]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_return_new doesn't take an operator, we use INSTR_RETURN always, never INSTR_DONE...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_unary* ast_unary_new(lex_ctx ctx, int op,
185                          ast_expression *expr)
186 {
187     ast_instantiate(ast_unary, ctx, ast_unary_delete);
188     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
189
190     self->op = op;
191     self->operand = expr;
192
193     return self;
194 }
195
196 void ast_unary_delete(ast_unary *self)
197 {
198     ast_unref(self->operand);
199     ast_expression_delete((ast_expression*)self);
200     mem_d(self);
201 }
202
203 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
204 {
205     ast_instantiate(ast_return, ctx, ast_return_delete);
206     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
207
208     self->operand = expr;
209
210     return self;
211 }
212
213 void ast_return_delete(ast_return *self)
214 {
215     ast_unref(self->operand);
216     ast_expression_delete((ast_expression*)self);
217     mem_d(self);
218 }
219
220 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
221 {
222     const ast_expression *outtype;
223
224     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
225
226     if (field->expression.vtype != TYPE_FIELD) {
227         mem_d(self);
228         return NULL;
229     }
230
231     outtype = field->expression.next;
232     if (!outtype) {
233         mem_d(self);
234         /* Error: field has no type... */
235         return NULL;
236     }
237
238     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
239
240     self->expression.vtype = outtype->expression.vtype;
241     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
242
243     self->entity = entity;
244     self->field  = field;
245
246     return self;
247 }
248
249 void ast_entfield_delete(ast_entfield *self)
250 {
251     ast_unref(self->entity);
252     ast_unref(self->field);
253     ast_expression_delete((ast_expression*)self);
254     mem_d(self);
255 }
256
257 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
258 {
259     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
260     if (!ontrue && !onfalse) {
261         /* because it is invalid */
262         mem_d(self);
263         return NULL;
264     }
265     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
266
267     self->cond     = cond;
268     self->on_true  = ontrue;
269     self->on_false = onfalse;
270
271     return self;
272 }
273
274 void ast_ifthen_delete(ast_ifthen *self)
275 {
276     ast_unref(self->cond);
277     if (self->on_true)
278         ast_unref(self->on_true);
279     if (self->on_false)
280         ast_unref(self->on_false);
281     ast_expression_delete((ast_expression*)self);
282     mem_d(self);
283 }
284
285 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
286 {
287     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
288     /* This time NEITHER must be NULL */
289     if (!ontrue || !onfalse) {
290         mem_d(self);
291         return NULL;
292     }
293     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
294
295     self->cond     = cond;
296     self->on_true  = ontrue;
297     self->on_false = onfalse;
298     self->phi_out  = NULL;
299
300     return self;
301 }
302
303 void ast_ternary_delete(ast_ternary *self)
304 {
305     ast_unref(self->cond);
306     ast_unref(self->on_true);
307     ast_unref(self->on_false);
308     ast_expression_delete((ast_expression*)self);
309     mem_d(self);
310 }
311
312 ast_loop* ast_loop_new(lex_ctx ctx,
313                        ast_expression *initexpr,
314                        ast_expression *precond,
315                        ast_expression *postcond,
316                        ast_expression *increment,
317                        ast_expression *body)
318 {
319     ast_instantiate(ast_loop, ctx, ast_loop_delete);
320     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
321
322     self->initexpr  = initexpr;
323     self->precond   = precond;
324     self->postcond  = postcond;
325     self->increment = increment;
326     self->body      = body;
327
328     return self;
329 }
330
331 void ast_loop_delete(ast_loop *self)
332 {
333     if (self->initexpr)
334         ast_unref(self->initexpr);
335     if (self->precond)
336         ast_unref(self->precond);
337     if (self->postcond)
338         ast_unref(self->postcond);
339     if (self->increment)
340         ast_unref(self->increment);
341     if (self->body)
342         ast_unref(self->body);
343     ast_expression_delete((ast_expression*)self);
344     mem_d(self);
345 }
346
347 ast_call* ast_call_new(lex_ctx ctx,
348                        ast_expression *funcexpr)
349 {
350     ast_instantiate(ast_call, ctx, ast_call_delete);
351     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
352
353     MEM_VECTOR_INIT(self, params);
354
355     self->func = funcexpr;
356
357     return self;
358 }
359 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
360
361 void ast_call_delete(ast_call *self)
362 {
363     size_t i;
364     for (i = 0; i < self->params_count; ++i)
365         ast_unref(self->params[i]);
366     MEM_VECTOR_CLEAR(self, params);
367
368     if (self->func)
369         ast_unref(self->func);
370
371     ast_expression_delete((ast_expression*)self);
372     mem_d(self);
373 }
374
375 ast_store* ast_store_new(lex_ctx ctx, int op,
376                          ast_value *dest, ast_expression *source)
377 {
378     ast_instantiate(ast_store, ctx, ast_store_delete);
379     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
380
381     self->op = op;
382     self->dest = dest;
383     self->source = source;
384
385     return self;
386 }
387
388 void ast_store_delete(ast_store *self)
389 {
390     ast_unref(self->dest);
391     ast_unref(self->source);
392     ast_expression_delete((ast_expression*)self);
393     mem_d(self);
394 }
395
396 ast_block* ast_block_new(lex_ctx ctx)
397 {
398     ast_instantiate(ast_block, ctx, ast_block_delete);
399     ast_expression_init((ast_expression*)self,
400                         (ast_expression_codegen*)&ast_block_codegen);
401
402     MEM_VECTOR_INIT(self, locals);
403     MEM_VECTOR_INIT(self, exprs);
404
405     return self;
406 }
407 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
408 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
409
410 void ast_block_delete(ast_block *self)
411 {
412     size_t i;
413     for (i = 0; i < self->exprs_count; ++i)
414         ast_unref(self->exprs[i]);
415     MEM_VECTOR_CLEAR(self, exprs);
416     for (i = 0; i < self->locals_count; ++i)
417         ast_delete(self->locals[i]);
418     MEM_VECTOR_CLEAR(self, locals);
419     ast_expression_delete((ast_expression*)self);
420     mem_d(self);
421 }
422
423 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
424 {
425     ast_instantiate(ast_function, ctx, ast_function_delete);
426
427     if (!vtype ||
428         vtype->isconst ||
429         vtype->expression.vtype != TYPE_FUNCTION)
430     {
431         mem_d(self);
432         return NULL;
433     }
434
435     self->vtype = vtype;
436     self->name = name ? util_strdup(name) : NULL;
437     MEM_VECTOR_INIT(self, blocks);
438
439     self->labelcount = 0;
440     self->builtin = 0;
441
442     self->ir_func = NULL;
443     self->curblock = NULL;
444
445     self->breakblock    = NULL;
446     self->continueblock = NULL;
447
448     vtype->isconst = true;
449     vtype->constval.vfunc = self;
450
451     return self;
452 }
453
454 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
455
456 void ast_function_delete(ast_function *self)
457 {
458     size_t i;
459     if (self->name)
460         mem_d((void*)self->name);
461     if (self->vtype) {
462         /* ast_value_delete(self->vtype); */
463         self->vtype->isconst = false;
464         self->vtype->constval.vfunc = NULL;
465         /* We use unref - if it was stored in a global table it is supposed
466          * to be deleted from *there*
467          */
468         ast_unref(self->vtype);
469     }
470     for (i = 0; i < self->blocks_count; ++i)
471         ast_delete(self->blocks[i]);
472     MEM_VECTOR_CLEAR(self, blocks);
473     mem_d(self);
474 }
475
476 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
477 {
478     unsigned int base = 10;
479 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
480 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
481     if (size < 1)
482         return;
483     checknul();
484     if (!num)
485         addch('0');
486     else {
487         while (num)
488         {
489             int digit = num % base;
490             num /= base;
491             addch('0' + digit);
492         }
493     }
494
495     *buf = 0;
496 #undef addch
497 #undef checknul
498 }
499
500 const char* ast_function_label(ast_function *self, const char *prefix)
501 {
502     size_t id = (self->labelcount++);
503     size_t len = strlen(prefix);
504     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
505     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
506     return self->labelbuf;
507 }
508
509 /*********************************************************************/
510 /* AST codegen part
511  * by convention you must never pass NULL to the 'ir_value **out'
512  * parameter. If you really don't care about the output, pass a dummy.
513  * But I can't imagine a pituation where the output is truly unnecessary.
514  */
515
516 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
517 {
518     /* NOTE: This is the codegen for a variable used in an expression.
519      * It is not the codegen to generate the value. For this purpose,
520      * ast_local_codegen and ast_global_codegen are to be used before this
521      * is executed. ast_function_codegen should take care of its locals,
522      * and the ast-user should take care of ast_global_codegen to be used
523      * on all the globals.
524      */
525     if (!self->ir_v) {
526         printf("ast_value used before generated (%s)\n", self->name);
527         return false;
528     }
529     *out = self->ir_v;
530     return true;
531 }
532
533 bool ast_global_codegen(ast_value *self, ir_builder *ir)
534 {
535     ir_value *v = NULL;
536     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
537     {
538         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
539         if (!func)
540             return false;
541
542         self->constval.vfunc->ir_func = func;
543         self->ir_v = func->value;
544         /* The function is filled later on ast_function_codegen... */
545         return true;
546     }
547
548     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
549     if (!v)
550         return false;
551
552     if (self->isconst) {
553         switch (self->expression.vtype)
554         {
555             case TYPE_FLOAT:
556                 if (!ir_value_set_float(v, self->constval.vfloat))
557                     goto error;
558                 break;
559             case TYPE_VECTOR:
560                 if (!ir_value_set_vector(v, self->constval.vvec))
561                     goto error;
562                 break;
563             case TYPE_STRING:
564                 if (!ir_value_set_string(v, self->constval.vstring))
565                     goto error;
566                 break;
567             case TYPE_FUNCTION:
568                 printf("global of type function not properly generated\n");
569                 goto error;
570                 /* Cannot generate an IR value for a function,
571                  * need a pointer pointing to a function rather.
572                  */
573             default:
574                 printf("TODO: global constant type %i\n", self->expression.vtype);
575                 break;
576         }
577     }
578
579     /* link us to the ir_value */
580     self->ir_v = v;
581     return true;
582
583 error: /* clean up */
584     ir_value_delete(v);
585     return false;
586 }
587
588 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
589 {
590     ir_value *v = NULL;
591     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
592     {
593         /* Do we allow local functions? I think not...
594          * this is NOT a function pointer atm.
595          */
596         return false;
597     }
598
599     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
600     if (!v)
601         return false;
602
603     /* A constant local... hmmm...
604      * I suppose the IR will have to deal with this
605      */
606     if (self->isconst) {
607         switch (self->expression.vtype)
608         {
609             case TYPE_FLOAT:
610                 if (!ir_value_set_float(v, self->constval.vfloat))
611                     goto error;
612                 break;
613             case TYPE_VECTOR:
614                 if (!ir_value_set_vector(v, self->constval.vvec))
615                     goto error;
616                 break;
617             case TYPE_STRING:
618                 if (!ir_value_set_string(v, self->constval.vstring))
619                     goto error;
620                 break;
621             default:
622                 printf("TODO: global constant type %i\n", self->expression.vtype);
623                 break;
624         }
625     }
626
627     /* link us to the ir_value */
628     self->ir_v = v;
629     return true;
630
631 error: /* clean up */
632     ir_value_delete(v);
633     return false;
634 }
635
636 bool ast_function_codegen(ast_function *self, ir_builder *ir)
637 {
638     ir_function *irf;
639     ir_value    *dummy;
640     size_t    i;
641
642     irf = self->ir_func;
643     if (!irf) {
644         printf("ast_function's related ast_value was not generated yet\n");
645         return false;
646     }
647
648     /* fill the parameter list */
649     for (i = 0; i < self->vtype->params_count; ++i)
650     {
651         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
652             return false;
653         if (!self->builtin) {
654             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
655                 return false;
656         }
657     }
658
659     if (self->builtin) {
660         irf->builtin = self->builtin;
661         return true;
662     }
663
664     self->curblock = ir_function_create_block(irf, "entry");
665     if (!self->curblock)
666         return false;
667
668     for (i = 0; i < self->blocks_count; ++i) {
669         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
670         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
671             return false;
672     }
673
674     /* TODO: check return types */
675     if (!self->curblock->is_return)
676     {
677         if (!self->vtype->expression.next ||
678             self->vtype->expression.next->expression.vtype == TYPE_VOID)
679         {
680             return ir_block_create_return(self->curblock, NULL);
681         }
682         else
683         {
684             /* error("missing return"); */
685             return false;
686         }
687     }
688     return true;
689 }
690
691 /* Note, you will not see ast_block_codegen generate ir_blocks.
692  * To the AST and the IR, blocks are 2 different things.
693  * In the AST it represents a block of code, usually enclosed in
694  * curly braces {...}.
695  * While in the IR it represents a block in terms of control-flow.
696  */
697 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
698 {
699     size_t i;
700
701     /* We don't use this
702      * Note: an ast-representation using the comma-operator
703      * of the form: (a, b, c) = x should not assign to c...
704      */
705     (void)lvalue;
706
707     /* output is NULL at first, we'll have each expression
708      * assign to out output, thus, a comma-operator represention
709      * using an ast_block will return the last generated value,
710      * so: (b, c) + a  executed both b and c, and returns c,
711      * which is then added to a.
712      */
713     *out = NULL;
714
715     /* generate locals */
716     for (i = 0; i < self->locals_count; ++i)
717     {
718         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
719             return false;
720     }
721
722     for (i = 0; i < self->exprs_count; ++i)
723     {
724         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
725         if (!(*gen)(self->exprs[i], func, false, out))
726             return false;
727     }
728
729     return true;
730 }
731
732 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
733 {
734     ast_expression_codegen *cgen;
735     ir_value *left, *right;
736
737     cgen = self->dest->expression.codegen;
738     /* lvalue! */
739     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
740         return false;
741
742     cgen = self->source->expression.codegen;
743     /* rvalue! */
744     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
745         return false;
746
747     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
748         return false;
749
750     /* Theoretically, an assinment returns its left side as an
751      * lvalue, if we don't need an lvalue though, we return
752      * the right side as an rvalue, otherwise we have to
753      * somehow know whether or not we need to dereference the pointer
754      * on the left side - that is: OP_LOAD if it was an address.
755      * Also: in original QC we cannot OP_LOADP *anyway*.
756      */
757     *out = (lvalue ? left : right);
758
759     return true;
760 }
761
762 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
763 {
764     ast_expression_codegen *cgen;
765     ir_value *left, *right;
766
767     /* In the context of a binary operation, we can disregard
768      * the lvalue flag.
769      */
770      (void)lvalue;
771
772     cgen = self->left->expression.codegen;
773     /* lvalue! */
774     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
775         return false;
776
777     cgen = self->right->expression.codegen;
778     /* rvalue! */
779     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
780         return false;
781
782     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
783                                  self->op, left, right);
784     if (!*out)
785         return false;
786
787     return true;
788 }
789
790 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
791 {
792     ast_expression_codegen *cgen;
793     ir_value *operand;
794
795     /* In the context of a unary operation, we can disregard
796      * the lvalue flag.
797      */
798     (void)lvalue;
799
800     cgen = self->operand->expression.codegen;
801     /* lvalue! */
802     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
803         return false;
804
805     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
806                                  self->op, operand);
807     if (!*out)
808         return false;
809
810     return true;
811 }
812
813 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
814 {
815     ast_expression_codegen *cgen;
816     ir_value *operand;
817
818     /* In the context of a return operation, we can disregard
819      * the lvalue flag.
820      */
821     (void)lvalue;
822
823     cgen = self->operand->expression.codegen;
824     /* lvalue! */
825     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
826         return false;
827
828     if (!ir_block_create_return(func->curblock, operand))
829         return false;
830
831     return true;
832 }
833
834 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
835 {
836     ast_expression_codegen *cgen;
837     ir_value *ent, *field;
838
839     /* This function needs to take the 'lvalue' flag into account!
840      * As lvalue we provide a field-pointer, as rvalue we provide the
841      * value in a temp.
842      */
843
844     cgen = self->entity->expression.codegen;
845     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
846         return false;
847
848     cgen = self->field->expression.codegen;
849     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
850         return false;
851
852     if (lvalue) {
853         /* address! */
854         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
855                                             ent, field);
856     } else {
857         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
858                                              ent, field, self->expression.vtype);
859     }
860     if (!*out)
861         return false;
862
863     /* Hm that should be it... */
864     return true;
865 }
866
867 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
868 {
869     ast_expression_codegen *cgen;
870
871     ir_value *condval;
872     ir_value *dummy;
873
874     ir_block *cond = func->curblock;
875     ir_block *ontrue;
876     ir_block *onfalse;
877     ir_block *merge;
878
879     /* We don't output any value, thus also don't care about r/lvalue */
880     (void)out;
881     (void)lvalue;
882
883     /* generate the condition */
884     func->curblock = cond;
885     cgen = self->cond->expression.codegen;
886     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
887         return false;
888
889     /* on-true path */
890
891     if (self->on_true) {
892         /* create on-true block */
893         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
894         if (!ontrue)
895             return false;
896
897         /* enter the block */
898         func->curblock = ontrue;
899
900         /* generate */
901         cgen = self->on_true->expression.codegen;
902         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
903             return false;
904     } else
905         ontrue = NULL;
906
907     /* on-false path */
908     if (self->on_false) {
909         /* create on-false block */
910         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
911         if (!onfalse)
912             return false;
913
914         /* enter the block */
915         func->curblock = onfalse;
916
917         /* generate */
918         cgen = self->on_false->expression.codegen;
919         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
920             return false;
921     } else
922         onfalse = NULL;
923
924     /* Merge block were they all merge in to */
925     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
926     if (!merge)
927         return false;
928
929     /* add jumps ot the merge block */
930     if (ontrue && !ir_block_create_jump(ontrue, merge))
931         return false;
932     if (onfalse && !ir_block_create_jump(onfalse, merge))
933         return false;
934
935     /* we create the if here, that way all blocks are ordered :)
936      */
937     if (!ir_block_create_if(cond, condval,
938                             (ontrue  ? ontrue  : merge),
939                             (onfalse ? onfalse : merge)))
940     {
941         return false;
942     }
943
944     /* Now enter the merge block */
945     func->curblock = merge;
946
947     return true;
948 }
949
950 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
951 {
952     ast_expression_codegen *cgen;
953
954     ir_value *condval;
955     ir_value *trueval, *falseval;
956     ir_instr *phi;
957
958     ir_block *cond = func->curblock;
959     ir_block *ontrue;
960     ir_block *onfalse;
961     ir_block *merge;
962
963     /* In theory it shouldn't be possible to pass through a node twice, but
964      * in case we add any kind of optimization pass for the AST itself, it
965      * may still happen, thus we remember a created ir_value and simply return one
966      * if it already exists.
967      */
968     if (self->phi_out) {
969         *out = self->phi_out;
970         return true;
971     }
972
973     /* Ternary can never create an lvalue... */
974     if (lvalue)
975         return false;
976
977     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
978
979     /* generate the condition */
980     func->curblock = cond;
981     cgen = self->cond->expression.codegen;
982     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
983         return false;
984
985     /* create on-true block */
986     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
987     if (!ontrue)
988         return false;
989     else
990     {
991         /* enter the block */
992         func->curblock = ontrue;
993
994         /* generate */
995         cgen = self->on_true->expression.codegen;
996         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
997             return false;
998     }
999
1000     /* create on-false block */
1001     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1002     if (!onfalse)
1003         return false;
1004     else
1005     {
1006         /* enter the block */
1007         func->curblock = onfalse;
1008
1009         /* generate */
1010         cgen = self->on_false->expression.codegen;
1011         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1012             return false;
1013     }
1014
1015     /* create merge block */
1016     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1017     if (!merge)
1018         return false;
1019     /* jump to merge block */
1020     if (!ir_block_create_jump(ontrue, merge))
1021         return false;
1022     if (!ir_block_create_jump(onfalse, merge))
1023         return false;
1024
1025     /* create if instruction */
1026     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1027         return false;
1028
1029     /* Now enter the merge block */
1030     func->curblock = merge;
1031
1032     /* Here, now, we need a PHI node
1033      * but first some sanity checking...
1034      */
1035     if (trueval->vtype != falseval->vtype) {
1036         /* error("ternary with different types on the two sides"); */
1037         return false;
1038     }
1039
1040     /* create PHI */
1041     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1042     if (!phi ||
1043         !ir_phi_add(phi, ontrue,  trueval) ||
1044         !ir_phi_add(phi, onfalse, falseval))
1045     {
1046         return false;
1047     }
1048
1049     self->phi_out = ir_phi_value(phi);
1050     *out = self->phi_out;
1051
1052     return true;
1053 }
1054
1055 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1056 {
1057     ast_expression_codegen *cgen;
1058
1059     ir_value *dummy      = NULL;
1060     ir_value *precond    = NULL;
1061     ir_value *postcond   = NULL;
1062
1063     /* Since we insert some jumps "late" so we have blocks
1064      * ordered "nicely", we need to keep track of the actual end-blocks
1065      * of expressions to add the jumps to.
1066      */
1067     ir_block *bbody      = NULL, *end_bbody      = NULL;
1068     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1069     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1070     ir_block *bincrement = NULL, *end_bincrement = NULL;
1071     ir_block *bout       = NULL, *bin            = NULL;
1072
1073     /* let's at least move the outgoing block to the end */
1074     size_t    bout_id;
1075
1076     /* 'break' and 'continue' need to be able to find the right blocks */
1077     ir_block *bcontinue     = NULL;
1078     ir_block *bbreak        = NULL;
1079
1080     ir_block *old_bcontinue = NULL;
1081     ir_block *old_bbreak    = NULL;
1082
1083     ir_block *tmpblock      = NULL;
1084
1085     (void)lvalue;
1086     (void)out;
1087
1088     /* NOTE:
1089      * Should we ever need some kind of block ordering, better make this function
1090      * move blocks around than write a block ordering algorithm later... after all
1091      * the ast and ir should work together, not against each other.
1092      */
1093
1094     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1095      * anyway if for example it contains a ternary.
1096      */
1097     if (self->initexpr)
1098     {
1099         cgen = self->initexpr->expression.codegen;
1100         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1101             return false;
1102     }
1103
1104     /* Store the block from which we enter this chaos */
1105     bin = func->curblock;
1106
1107     /* The pre-loop condition needs its own block since we
1108      * need to be able to jump to the start of that expression.
1109      */
1110     if (self->precond)
1111     {
1112         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1113         if (!bprecond)
1114             return false;
1115
1116         /* the pre-loop-condition the least important place to 'continue' at */
1117         bcontinue = bprecond;
1118
1119         /* enter */
1120         func->curblock = bprecond;
1121
1122         /* generate */
1123         cgen = self->precond->expression.codegen;
1124         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1125             return false;
1126
1127         end_bprecond = func->curblock;
1128     } else {
1129         bprecond = end_bprecond = NULL;
1130     }
1131
1132     /* Now the next blocks won't be ordered nicely, but we need to
1133      * generate them this early for 'break' and 'continue'.
1134      */
1135     if (self->increment) {
1136         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1137         if (!bincrement)
1138             return false;
1139         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1140     } else {
1141         bincrement = end_bincrement = NULL;
1142     }
1143
1144     if (self->postcond) {
1145         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1146         if (!bpostcond)
1147             return false;
1148         bcontinue = bpostcond; /* postcond comes before the increment */
1149     } else {
1150         bpostcond = end_bpostcond = NULL;
1151     }
1152
1153     bout_id = func->ir_func->blocks_count;
1154     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1155     if (!bout)
1156         return false;
1157     bbreak = bout;
1158
1159     /* The loop body... */
1160     if (self->body)
1161     {
1162         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1163         if (!bbody)
1164             return false;
1165
1166         /* enter */
1167         func->curblock = bbody;
1168
1169         old_bbreak          = func->breakblock;
1170         old_bcontinue       = func->continueblock;
1171         func->breakblock    = bbreak;
1172         func->continueblock = bcontinue;
1173
1174         /* generate */
1175         cgen = self->body->expression.codegen;
1176         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1177             return false;
1178
1179         end_bbody = func->curblock;
1180         func->breakblock    = old_bbreak;
1181         func->continueblock = old_bcontinue;
1182     }
1183
1184     /* post-loop-condition */
1185     if (self->postcond)
1186     {
1187         /* enter */
1188         func->curblock = bpostcond;
1189
1190         /* generate */
1191         cgen = self->postcond->expression.codegen;
1192         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1193             return false;
1194
1195         end_bpostcond = func->curblock;
1196     }
1197
1198     /* The incrementor */
1199     if (self->increment)
1200     {
1201         /* enter */
1202         func->curblock = bincrement;
1203
1204         /* generate */
1205         cgen = self->increment->expression.codegen;
1206         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1207             return false;
1208
1209         end_bincrement = func->curblock;
1210     }
1211
1212     /* In any case now, we continue from the outgoing block */
1213     func->curblock = bout;
1214
1215     /* Now all blocks are in place */
1216     /* From 'bin' we jump to whatever comes first */
1217     if      (bprecond)   tmpblock = bprecond;
1218     else if (bbody)      tmpblock = bbody;
1219     else if (bpostcond)  tmpblock = bpostcond;
1220     else                 tmpblock = bout;
1221     if (!ir_block_create_jump(bin, tmpblock))
1222         return false;
1223
1224     /* From precond */
1225     if (bprecond)
1226     {
1227         ir_block *ontrue, *onfalse;
1228         if      (bbody)      ontrue = bbody;
1229         else if (bincrement) ontrue = bincrement;
1230         else if (bpostcond)  ontrue = bpostcond;
1231         else                 ontrue = bprecond;
1232         onfalse = bout;
1233         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1234             return false;
1235     }
1236
1237     /* from body */
1238     if (bbody)
1239     {
1240         if      (bincrement) tmpblock = bincrement;
1241         else if (bpostcond)  tmpblock = bpostcond;
1242         else if (bprecond)   tmpblock = bprecond;
1243         else                 tmpblock = bout;
1244         if (!ir_block_create_jump(end_bbody, tmpblock))
1245             return false;
1246     }
1247
1248     /* from increment */
1249     if (bincrement)
1250     {
1251         if      (bpostcond)  tmpblock = bpostcond;
1252         else if (bprecond)   tmpblock = bprecond;
1253         else if (bbody)      tmpblock = bbody;
1254         else                 tmpblock = bout;
1255         if (!ir_block_create_jump(end_bincrement, tmpblock))
1256             return false;
1257     }
1258
1259     /* from postcond */
1260     if (bpostcond)
1261     {
1262         ir_block *ontrue, *onfalse;
1263         if      (bprecond)   ontrue = bprecond;
1264         else if (bbody)      ontrue = bbody;
1265         else if (bincrement) ontrue = bincrement;
1266         else                 ontrue = bpostcond;
1267         onfalse = bout;
1268         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1269             return false;
1270     }
1271
1272     /* Move 'bout' to the end */
1273     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1274         !ir_function_blocks_add(func->ir_func, bout))
1275     {
1276         ir_block_delete(bout);
1277         return false;
1278     }
1279
1280     return true;
1281 }
1282
1283 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1284 {
1285     ast_expression_codegen *cgen;
1286     ir_value_vector         params;
1287     ir_instr               *callinstr;
1288     size_t i;
1289
1290     ir_value *funval = NULL;
1291
1292     /* return values are never rvalues */
1293     (void)lvalue;
1294
1295     cgen = self->func->expression.codegen;
1296     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1297         return false;
1298     if (!funval)
1299         return false;
1300
1301     MEM_VECTOR_INIT(&params, v);
1302
1303     /* parameters */
1304     for (i = 0; i < self->params_count; ++i)
1305     {
1306         ir_value *param;
1307         ast_expression *expr = self->params[i];
1308
1309         cgen = expr->expression.codegen;
1310         if (!(*cgen)(expr, func, false, &param))
1311             goto error;
1312         if (!param)
1313             goto error;
1314         if (!ir_value_vector_v_add(&params, param))
1315             goto error;
1316     }
1317
1318     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1319     if (!callinstr)
1320         goto error;
1321
1322     for (i = 0; i < params.v_count; ++i) {
1323         if (!ir_call_param(callinstr, params.v[i]))
1324             goto error;
1325     }
1326
1327     *out = ir_call_value(callinstr);
1328
1329     return true;
1330 error:
1331     MEM_VECTOR_CLEAR(&params, v);
1332     return false;
1333 }