecond;
1490
1491         /* enter */
1492         func->curblock = bprecond;
1493
1494         /* generate */
1495         cgen = self->precond->expression.codegen;
1496         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1497             return false;
1498
1499         end_bprecond = func->curblock;
1500     } else {
1501         bprecond = end_bprecond = NULL;
1502     }
1503
1504     /* Now the next blocks won't be ordered nicely, but we need to
1505      * generate them this early for 'break' and 'continue'.
1506      */
1507     if (self->increment) {
1508         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1509         if (!bincrement)
1510             return false;
1511         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1512     } else {
1513         bincrement = end_bincrement = NULL;
1514     }
1515
1516     if (self->postcond) {
1517         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1518         if (!bpostcond)
1519             return false;
1520         bcontinue = bpostcond; /* postcond comes before the increment */
1521     } else {
1522         bpostcond = end_bpostcond = NULL;
1523     }
1524
1525     bout_id = func->ir_func->blocks_count;
1526     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1527     if (!bout)
1528         return false;
1529     bbreak = bout;
1530
1531     /* The loop body... */
1532     if (self->body)
1533     {
1534         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1535         if (!bbody)
1536             return false;
1537
1538         /* enter */
1539         func->curblock = bbody;
1540
1541         old_bbreak          = func->breakblock;
1542         old_bcontinue       = func->continueblock;
1543         func->breakblock    = bbreak;
1544         func->continueblock = bcontinue;
1545
1546         /* generate */
1547         cgen = self->body->expression.codegen;
1548         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1549             return false;
1550
1551         end_bbody = func->curblock;
1552         func->breakblock    = old_bbreak;
1553         func->continueblock = old_bcontinue;
1554     }
1555
1556     /* post-loop-condition */
1557     if (self->postcond)
1558     {
1559         /* enter */
1560         func->curblock = bpostcond;
1561
1562         /* generate */
1563         cgen = self->postcond->expression.codegen;
1564         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1565             return false;
1566
1567         end_bpostcond = func->curblock;
1568     }
1569
1570     /* The incrementor */
1571     if (self->increment)
1572     {
1573         /* enter */
1574         func->curblock = bincrement;
1575
1576         /* generate */
1577         cgen = self->increment->expression.codegen;
1578         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1579             return false;
1580
1581         end_bincrement = func->curblock;
1582     }
1583
1584     /* In any case now, we continue from the outgoing block */
1585     func->curblock = bout;
1586
1587     /* Now all blocks are in place */
1588     /* From 'bin' we jump to whatever comes first */
1589     if      (bprecond)   tmpblock = bprecond;
1590     else if (bbody)      tmpblock = bbody;
1591     else if (bpostcond)  tmpblock = bpostcond;
1592     else                 tmpblock = bout;
1593     if (!ir_block_create_jump(bin, tmpblock))
1594         return false;
1595
1596     /* From precond */
1597     if (bprecond)
1598     {
1599         ir_block *ontrue, *onfalse;
1600         if      (bbody)      ontrue = bbody;
1601         else if (bincrement) ontrue = bincrement;
1602         else if (bpostcond)  ontrue = bpostcond;
1603         else                 ontrue = bprecond;
1604         onfalse = bout;
1605         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1606             return false;
1607     }
1608
1609     /* from body */
1610     if (bbody)
1611     {
1612         if      (bincrement) tmpblock = bincrement;
1613         else if (bpostcond)  tmpblock = bpostcond;
1614         else if (bprecond)   tmpblock = bprecond;
1615         else                 tmpblock = bout;
1616         if (!ir_block_create_jump(end_bbody, tmpblock))
1617             return false;
1618     }
1619
1620     /* from increment */
1621     if (bincrement)
1622     {
1623         if      (bpostcond)  tmpblock = bpostcond;
1624         else if (bprecond)   tmpblock = bprecond;
1625         else if (bbody)      tmpblock = bbody;
1626         else                 tmpblock = bout;
1627         if (!ir_block_create_jump(end_bincrement, tmpblock))
1628             return false;
1629     }
1630
1631     /* from postcond */
1632     if (bpostcond)
1633     {
1634         ir_block *ontrue, *onfalse;
1635         if      (bprecond)   ontrue = bprecond;
1636         else if (bbody)      ontrue = bbody;
1637         else if (bincrement) ontrue = bincrement;
1638         else                 ontrue = bpostcond;
1639         onfalse = bout;
1640         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1641             return false;
1642     }
1643
1644     /* Move 'bout' to the end */
1645     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1646         !ir_function_blocks_add(func->ir_func, bout))
1647     {
1648         ir_block_delete(bout);
1649         return false;
1650     }
1651
1652     return true;
1653 }
1654
1655 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1656 {
1657     ast_expression_codegen *cgen;
1658     ir_value_vector         params;
1659     ir_instr               *callinstr;
1660     size_t i;
1661
1662     ir_value *funval = NULL;
1663
1664     /* return values are never lvalues */
1665     (void)lvalue;
1666
1667     if (self->expression.outr) {
1668         *out = self->expression.outr;
1669         return true;
1670     }
1671
1672     cgen = self->func->expression.codegen;
1673     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1674         return false;
1675     if (!funval)
1676         return false;
1677
1678     MEM_VECTOR_INIT(&params, v);
1679
1680     /* parameters */
1681     for (i = 0; i < self->params_count; ++i)
1682     {
1683         ir_value *param;
1684         ast_expression *expr = self->params[i];
1685
1686         cgen = expr->expression.codegen;
1687         if (!(*cgen)(expr, func, false, &param))
1688             goto error;
1689         if (!param)
1690             goto error;
1691         if (!ir_value_vector_v_add(&params, param))
1692             goto error;
1693     }
1694
1695     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1696     if (!callinstr)
1697         goto error;
1698
1699     for (i = 0; i < params.v_count; ++i) {
1700         if (!ir_call_param(callinstr, params.v[i]))
1701             goto error;
1702     }
1703
1704     *out = ir_call_value(callinstr);
1705     self->expression.outr = *out;
1706
1707     MEM_VECTOR_CLEAR(&params, v);
1708     return true;
1709 error:
1710     MEM_VECTOR_CLEAR(&params, v);
1711     return false;
1712 }