]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
copy the function context over to its ir_value as well
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 ast_store* ast_store_new(lex_ctx ctx, int op,
593                          ast_expression *dest, ast_expression *source)
594 {
595     ast_instantiate(ast_store, ctx, ast_store_delete);
596     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
597
598     self->op = op;
599     self->dest = dest;
600     self->source = source;
601
602     return self;
603 }
604
605 void ast_store_delete(ast_store *self)
606 {
607     ast_unref(self->dest);
608     ast_unref(self->source);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_block* ast_block_new(lex_ctx ctx)
614 {
615     ast_instantiate(ast_block, ctx, ast_block_delete);
616     ast_expression_init((ast_expression*)self,
617                         (ast_expression_codegen*)&ast_block_codegen);
618
619     MEM_VECTOR_INIT(self, locals);
620     MEM_VECTOR_INIT(self, exprs);
621     MEM_VECTOR_INIT(self, collect);
622
623     return self;
624 }
625 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
627 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
628
629 bool ast_block_collect(ast_block *self, ast_expression *expr)
630 {
631     if (!ast_block_collect_add(self, expr))
632         return false;
633     expr->expression.node.keep = true;
634     return true;
635 }
636
637 void ast_block_delete(ast_block *self)
638 {
639     size_t i;
640     for (i = 0; i < self->exprs_count; ++i)
641         ast_unref(self->exprs[i]);
642     MEM_VECTOR_CLEAR(self, exprs);
643     for (i = 0; i < self->locals_count; ++i)
644         ast_delete(self->locals[i]);
645     MEM_VECTOR_CLEAR(self, locals);
646     for (i = 0; i < self->collect_count; ++i)
647         ast_delete(self->collect[i]);
648     MEM_VECTOR_CLEAR(self, collect);
649     ast_expression_delete((ast_expression*)self);
650     mem_d(self);
651 }
652
653 bool ast_block_set_type(ast_block *self, ast_expression *from)
654 {
655     if (self->expression.next)
656         ast_delete(self->expression.next);
657     self->expression.vtype = from->expression.vtype;
658     if (from->expression.next) {
659         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
660         if (!self->expression.next)
661             return false;
662     }
663     else
664         self->expression.next = NULL;
665     return true;
666 }
667
668 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
669 {
670     ast_instantiate(ast_function, ctx, ast_function_delete);
671
672     if (!vtype ||
673         vtype->isconst ||
674         vtype->expression.vtype != TYPE_FUNCTION)
675     {
676         mem_d(self);
677         return NULL;
678     }
679
680     self->vtype = vtype;
681     self->name = name ? util_strdup(name) : NULL;
682     MEM_VECTOR_INIT(self, blocks);
683
684     self->labelcount = 0;
685     self->builtin = 0;
686
687     self->ir_func = NULL;
688     self->curblock = NULL;
689
690     self->breakblock    = NULL;
691     self->continueblock = NULL;
692
693     vtype->isconst = true;
694     vtype->constval.vfunc = self;
695
696     return self;
697 }
698
699 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
700
701 void ast_function_delete(ast_function *self)
702 {
703     size_t i;
704     if (self->name)
705         mem_d((void*)self->name);
706     if (self->vtype) {
707         /* ast_value_delete(self->vtype); */
708         self->vtype->isconst = false;
709         self->vtype->constval.vfunc = NULL;
710         /* We use unref - if it was stored in a global table it is supposed
711          * to be deleted from *there*
712          */
713         ast_unref(self->vtype);
714     }
715     for (i = 0; i < self->blocks_count; ++i)
716         ast_delete(self->blocks[i]);
717     MEM_VECTOR_CLEAR(self, blocks);
718     mem_d(self);
719 }
720
721 const char* ast_function_label(ast_function *self, const char *prefix)
722 {
723     size_t id;
724     size_t len;
725     char  *from;
726
727     if (!opts_dump)
728         return NULL;
729
730     id  = (self->labelcount++);
731     len = strlen(prefix);
732
733     from = self->labelbuf + sizeof(self->labelbuf)-1;
734     *from-- = 0;
735     do {
736         unsigned int digit = id % 10;
737         *from = digit + '0';
738         id /= 10;
739     } while (id);
740     memcpy(from - len, prefix, len);
741     return from - len;
742 }
743
744 /*********************************************************************/
745 /* AST codegen part
746  * by convention you must never pass NULL to the 'ir_value **out'
747  * parameter. If you really don't care about the output, pass a dummy.
748  * But I can't imagine a pituation where the output is truly unnecessary.
749  */
750
751 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
752 {
753     /* NOTE: This is the codegen for a variable used in an expression.
754      * It is not the codegen to generate the value. For this purpose,
755      * ast_local_codegen and ast_global_codegen are to be used before this
756      * is executed. ast_function_codegen should take care of its locals,
757      * and the ast-user should take care of ast_global_codegen to be used
758      * on all the globals.
759      */
760     if (!self->ir_v) {
761         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
762         return false;
763     }
764     *out = self->ir_v;
765     return true;
766 }
767
768 bool ast_global_codegen(ast_value *self, ir_builder *ir)
769 {
770     ir_value *v = NULL;
771     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
772     {
773         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
774         if (!func)
775             return false;
776         func->context = ast_ctx(self);
777         func->value->context = ast_ctx(self);
778
779         self->constval.vfunc->ir_func = func;
780         self->ir_v = func->value;
781         /* The function is filled later on ast_function_codegen... */
782         return true;
783     }
784
785     if (self->expression.vtype == TYPE_FIELD) {
786         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
787         if (!v)
788             return false;
789         v->context = ast_ctx(self);
790         if (self->isconst) {
791             asterror(ast_ctx(self), "TODO: constant field pointers with value");
792             goto error;
793         }
794         self->ir_v = v;
795         return true;
796     }
797
798     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
799     if (!v) {
800         asterror(ast_ctx(self), "ir_builder_create_global failed");
801         return false;
802     }
803     v->context = ast_ctx(self);
804
805     if (self->isconst) {
806         switch (self->expression.vtype)
807         {
808             case TYPE_FLOAT:
809                 if (!ir_value_set_float(v, self->constval.vfloat))
810                     goto error;
811                 break;
812             case TYPE_VECTOR:
813                 if (!ir_value_set_vector(v, self->constval.vvec))
814                     goto error;
815                 break;
816             case TYPE_STRING:
817                 if (!ir_value_set_string(v, self->constval.vstring))
818                     goto error;
819                 break;
820             case TYPE_FUNCTION:
821                 asterror(ast_ctx(self), "global of type function not properly generated");
822                 goto error;
823                 /* Cannot generate an IR value for a function,
824                  * need a pointer pointing to a function rather.
825                  */
826             default:
827                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
828                 break;
829         }
830     }
831
832     /* link us to the ir_value */
833     self->ir_v = v;
834     return true;
835
836 error: /* clean up */
837     ir_value_delete(v);
838     return false;
839 }
840
841 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
842 {
843     ir_value *v = NULL;
844     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
845     {
846         /* Do we allow local functions? I think not...
847          * this is NOT a function pointer atm.
848          */
849         return false;
850     }
851
852     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
853     if (!v)
854         return false;
855     v->context = ast_ctx(self);
856
857     /* A constant local... hmmm...
858      * I suppose the IR will have to deal with this
859      */
860     if (self->isconst) {
861         switch (self->expression.vtype)
862         {
863             case TYPE_FLOAT:
864                 if (!ir_value_set_float(v, self->constval.vfloat))
865                     goto error;
866                 break;
867             case TYPE_VECTOR:
868                 if (!ir_value_set_vector(v, self->constval.vvec))
869                     goto error;
870                 break;
871             case TYPE_STRING:
872                 if (!ir_value_set_string(v, self->constval.vstring))
873                     goto error;
874                 break;
875             default:
876                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
877                 break;
878         }
879     }
880
881     /* link us to the ir_value */
882     self->ir_v = v;
883     return true;
884
885 error: /* clean up */
886     ir_value_delete(v);
887     return false;
888 }
889
890 bool ast_function_codegen(ast_function *self, ir_builder *ir)
891 {
892     ir_function *irf;
893     ir_value    *dummy;
894     ast_expression_common *ec;
895     size_t    i;
896
897     irf = self->ir_func;
898     if (!irf) {
899         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
900         return false;
901     }
902
903     /* fill the parameter list */
904     ec = &self->vtype->expression;
905     for (i = 0; i < ec->params_count; ++i)
906     {
907         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
908             return false;
909         if (!self->builtin) {
910             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
911                 return false;
912         }
913     }
914
915     if (self->builtin) {
916         irf->builtin = self->builtin;
917         return true;
918     }
919
920     if (!self->blocks_count) {
921         asterror(ast_ctx(self), "function `%s` has no body", self->name);
922         return false;
923     }
924
925     self->curblock = ir_function_create_block(irf, "entry");
926     if (!self->curblock) {
927         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
928         return false;
929     }
930
931     for (i = 0; i < self->blocks_count; ++i) {
932         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
933         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
934             return false;
935     }
936
937     /* TODO: check return types */
938     if (!self->curblock->is_return)
939     {
940         return ir_block_create_return(self->curblock, NULL);
941         /* From now on the parser has to handle this situation */
942 #if 0
943         if (!self->vtype->expression.next ||
944             self->vtype->expression.next->expression.vtype == TYPE_VOID)
945         {
946             return ir_block_create_return(self->curblock, NULL);
947         }
948         else
949         {
950             /* error("missing return"); */
951             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
952             return false;
953         }
954 #endif
955     }
956     return true;
957 }
958
959 /* Note, you will not see ast_block_codegen generate ir_blocks.
960  * To the AST and the IR, blocks are 2 different things.
961  * In the AST it represents a block of code, usually enclosed in
962  * curly braces {...}.
963  * While in the IR it represents a block in terms of control-flow.
964  */
965 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
966 {
967     size_t i;
968
969     /* We don't use this
970      * Note: an ast-representation using the comma-operator
971      * of the form: (a, b, c) = x should not assign to c...
972      */
973     (void)lvalue;
974     if (self->expression.outr) {
975         *out = self->expression.outr;
976         return true;
977     }
978
979     /* output is NULL at first, we'll have each expression
980      * assign to out output, thus, a comma-operator represention
981      * using an ast_block will return the last generated value,
982      * so: (b, c) + a  executed both b and c, and returns c,
983      * which is then added to a.
984      */
985     *out = NULL;
986
987     /* generate locals */
988     for (i = 0; i < self->locals_count; ++i)
989     {
990         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
991             if (opts_debug)
992                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
993             return false;
994         }
995     }
996
997     for (i = 0; i < self->exprs_count; ++i)
998     {
999         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1000         if (!(*gen)(self->exprs[i], func, false, out))
1001             return false;
1002     }
1003
1004     self->expression.outr = *out;
1005
1006     return true;
1007 }
1008
1009 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1010 {
1011     ast_expression_codegen *cgen;
1012     ir_value *left, *right;
1013
1014     if (lvalue && self->expression.outl) {
1015         *out = self->expression.outl;
1016         return true;
1017     }
1018
1019     if (!lvalue && self->expression.outr) {
1020         *out = self->expression.outr;
1021         return true;
1022     }
1023
1024     cgen = self->dest->expression.codegen;
1025     /* lvalue! */
1026     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1027         return false;
1028     self->expression.outl = left;
1029
1030     cgen = self->source->expression.codegen;
1031     /* rvalue! */
1032     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1033         return false;
1034
1035     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1036         return false;
1037     self->expression.outr = right;
1038
1039     /* Theoretically, an assinment returns its left side as an
1040      * lvalue, if we don't need an lvalue though, we return
1041      * the right side as an rvalue, otherwise we have to
1042      * somehow know whether or not we need to dereference the pointer
1043      * on the left side - that is: OP_LOAD if it was an address.
1044      * Also: in original QC we cannot OP_LOADP *anyway*.
1045      */
1046     *out = (lvalue ? left : right);
1047
1048     return true;
1049 }
1050
1051 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1052 {
1053     ast_expression_codegen *cgen;
1054     ir_value *left, *right;
1055
1056     /* In the context of a binary operation, we can disregard
1057      * the lvalue flag.
1058      */
1059     (void)lvalue;
1060     if (self->expression.outr) {
1061         *out = self->expression.outr;
1062         return true;
1063     }
1064
1065     cgen = self->left->expression.codegen;
1066     /* lvalue! */
1067     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1068         return false;
1069
1070     cgen = self->right->expression.codegen;
1071     /* rvalue! */
1072     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1073         return false;
1074
1075     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1076                                  self->op, left, right);
1077     if (!*out)
1078         return false;
1079     self->expression.outr = *out;
1080
1081     return true;
1082 }
1083
1084 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1085 {
1086     ast_expression_codegen *cgen;
1087     ir_value *leftl, *leftr, *right, *bin;
1088
1089     if (lvalue && self->expression.outl) {
1090         *out = self->expression.outl;
1091         return true;
1092     }
1093
1094     if (!lvalue && self->expression.outr) {
1095         *out = self->expression.outr;
1096         return true;
1097     }
1098
1099     /* for a binstore we need both an lvalue and an rvalue for the left side */
1100     /* rvalue of destination! */
1101     cgen = self->dest->expression.codegen;
1102     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1103         return false;
1104
1105     /* source as rvalue only */
1106     cgen = self->source->expression.codegen;
1107     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1108         return false;
1109
1110     /* now the binary */
1111     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1112                                 self->opbin, leftr, right);
1113     self->expression.outr = bin;
1114
1115     /* now store them */
1116     cgen = self->dest->expression.codegen;
1117     /* lvalue of destination */
1118     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1119         return false;
1120     self->expression.outl = leftl;
1121
1122     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1123         return false;
1124     self->expression.outr = bin;
1125
1126     /* Theoretically, an assinment returns its left side as an
1127      * lvalue, if we don't need an lvalue though, we return
1128      * the right side as an rvalue, otherwise we have to
1129      * somehow know whether or not we need to dereference the pointer
1130      * on the left side - that is: OP_LOAD if it was an address.
1131      * Also: in original QC we cannot OP_LOADP *anyway*.
1132      */
1133     *out = (lvalue ? leftl : bin);
1134
1135     return true;
1136 }
1137
1138 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1139 {
1140     ast_expression_codegen *cgen;
1141     ir_value *operand;
1142
1143     /* In the context of a unary operation, we can disregard
1144      * the lvalue flag.
1145      */
1146     (void)lvalue;
1147     if (self->expression.outr) {
1148         *out = self->expression.outr;
1149         return true;
1150     }
1151
1152     cgen = self->operand->expression.codegen;
1153     /* lvalue! */
1154     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1155         return false;
1156
1157     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1158                                  self->op, operand);
1159     if (!*out)
1160         return false;
1161     self->expression.outr = *out;
1162
1163     return true;
1164 }
1165
1166 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1167 {
1168     ast_expression_codegen *cgen;
1169     ir_value *operand;
1170
1171     /* In the context of a return operation, we can disregard
1172      * the lvalue flag.
1173      */
1174     (void)lvalue;
1175     if (self->expression.outr) {
1176         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1177         return false;
1178     }
1179     self->expression.outr = (ir_value*)1;
1180
1181     if (self->operand) {
1182         cgen = self->operand->expression.codegen;
1183         /* lvalue! */
1184         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1185             return false;
1186
1187         if (!ir_block_create_return(func->curblock, operand))
1188             return false;
1189     } else {
1190         if (!ir_block_create_return(func->curblock, NULL))
1191             return false;
1192     }
1193
1194     return true;
1195 }
1196
1197 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1198 {
1199     ast_expression_codegen *cgen;
1200     ir_value *ent, *field;
1201
1202     /* This function needs to take the 'lvalue' flag into account!
1203      * As lvalue we provide a field-pointer, as rvalue we provide the
1204      * value in a temp.
1205      */
1206
1207     if (lvalue && self->expression.outl) {
1208         *out = self->expression.outl;
1209         return true;
1210     }
1211
1212     if (!lvalue && self->expression.outr) {
1213         *out = self->expression.outr;
1214         return true;
1215     }
1216
1217     cgen = self->entity->expression.codegen;
1218     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1219         return false;
1220
1221     cgen = self->field->expression.codegen;
1222     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1223         return false;
1224
1225     if (lvalue) {
1226         /* address! */
1227         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1228                                             ent, field);
1229     } else {
1230         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1231                                              ent, field, self->expression.vtype);
1232     }
1233     if (!*out) {
1234         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1235                  (lvalue ? "ADDRESS" : "FIELD"),
1236                  type_name[self->expression.vtype]);
1237         return false;
1238     }
1239
1240     if (lvalue)
1241         self->expression.outl = *out;
1242     else
1243         self->expression.outr = *out;
1244
1245     /* Hm that should be it... */
1246     return true;
1247 }
1248
1249 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1250 {
1251     ast_expression_codegen *cgen;
1252     ir_value *vec;
1253
1254     /* in QC this is always an lvalue */
1255     (void)lvalue;
1256     if (self->expression.outl) {
1257         *out = self->expression.outl;
1258         return true;
1259     }
1260
1261     cgen = self->owner->expression.codegen;
1262     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1263         return false;
1264
1265     if (vec->vtype != TYPE_VECTOR &&
1266         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1267     {
1268         return false;
1269     }
1270
1271     *out = ir_value_vector_member(vec, self->field);
1272     self->expression.outl = *out;
1273
1274     return (*out != NULL);
1275 }
1276
1277 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1278 {
1279     ast_expression_codegen *cgen;
1280
1281     ir_value *condval;
1282     ir_value *dummy;
1283
1284     ir_block *cond = func->curblock;
1285     ir_block *ontrue;
1286     ir_block *onfalse;
1287     ir_block *ontrue_endblock;
1288     ir_block *onfalse_endblock;
1289     ir_block *merge;
1290
1291     /* We don't output any value, thus also don't care about r/lvalue */
1292     (void)out;
1293     (void)lvalue;
1294
1295     if (self->expression.outr) {
1296         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1297         return false;
1298     }
1299     self->expression.outr = (ir_value*)1;
1300
1301     /* generate the condition */
1302     func->curblock = cond;
1303     cgen = self->cond->expression.codegen;
1304     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1305         return false;
1306
1307     /* on-true path */
1308
1309     if (self->on_true) {
1310         /* create on-true block */
1311         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1312         if (!ontrue)
1313             return false;
1314
1315         /* enter the block */
1316         func->curblock = ontrue;
1317
1318         /* generate */
1319         cgen = self->on_true->expression.codegen;
1320         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1321             return false;
1322
1323         /* we now need to work from the current endpoint */
1324         ontrue_endblock = func->curblock;
1325     } else
1326         ontrue = NULL;
1327
1328     /* on-false path */
1329     if (self->on_false) {
1330         /* create on-false block */
1331         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1332         if (!onfalse)
1333             return false;
1334
1335         /* enter the block */
1336         func->curblock = onfalse;
1337
1338         /* generate */
1339         cgen = self->on_false->expression.codegen;
1340         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1341             return false;
1342
1343         /* we now need to work from the current endpoint */
1344         onfalse_endblock = func->curblock;
1345     } else
1346         onfalse = NULL;
1347
1348     /* Merge block were they all merge in to */
1349     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1350     if (!merge)
1351         return false;
1352
1353     /* add jumps ot the merge block */
1354     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1355         return false;
1356     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1357         return false;
1358
1359     /* we create the if here, that way all blocks are ordered :)
1360      */
1361     if (!ir_block_create_if(cond, condval,
1362                             (ontrue  ? ontrue  : merge),
1363                             (onfalse ? onfalse : merge)))
1364     {
1365         return false;
1366     }
1367
1368     /* Now enter the merge block */
1369     func->curblock = merge;
1370
1371     return true;
1372 }
1373
1374 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1375 {
1376     ast_expression_codegen *cgen;
1377
1378     ir_value *condval;
1379     ir_value *trueval, *falseval;
1380     ir_instr *phi;
1381
1382     ir_block *cond = func->curblock;
1383     ir_block *ontrue;
1384     ir_block *onfalse;
1385     ir_block *merge;
1386
1387     /* Ternary can never create an lvalue... */
1388     if (lvalue)
1389         return false;
1390
1391     /* In theory it shouldn't be possible to pass through a node twice, but
1392      * in case we add any kind of optimization pass for the AST itself, it
1393      * may still happen, thus we remember a created ir_value and simply return one
1394      * if it already exists.
1395      */
1396     if (self->phi_out) {
1397         *out = self->phi_out;
1398         return true;
1399     }
1400
1401     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1402
1403     /* generate the condition */
1404     func->curblock = cond;
1405     cgen = self->cond->expression.codegen;
1406     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1407         return false;
1408
1409     /* create on-true block */
1410     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1411     if (!ontrue)
1412         return false;
1413     else
1414     {
1415         /* enter the block */
1416         func->curblock = ontrue;
1417
1418         /* generate */
1419         cgen = self->on_true->expression.codegen;
1420         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1421             return false;
1422     }
1423
1424     /* create on-false block */
1425     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1426     if (!onfalse)
1427         return false;
1428     else
1429     {
1430         /* enter the block */
1431         func->curblock = onfalse;
1432
1433         /* generate */
1434         cgen = self->on_false->expression.codegen;
1435         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1436             return false;
1437     }
1438
1439     /* create merge block */
1440     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1441     if (!merge)
1442         return false;
1443     /* jump to merge block */
1444     if (!ir_block_create_jump(ontrue, merge))
1445         return false;
1446     if (!ir_block_create_jump(onfalse, merge))
1447         return false;
1448
1449     /* create if instruction */
1450     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1451         return false;
1452
1453     /* Now enter the merge block */
1454     func->curblock = merge;
1455
1456     /* Here, now, we need a PHI node
1457      * but first some sanity checking...
1458      */
1459     if (trueval->vtype != falseval->vtype) {
1460         /* error("ternary with different types on the two sides"); */
1461         return false;
1462     }
1463
1464     /* create PHI */
1465     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1466     if (!phi ||
1467         !ir_phi_add(phi, ontrue,  trueval) ||
1468         !ir_phi_add(phi, onfalse, falseval))
1469     {
1470         return false;
1471     }
1472
1473     self->phi_out = ir_phi_value(phi);
1474     *out = self->phi_out;
1475
1476     return true;
1477 }
1478
1479 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1480 {
1481     ast_expression_codegen *cgen;
1482
1483     ir_value *dummy      = NULL;
1484     ir_value *precond    = NULL;
1485     ir_value *postcond   = NULL;
1486
1487     /* Since we insert some jumps "late" so we have blocks
1488      * ordered "nicely", we need to keep track of the actual end-blocks
1489      * of expressions to add the jumps to.
1490      */
1491     ir_block *bbody      = NULL, *end_bbody      = NULL;
1492     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1493     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1494     ir_block *bincrement = NULL, *end_bincrement = NULL;
1495     ir_block *bout       = NULL, *bin            = NULL;
1496
1497     /* let's at least move the outgoing block to the end */
1498     size_t    bout_id;
1499
1500     /* 'break' and 'continue' need to be able to find the right blocks */
1501     ir_block *bcontinue     = NULL;
1502     ir_block *bbreak        = NULL;
1503
1504     ir_block *old_bcontinue = NULL;
1505     ir_block *old_bbreak    = NULL;
1506
1507     ir_block *tmpblock      = NULL;
1508
1509     (void)lvalue;
1510     (void)out;
1511
1512     if (self->expression.outr) {
1513         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1514         return false;
1515     }
1516     self->expression.outr = (ir_value*)1;
1517
1518     /* NOTE:
1519      * Should we ever need some kind of block ordering, better make this function
1520      * move blocks around than write a block ordering algorithm later... after all
1521      * the ast and ir should work together, not against each other.
1522      */
1523
1524     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1525      * anyway if for example it contains a ternary.
1526      */
1527     if (self->initexpr)
1528     {
1529         cgen = self->initexpr->expression.codegen;
1530         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1531             return false;
1532     }
1533
1534     /* Store the block from which we enter this chaos */
1535     bin = func->curblock;
1536
1537     /* The pre-loop condition needs its own block since we
1538      * need to be able to jump to the start of that expression.
1539      */
1540     if (self->precond)
1541     {
1542         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1543         if (!bprecond)
1544             return false;
1545
1546         /* the pre-loop-condition the least important place to 'continue' at */
1547         bcontinue = bprecond;
1548
1549         /* enter */
1550         func->curblock = bprecond;
1551
1552         /* generate */
1553         cgen = self->precond->expression.codegen;
1554         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1555             return false;
1556
1557         end_bprecond = func->curblock;
1558     } else {
1559         bprecond = end_bprecond = NULL;
1560     }
1561
1562     /* Now the next blocks won't be ordered nicely, but we need to
1563      * generate them this early for 'break' and 'continue'.
1564      */
1565     if (self->increment) {
1566         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1567         if (!bincrement)
1568             return false;
1569         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1570     } else {
1571         bincrement = end_bincrement = NULL;
1572     }
1573
1574     if (self->postcond) {
1575         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1576         if (!bpostcond)
1577             return false;
1578         bcontinue = bpostcond; /* postcond comes before the increment */
1579     } else {
1580         bpostcond = end_bpostcond = NULL;
1581     }
1582
1583     bout_id = func->ir_func->blocks_count;
1584     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1585     if (!bout)
1586         return false;
1587     bbreak = bout;
1588
1589     /* The loop body... */
1590     if (self->body)
1591     {
1592         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1593         if (!bbody)
1594             return false;
1595
1596         /* enter */
1597         func->curblock = bbody;
1598
1599         old_bbreak          = func->breakblock;
1600         old_bcontinue       = func->continueblock;
1601         func->breakblock    = bbreak;
1602         func->continueblock = bcontinue;
1603
1604         /* generate */
1605         cgen = self->body->expression.codegen;
1606         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1607             return false;
1608
1609         end_bbody = func->curblock;
1610         func->breakblock    = old_bbreak;
1611         func->continueblock = old_bcontinue;
1612     }
1613
1614     /* post-loop-condition */
1615     if (self->postcond)
1616     {
1617         /* enter */
1618         func->curblock = bpostcond;
1619
1620         /* generate */
1621         cgen = self->postcond->expression.codegen;
1622         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1623             return false;
1624
1625         end_bpostcond = func->curblock;
1626     }
1627
1628     /* The incrementor */
1629     if (self->increment)
1630     {
1631         /* enter */
1632         func->curblock = bincrement;
1633
1634         /* generate */
1635         cgen = self->increment->expression.codegen;
1636         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1637             return false;
1638
1639         end_bincrement = func->curblock;
1640     }
1641
1642     /* In any case now, we continue from the outgoing block */
1643     func->curblock = bout;
1644
1645     /* Now all blocks are in place */
1646     /* From 'bin' we jump to whatever comes first */
1647     if      (bprecond)   tmpblock = bprecond;
1648     else if (bbody)      tmpblock = bbody;
1649     else if (bpostcond)  tmpblock = bpostcond;
1650     else                 tmpblock = bout;
1651     if (!ir_block_create_jump(bin, tmpblock))
1652         return false;
1653
1654     /* From precond */
1655     if (bprecond)
1656     {
1657         ir_block *ontrue, *onfalse;
1658         if      (bbody)      ontrue = bbody;
1659         else if (bincrement) ontrue = bincrement;
1660         else if (bpostcond)  ontrue = bpostcond;
1661         else                 ontrue = bprecond;
1662         onfalse = bout;
1663         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1664             return false;
1665     }
1666
1667     /* from body */
1668     if (bbody)
1669     {
1670         if      (bincrement) tmpblock = bincrement;
1671         else if (bpostcond)  tmpblock = bpostcond;
1672         else if (bprecond)   tmpblock = bprecond;
1673         else                 tmpblock = bout;
1674         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1675             return false;
1676     }
1677
1678     /* from increment */
1679     if (bincrement)
1680     {
1681         if      (bpostcond)  tmpblock = bpostcond;
1682         else if (bprecond)   tmpblock = bprecond;
1683         else if (bbody)      tmpblock = bbody;
1684         else                 tmpblock = bout;
1685         if (!ir_block_create_jump(end_bincrement, tmpblock))
1686             return false;
1687     }
1688
1689     /* from postcond */
1690     if (bpostcond)
1691     {
1692         ir_block *ontrue, *onfalse;
1693         if      (bprecond)   ontrue = bprecond;
1694         else if (bbody)      ontrue = bbody;
1695         else if (bincrement) ontrue = bincrement;
1696         else                 ontrue = bpostcond;
1697         onfalse = bout;
1698         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1699             return false;
1700     }
1701
1702     /* Move 'bout' to the end */
1703     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1704         !ir_function_blocks_add(func->ir_func, bout))
1705     {
1706         ir_block_delete(bout);
1707         return false;
1708     }
1709
1710     return true;
1711 }
1712
1713 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1714 {
1715     ast_expression_codegen *cgen;
1716     ir_value_vector         params;
1717     ir_instr               *callinstr;
1718     size_t i;
1719
1720     ir_value *funval = NULL;
1721
1722     /* return values are never lvalues */
1723     (void)lvalue;
1724
1725     if (self->expression.outr) {
1726         *out = self->expression.outr;
1727         return true;
1728     }
1729
1730     cgen = self->func->expression.codegen;
1731     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1732         return false;
1733     if (!funval)
1734         return false;
1735
1736     MEM_VECTOR_INIT(&params, v);
1737
1738     /* parameters */
1739     for (i = 0; i < self->params_count; ++i)
1740     {
1741         ir_value *param;
1742         ast_expression *expr = self->params[i];
1743
1744         cgen = expr->expression.codegen;
1745         if (!(*cgen)(expr, func, false, &param))
1746             goto error;
1747         if (!param)
1748             goto error;
1749         if (!ir_value_vector_v_add(&params, param))
1750             goto error;
1751     }
1752
1753     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1754     if (!callinstr)
1755         goto error;
1756
1757     for (i = 0; i < params.v_count; ++i) {
1758         if (!ir_call_param(callinstr, params.v[i]))
1759             goto error;
1760     }
1761
1762     *out = ir_call_value(callinstr);
1763     self->expression.outr = *out;
1764
1765     MEM_VECTOR_CLEAR(&params, v);
1766     return true;
1767 error:
1768     MEM_VECTOR_CLEAR(&params, v);
1769     return false;
1770 }